FINITE-STATE MACHINE OPTIMIZATION

(C) Giovanni De Micheli

Stanford University

Outline

- Modeling synchronous circuits:
- State-based models.
- Structural models.
- State-based optimization methods:
- State minimization.
- State encoding.

Synchronous Logic Circuits

- Interconnection of:
- Combinational logic gates.
- Synchronous delay elements: * E-T or M-S registers.
- Assumptions:
- No direct combinational feedback.
- Single-phase clocking.

Modeling synchronous circuits

- State-based model:
- Model circuits as finite-state machines.
- Represent by state tables/diagrams.
- Apply exact/heuristic algorithms for:
* State minimization.
* State encoding.
- Structural models:
- Represent circuit by synchronous logic network.
- Apply:
* Retiming.
* Logic transformations.

State-based optimization

FSM Specification

State Encoding

State Minimization

Combinational Optimization

Formal finite-state machine model

- A set of primary inputs patterns X.
- A set of primary outputs patterns Y.
- A set of states S.
- A state transition function:

$$
-\delta: X \times S \rightarrow S
$$

- An output function:
$-\lambda: X \times S \rightarrow Y$ for Mealy models
$-\lambda: S \rightarrow Y$ for Moore models.

State minimization

(C) GDM

- Completely specified finite-state machines:
- No don't care conditions.
- Easy to solve.
- Incompletely specified finite-state machines :
- Unspecified transitions and/or outputs.
- Intractable problem.

State minimization for completely specified FSMs

- Equivalent states:
- Given any input sequence the corresponding output sequences match.
- Theorem:
- Two states are equivalent iff:
* they lead to identical outputs and their next-states are equivalent.
- Equivalence is transitive:
- Partition states into equivalence classes.
- Minimum finite-state machine is unique.

Example

INPUT	STATE	N-STATE	OUTPUT
0	s_{1}	s_{3}	1
1	s_{1}	s_{5}	1
0	s_{2}	s_{3}	1
1	s_{2}	s_{5}	1
0	s_{3}	s_{2}	0
1	s_{3}	s_{1}	1
0	s_{4}	s_{4}	0
1	s_{4}	s_{5}	1
0	s_{5}	s_{4}	1
1	s_{5}	s_{1}	0

Example

Algorithm

- Stepwise partition refinement.
- Initially:
- All states in the same partition block.
- Then:
- Refine partition blocks.
- At convergence:
- Blocks identify equivalent states.

Algorithm

- $\Pi_{1}=$ States belong to the same block when outputs are the same for any input.
- While further splitting is possible:
$-\Pi_{k+1}=$ States belong to the same block if they were previously in the same block and their next-states are in the same block of Π_{k} for any input.

Example

- $\Pi_{1}=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}, s_{4}\right\},\left\{s_{5}\right\}\right\}$.
- $\Pi_{2}=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{4}\right\},\left\{s_{5}\right\}\right\}$.
- $\Pi_{2}=$ is a partition into equivalence classes:
- States $\left\{s_{1}, s_{2}\right\}$ are equivalent.

Example
 minimal finite-state machine

INPUT	STATE	N-STATE	OUTPUT
0	s_{12}	s_{3}	1
1	s_{12}	s_{5}	1
0	s_{3}	s_{12}	0
1	s_{3}	s_{12}	1
0	s_{4}	s_{4}	0
1	s_{4}	s_{5}	1
0	s_{5}	s_{4}	1
1	s_{5}	s_{12}	0

Example

Computational complexity

- Polynomially-bound algorithm.
- There can be at most $|S|$ partition refinements.
- Each refinement requires considering each state:
- Complexity $O\left(|S|^{2}\right)$.
- Actual time may depend upon:
- Data-structures.
- Implementation details.

State minimization

for incompletely specified FSMs

- Applicable input sequences:
- All transitions are specified.
- Compatible states:
- Given any applicable input sequence the corresponding output sequences match.
- Theorem:
- Two states are compatible iff: * they lead to identical outputs
- (when both are specified)
* and their next-states are compatible
- (when both are specified).

State minimization
 for incompletely specified FSMs

- Compatibility is not an equivalency relation.
- Minimum finite-state machine is not unique.
- Implication relations make problem intractable.

