SYMBOLIC LOGIC OPTIMIZATION AND ENCODING

(C) Giovanni De Micheli

Stanford University

Outline

- Symbolic minimization.
- Simplification of interconnected logic blocks.
- Encoding of finite-state machines
- Encoding problems:
- Input encoding.
- Output encoding.

Symbolic minimization

- Minimize tables of symbols rather than binary tables.
- Extension to bvi and mvi function minimization.
- Applications:
- Encoding of op-codes.
- State encoding of finite-state machines
- Problems:
- Input encoding.
- Output encoding.
- Mixed encoding.

Example
(input encoding)

INSTRUCTION DECODER

Example

ad-mode	op-code	control
INDEX	AND	CNTA
INDEX	OR	CNTA
INDEX	JMP	CNTA
INDEX	ADD	CNTA
DIR	AND	CNTB
DIR	OR	CNTB
DIR	JMP	CNTC
DIR	ADD	CNTC
IND	AND	CNTB
IND	OR	CNTD
IND	JMP	CNTD
IND	ADD	CNTC

Definitions

- Symbolic cover:
- List of symbolic implicants.
- List of rows of a table.
- Symbolic implicant:
- Conjunction of symbolic literals.
- Symbolic literals:
- Simple: one symbol.
- Compound: the disjunction of some symbols.

Input encoding problem Rationale

- Degrees of freedom in encoding the symbols.
- Goal:
- Reduce size of the representation.
- Approach:
- Encode to minimize number of rows.
- Encode to minimize number of bits.

Input encoding problem

- Represent each string by 1-hot codes.
- Table with positional cube notation.
- Minimize table with mvi minimizer.
- Interpret minimized table:
- Compound mvi-literals.
- Groups of symbols.

Example

(C) GDM

- Encoded cover:

$$
\begin{array}{lll}
100 & 1000 & 1000 \\
100 & 0100 & 1000 \\
100 & 0010 & 1000 \\
100 & 0001 & 1000 \\
010 & 1000 & 0100 \\
010 & 0100 & 0100 \\
010 & 0010 & 0010 \\
010 & 0001 & 0010 \\
001 & 1000 & 0100 \\
001 & 0100 & 0001 \\
001 & 0010 & 0001 \\
001 & 0001 & 0010
\end{array}
$$

- Minimum cover:

$$
\begin{array}{lll}
100 & 1111 & 1000 \\
010 & 1100 & 0100 \\
001 & 1000 & 0100 \\
010 & 0011 & 0010 \\
001 & 0010 & 0010 \\
001 & 0110 & 0001
\end{array}
$$

Example

- Minimum symbolic cover:

INDEX	AND,OR,JMP,ADD	CNTA
DIR	AND,OR	CNTB
IND	AND	CNTB
DIR	JMP,ADD	CNTC
IND	ADD	CNTC
IND	OR,JMP	CNTD

- Examples of:
- Simple literal: AND
- Compound literal: AND,OR

Input encoding problem

- Transform minimum symbolic cover into minimum bv-cover.
- Map symbolic implicants into bv implicants (one to one).
- Compound literals:

> - Encode corresponding symbols so that their supercube does not include other symbol codes.

- Replace encoded literals into cover.

Example

(a)

(b)

- Compound literals:
- AND,OR,JMP,ADD
- AND,OR
- JMP,ADD
- OR,JMP

Example

- Valid codes:

- Replacement in cover:

Input encoding algorithms

- Problem specification:
- Constraint matrix A:
$-a_{i j}=1$ iff symbol j belongs to literal i.
- Solution sought for:
- Encoding matrix \mathbf{E} :
* As many rows as the symbols.
* Encoding length n_{b}.

Example

(C) GDM

- Constraint matrix:

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

- Encoding matrix:

$$
\mathbf{E}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

Input encoding problem

- Given constraint matrix \mathbf{A}
- Find encoding matrix E satisfying all input encoding constraints (due to compound literals)
- With minimum number of columns (bits).

Dichotomy theory

- Dichotomy:
- Two sets (L, R).
- Bipartition of a subset of the symbol set.
- Encoding:
- Set of columns of E.
- Set of bipartitions of symbol set.
- Rationale:
- Each row of the constraint matrix implies some choice on the codes.

