FINITE-STATE MACHINE OPTIMIZATION

© Giovanni De Micheli

Stanford University

Outline

C GDM

- Modeling synchronous circuits:
 - State-based models.
 - Structural models.
- State-based optimization methods:
 - State minimization.
 - State encoding.

Synchronous Logic Circuits

- © GDM ---

- Interconnection of:
 - Combinational logic gates.
 - Synchronous delay elements:
 - * E-T or M-S registers.
- Assumptions:
 - No direct combinational feedback.
 - Single-phase clocking.

Modeling synchronous circuits

■ © GDM

• State-based model:

- Model circuits as finite-state machines.
- Represent by state tables/diagrams.
- Apply exact/heuristic algorithms for:
 - * State minimization.
 - * State encoding.

• Structural models:

- Represent circuit by synchronous logic network.
- Apply:
 - * Retiming.
 - * Logic transformations.

State-based optimization

 \bigcirc GDM

FSM Specification

State Encoding

State Minimization

Combinational Optimization

Formal finite-state machine model

—— © GDM

ullet A set of primary inputs patterns X.

A set of primary outputs patterns Y.

• A set of states S.

• A state transition function:

 $-\delta: X \times S \to S.$

• An output function:

 $-\lambda: X \times S \to Y$ for *Mealy* models

 $-\lambda: S \to Y$ for *Moore* models.

State minimization

(C)	GDN	Λ
(-)		

- Completely specified finite-state machines :
 - No don't care conditions.
 - Easy to solve.
- Incompletely specified finite-state machines:
 - Unspecified transitions and/or outputs.
 - Intractable problem.

State minimization for completely specified FSMs

– © GDM —

- Equivalent states:
 - Given any input sequence
 the corresponding output sequences match.
- Theorem:
 - Two states are equivalent iff:
 - * they lead to identical outputs and their next-states are equivalent.
- Equivalence is transitive:
 - Partition states into equivalence classes.
 - Minimum finite-state machine is unique.

____ © GDM

INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> 3	1
1	s_1	s_5	1
0	s_2	s_3	1
1	s_2	s_5	1
0	s_3	s_2	0
1	s_3	s_1	1
0	s_4	84	0
1	s_4	s_5	1
0	<i>s</i> 5	84	1
1	s5	s_1	0

© GDM

Algorithm

© GDM

- Stepwise partition refinement.
- Initially:
 - All states in the same partition block.
- Then:
 - Refine partition blocks.
- At convergence:
 - Blocks identify equivalent states.

Algorithm

— © GDM

- Π_1 = States belong to the same block when outputs are the same for any input.
- While further splitting is possible:
 - $\Pi_{k+1}=$ States belong to the same block if they were previously in the same block and their next-states are in the same block of Π_k for any input.

─ © GDM

- $\Pi_1 = \{\{s_1, s_2\}, \{s_3, s_4\}, \{s_5\}\}.$
- $\Pi_2 = \{\{s_1, s_2\}, \{s_3\}, \{s_4\}, \{s_5\}\}.$
- Π_2 = is a partition into equivalence classes:
 - States $\{s_1, s_2\}$ are equivalent.

Example minimal *finite-state machine*

—— © GDM ——

INPUT	STATE	N-STATE	OUTPUT
0	<i>s</i> 12	<i>s</i> 3	1
1	s_{12}	<i>s</i> 5	1
0	s_3	s_{12}	0
1	s_3	s_{12}	1
0	s_4	84	0
1	s_4	s_5	1
0	s_5	84	1
1	s_5	s_{12}	0

© GDM

Computational complexity

── © GDM

- Polynomially-bound algorithm.
- ullet There can be at most |S| partition refinements.
- Each refinement requires considering each state:
 - Complexity $O(|S|^2)$.
- Actual time may depend upon:
 - Data-structures.
 - Implementation details.