Example

INPUT	STATE	N-STATE	OUTPUT
0	s_{1}	s_{3}	1
1	s_{1}	s_{5}	$*$
0	s_{2}	s_{3}	$*$
1	s_{2}	s_{5}	1
0	s_{3}	s_{2}	0
1	s_{3}	s_{1}	1
0	s_{4}	s_{4}	0
1	s_{4}	s_{5}	1
0	s_{5}	s_{4}	1
1	s_{5}	s_{1}	0

Trivial method for the sake of illustration

- Consider all the possible don't care assignments
- n don't care imply
* 2^{n} completely specified FSMs.
* 2^{n} solutions.
- Example:
- Replace * by 1.

$$
* \Pi=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{4}\right\},\left\{s_{5}\right\}\right\} .
$$

- Replace * by 0.

$$
* \Pi=\left\{\left\{s_{1}, s_{5}\right\},\left\{s_{2}, s_{3}, s_{4}\right\}\right\} .
$$

Compatibility and implications Example

- Compatible states $\left\{s_{1}, s_{2}\right\}$.
- If $\left\{s_{3}, s_{4}\right\}$ are compatible:
- then $\left\{s_{1}, s_{5}\right\}$ are compatible.
- Incompatible states $\left\{s_{2}, s_{5}\right\}$.

Compatibility and implications

- Compatible pairs:

$$
\begin{aligned}
& -\left\{s_{1}, s_{2}\right\} \\
& -\left\{s_{1}, s_{5}\right\} \Leftarrow\left\{s_{3}, s_{4}\right\} \\
& -\left\{s_{2}, s_{4}\right\} \Leftarrow\left\{s_{3}, s_{4}\right\} \\
& -\left\{s_{2}, s_{3}\right\} \Leftarrow\left\{s_{1}, s_{5}\right\} \\
& -\left\{s_{3}, s_{4}\right\} \Leftarrow\left\{s_{2}, s_{4}\right\} \cup\left\{s_{1}, s_{5}\right\}
\end{aligned}
$$

- Incompatible pairs:

$$
\begin{array}{ll}
-\left\{s_{2}, s_{5}\right\}, & \left\{s_{3}, s_{5}\right\} \\
-\left\{s_{1}, s_{4}\right\}, & \left\{s_{4}, s_{5}\right\} \\
-\left\{s_{1}, s_{3}\right\} &
\end{array}
$$

Compatibility and implications

- A class of compatible states is such that all state pairs are compatible.
- A class is maximal:
- If not subset of another class.
- Closure property:
- A set of classes such that all compatibility implications are satisfied.
- The set of maximal compatibility classes:
- Has the closure property.
- May not provide a minimum solution.

Maximal compatible classes

(C) GDM

- $\left\{s_{1}, s_{2}\right\}$
- $\left\{s_{1}, s_{5}\right\} \Leftarrow\left\{s_{3}, s_{4}\right\}$
- $\left\{s_{2}, s_{3}, s_{4}\right\} \Leftarrow\left\{s_{1}, s_{5}\right\}$
- Cover with MCC has cardinality 3.

Formulation of the state minimization problem
(C) GDM

- A class is prime, if not subset of another class implying the same set or a subset of classes.
- Compute the prime compatibility classes.
- Select a minimum number of PCC such that:
- all states are covered.
- all implications are satisfied.
- Binate covering problem.

Prime compatible classes

- Minimum cover: $\left\{\left\{s_{1}, s_{5}\right\},\left\{s_{2}, s_{3}, s_{4}\right\}\right\}$.
- Minimum cover has cardinality 2.

Heuristic algorithms

- Approximate the covering problem.
- Preserve closure property.
- Sacrifice minimality.
- Consider all maximal compatibility classes.
- May not yield minimum.

State encoding

- Determine a binary encoding of the states:
- that optimize machine implementation: * area.
* cycle-time.
- Modeling:
- Two-level circuits.
- Multiple-level circuits.

Two-level circuit models

- Sum of product representation.
- PLA implementation.
- Area:
- \# of products \times \# I/Os.
- Delay:
- Twice \# of products plus \# I/Os.
- Note:
- \# products of a minimum implementation.
- \# I/Os depends on encoding length.