State minimization for incompletely specified FSMs

——— © GDM

- Applicable input sequences:
 - All transitions are specified.
- Compatible states:
 - Given any applicable input sequence
 the corresponding output sequences match.
- Theorem:
 - Two states are compatible iff:
 - * they lead to identical outputs
 - (when both are specified)
 - * and their next-states are compatible
 - · (when both are specified).

State minimization for incompletely specified FSMs

C GDM

- Compatibility is not an *equivalency* relation.
- Minimum finite-state machine is not unique.
- Implication relations make problem intractable.

____ © GDM

INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> 3	1
1	s_1	s_5	*
0	s_2	83	*
1	s_2	s_5	1
0	s_3	s_2	0
1	s_3	s_1	1
0	s_4	84	0
1	s_4	<i>8</i> 5	1
0	<i>s</i> 5	84	1
1	s5	s_1	0

Trivial method for the sake of illustration

—— © GDM ——

- Consider all the possible don't care assignments
 - n don't care imply
 - * 2^n completely specified FSMs.
 - * 2^n solutions.
- Example:
 - Replace * by 1.
 - * $\Pi = \{\{s_1, s_2\}, \{s_3\}, \{s_4\}, \{s_5\}\}.$
 - Replace * by 0.
 - * $\Pi = \{\{s_1, s_5\}, \{s_2, s_3, s_4\}\}.$

Compatibility and implications Example

_____ © GDM

- Compatible states $\{s_1, s_2\}$.
- If $\{s_3, s_4\}$ are compatible:
 - then $\{s_1, s_5\}$ are compatible.
- Incompatible states $\{s_2, s_5\}$.

Compatibility and implications

- ◎ GDM

• Compatible pairs:

$$-\{s_1,s_2\}$$

$$-\{s_1, s_5\} \Leftarrow \{s_3, s_4\}$$

$$-\{s_2, s_4\} \Leftarrow \{s_3, s_4\}$$

$$-\{s_2, s_3\} \Leftarrow \{s_1, s_5\}$$

$$- \{s_3, s_4\} \leftarrow \{s_2, s_4\} \cup \{s_1, s_5\}$$

• Incompatible pairs:

$$-\{s_2,s_5\}, \{s_3,s_5\}$$

$$-\{s_1,s_4\}, \{s_4,s_5\}$$

$$-\{s_1,s_3\}$$

Compatibility and implications

——— © GDM

- A class of compatible states is such that all state pairs are compatible.
- A class is maximal:
 - If not subset of another class.
- Closure property:
 - A set of classes such that all compatibility implications are satisfied.
- The set of maximal compatibility classes:
 - Has the closure property.
 - May not provide a minimum solution.

Maximal compatible classes

— © GDM —

- $\{s_1, s_2\}$
- $\{s_1, s_5\} \leftarrow \{s_3, s_4\}$
- $\{s_2, s_3, s_4\} \leftarrow \{s_1, s_5\}$
- Cover with MCC has cardinality 3.

Formulation of the state minimization problem

—— © GDM ——

- A class is prime, if not subset of another class implying the same set or a subset of classes.
- Compute the prime compatibility classes.
- Select a minimum number of PCC such that:
 - all states are covered.
 - all implications are satisfied.
- Binate covering problem.

Prime compatible classes

____ © GDM ____

- $\{s_1, s_2\}$
- $\{s_1, s_5\} \leftarrow \{s_3, s_4\}$
- $\{s_2, s_3, s_4\} \leftarrow \{s_1, s_5\}$
- Minimum cover: $\{\{s_1, s_5\}, \{s_2, s_3, s_4\}\}$.
- Minimum cover has cardinality 2.

Heuristic algorithms

© GDM

- Approximate the covering problem.
 - Preserve closure property.
 - Sacrifice minimality.
- Consider all maximal compatibility classes.
 - May not yield minimum.

State encoding

(C)	G	D	M
	•	_	

- Determine a binary encoding of the states:
 - that optimize machine implementation:
 - * area.
 - * cycle-time.
- Modeling:
 - Two-level circuits.
 - Multiple-level circuits.