State encoding for two-level models

(C) GDM

- Symbolic minimization of state table.
- Constrained encoding problems.
- Exact and heuristic methods.
- Applicable to large finite-state machines .

Symbolic minimization

- Extension of two-level logic optimization.
- Reduce the number of rows of a table, that can have symbolic fields.
- Reduction exploits:
- Combination of input symbols in the same field.
- Covering of output symbols.

State encoding of finite-state machines

- Given a (minimum) state table of a finite-state machine :
- find a consistent encoding of the states * that preserves the cover minimality * with minimum number of bits.

Example

INPUT	P-STATE	N-STATE	OUTPUT
0	s_{1}	s_{3}	0
1	s_{1}	s_{3}	0
0	s_{2}	s_{3}	0
1	s_{2}	s_{1}	1
0	s_{3}	s_{5}	0
1	s_{3}	s_{4}	1
0	s_{4}	s_{2}	1
1	s_{4}	s_{3}	0
0	s_{5}	s_{2}	1
1	s_{5}	s_{5}	0

Example

- Minimum symbolic cover:

$*$	$s_{1} s_{2} s_{4}$	s_{3}	0
1	s_{2}	s_{1}	1
0	$s_{4} s_{5}$	s_{2}	1
1	s_{3}	s_{4}	1

- Covering constraints:
- s_{1} and s_{2} cover s_{3}
- s_{5} is covered by all other states.
- Encoding constraint matrices:

$$
\mathbf{A}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Encoding matrix (one row per state):

$$
\mathbf{E}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Encoded cover of combinational component:

$$
\begin{array}{llll}
* & 1^{* *} & 001 & 0 \\
1 & 101 & 111 & 1 \\
0 & * 00 & 101 & 1 \\
1 & 001 & 100 & 1
\end{array}
$$

Multiple-level circuit models

- Logic network representation.
- Logic gate interconnection.
- Area:
- \# of literals.
- Delay:
- Critical path length.
- Note
- \# literals and CP in a minimum network.

State encoding for multiple-level models

- Cube-extraction heuristics [Mustang-Devadas].
- Rationale:
- When two (or more) states have a transition to the same next-state: * Keep the distance of their encoding short.
* Extract a large common cube.
- Exploit first stage of logic.
- Works fine because most FSM logic is shallow.

Example

- 5-state FSM (3-bits).

$$
\begin{aligned}
& -s_{1} \rightarrow s_{3} \text { with input } i \\
& -s_{2} \rightarrow s_{3} \text { with input } i^{\prime}
\end{aligned}
$$

- Encoding:

$$
\begin{aligned}
& -s_{1} \rightarrow 000=a^{\prime} b^{\prime} c^{\prime} \\
& -s_{2} \rightarrow 001=a^{\prime} b^{\prime} c
\end{aligned}
$$

- Transition:

$$
-i a^{\prime} b^{\prime} c^{\prime}+i^{\prime} a^{\prime} b^{\prime} c=a^{\prime} b^{\prime}\left(i c+i^{\prime} c^{\prime}\right)
$$

- 6 literals instead of 8.

Algorithm

- Examine all state pairs:
- Complete graph with $|V|=|S|$.
- Add weight on edges:
- Model desired code proximity.
- Embed graph in the Boolean space.

Difficulties

- The number of occurrences of common factors depends on the next-state encoding.
- The extraction of common cubes interact with each other.

Algorithm implementation

- Fanout-oriented algorithm:
- Consider present states and outputs.
- Maximize the size of the most frequent common cubes.
- Fanin-oriented algorithm:
- Consider next states and inputs.
- Maximize the frequency of the largest common cubes.

Finite-state machine decomposition
(C) GDM -

- Classic problem.
- Based on partition theory.
- Recently done at symbolic level.
- Different topologies:
- Cascade, parallel, general.
- Recent heuristic algorithms:
- Factorization [Devadas].

Example

(b)

(c)

(d)

Summary

- Finite-state machine optimization is commonly used.
- Large body of research.
- State reduction/encoding correlates well to area minimization.
- Performance-oriented methods are still being researched.