Two-level circuit models

—— © GDM —

- Sum of product representation.
 - PLA implementation.
- Area:
 - # of products \times # I/Os.
- Delay:
 - Twice # of products plus # I/Os.
- Note:
 - # products of a minimum implementation.
 - # I/Os depends on encoding length.

State encoding for two-level models

C GDM

- Symbolic minimization of state table.
- Constrained encoding problems.
 - Exact and heuristic methods.
- Applicable to large finite-state machines .

Symbolic minimization

—— © GDM ——

- Extension of two-level logic optimization.
- Reduce the number of rows of a table, that can have symbolic fields.
- Reduction exploits:
 - Combination of input symbols in the same field.
 - Covering of output symbols.

State encoding of *finite-state machines*

—— © GDM ——

- Given a (minimum) state table of a finite-state machine :
 - find a consistent encoding of the states
 - * that preserves the cover minimality
 - * with minimum number of bits.

© GDM -

INPUT	P-STATE	N-STATE	OUTPUT
0	s_1	s_3	0
1	s_1	s_3	0
0	s_2	s_3	0
1	s_2	s_1	1
0	<i>s</i> 3	s_5	0
1	<i>s</i> 3	84	1
0	84	s_2	1
1	84	<i>s</i> 3	0
0	s_5	s_2	1
1	s_5	s_5	0

© GDM

• Minimum symbolic cover:

- Covering constraints:
 - $-s_1$ and s_2 cover s_3
 - $-s_5$ is covered by all other states.
- Encoding constraint matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

——— © GDM —

• Encoding matrix (one row per state):

$$\mathbf{E} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Encoded cover of combinational component:

Multiple-level circuit models

\bigcirc	G	\Box	M
(\mathbf{C})	\cup	$oldsymbol{-}$	ıvı

- Logic network representation.
 - Logic gate interconnection.
- Area:
 - # of literals.
- Delay:
 - Critical path length.
- Note
 - # literals and CP in a minimum network.

State encoding for multiple-level models

C GDM

• Cube-extraction heuristics [Mustang-Devadas].

- Rationale:
 - When two (or more) states have a transition to the same next-state:
 - * Keep the distance of their encoding short.
 - * Extract a large common cube.
- Exploit first stage of logic.
- Works fine because most FSM logic is shallow.

——— © GDM ——

- 5-state FSM (3-bits).
 - $-s_1 \rightarrow s_3$ with input i.
 - $-s_2 \rightarrow s_3$ with input i'.
- Encoding:

$$- s_1 \rightarrow 000 = a'b'c'$$
.

$$- s_2 \rightarrow 001 = a'b'c.$$

- Transition:
 - -ia'b'c' + i'a'b'c = a'b'(ic + i'c')
 - 6 literals instead of 8.

Algorithm

© GDM

- Examine all state pairs:
 - Complete graph with |V| = |S|.
- Add weight on edges:
 - Model desired code proximity.
- Embed graph in the Boolean space.

Difficulties

© GDM

- The number of *occurrences* of common factors depends on the next-state encoding.
- The extraction of common cubes interact with each other.

Algorithm implementation

—— © GDM —

- Fanout-oriented algorithm:
 - Consider present states and outputs.
 - Maximize the size of the most frequent common cubes.
- Fanin-oriented algorithm:
 - Consider next states and inputs.
 - Maximize the frequency of the largest common cubes.

Finite-state machine decomposition

—— © GDM

- Classic problem.
 - Based on partition theory.
 - Recently done at symbolic level.
- Different topologies:
 - Cascade, parallel, general.
- Recent heuristic algorithms:
 - Factorization [Devadas].

 \bigcirc GDM

Summary

© GDM

- Finite-state machine optimization is commonly used.
 - Large body of research.
- State reduction/encoding correlates well to area minimization.
- Performance-oriented methods are still being researched.