Dichotomies

- Dichotomy associated with row \mathbf{a}^{T} of \mathbf{A} :
- A set pair (L, R) :
* L has the symbols with the 1 s in \mathbf{a}^{T}
* R has the symbols with the Os in \mathbf{a}^{T}
- Seed dichotomy associated with row \mathbf{a}^{T} of \mathbf{A} :
- A set pair (L, R) :
* L has the symbols with the 1 s in \mathbf{a}^{T}
* R has one symbol with a 0 in \mathbf{a}^{T}

Example

- Dichotomy associated with constraint $\mathbf{a}^{T}=1100$:
- (\{AND,OR\};\{JMP,ADD\}).
- The corresponding seed dichotomies are:

$$
\begin{aligned}
& -(\{A N D, O R\} ;\{J M P\}) \\
& -(\{A N D, O R\} ;\{A D D\}) .
\end{aligned}
$$

Definitions

- Compatibility:

$$
\begin{aligned}
&-\left(L_{1} ; R_{1}\right) \text { and }\left(L_{2} ; R_{2}\right) \text { are compatible if: } \\
& * L_{1} \cap R_{2}=\emptyset \text { and } R_{1} \cap L_{2}=\emptyset \text { or } \\
& * L_{1} \cap L_{2}=\emptyset \text { and } R_{1} \cap R_{2}=\emptyset .
\end{aligned}
$$

- Covering:
- Dichotomy (L_{1}, R_{1}) covers (L_{2}, R_{2}) if:
* $L_{1} \supseteq L_{2}$ and $R_{1} \supseteq R_{2}$ or
* $L_{1} \supseteq R_{2}$ and $R_{1} \supseteq L_{2}$.
- Prime dichotomy:
- Dichotomy that is not covered by any compatible dichotomy of a given set.

Exact input encoding

- Compute all prime dichotomies.
- Form a prime/seed table.
- Find minimum cover of seeds by primes.

Example

- Seed dichotomies:

s_{1}	(AND, OR $\}$	\{ ${ }^{\text {a }}$ \})
s_{2}	(AND, OR\}	\{ ADD \})
s3	(JMP,ADD $\}$	\{ AND
s_{4}	($\{$ JMP,ADD $\}$	\{OR \})
S5	($\{\mathrm{OR}, \mathrm{JMP}$ \}	\{ AND
	($\{$ OR, JMP $\}$	\{ ADD

- Prime dichotomies:

Example

- Table:

	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
p_{1}	1	1	1	1	0	0
p_{2}	0	0	0	0	1	1
p_{3}	0	0	1	0	1	0
p_{4}	0	1	0	0	0	1

- Minimum cover:

$$
-p_{1} \text { and } p_{2} .
$$

- Encoding:

$$
\mathbf{E}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Heuristic encoding

- Determine dichotomies of rows of \mathbf{A}.
- Column-based encoding:
- Construct E column by column.
- Iterate:
- Determine maximum compatible set.
- Find a compatible encoding.
- Use it as column of \mathbf{E}.

Example

- Dichotomies:

- First two dichotomies are compatible.
- Encoding column [1100] ${ }^{T}$ satisfies d_{1}, d_{2}.
- Need to satisfy d_{3}.
- Second encoding column [0110] ${ }^{T}$.

Output and mixed encoding

- Output encoding:
- Determine encoding of output symbols.
- Mixed encoding:
- Determine both input and output encoding
- Examples:
* Interconnected circuits.
* Circuits with feedback.

Example

(C) GDM

INSTRUCTION DECODER

ad-mode
op-code
control

Example

Symbolic minimization

- Extension to mvi-minimization.
- Accounts for:
- Covering relations.
- Disjunctive relations.
- Exact and heuristic minimizers.

Example

- Minimum symbolic cover computed before:

INDEX AND,OR,JMP,ADD CNTA DIR AND,OR

CNTB
IND AND
CNTB
DIR JMP,ADD
IND ADD
IND
OR,JMP
CNTC
CNTC
CNTD

- Can we use fewer implicants?
- Can we merge implicants?

Example
 covering relations

(C) GDM

- Assume the code of $C N T D$ covers the codes of $C N T B$ and $C N T C$.

$$
\begin{array}{lll}
100 & 1111 & \text { CNTA } \\
011 & 1100 & \text { CNTB } \\
011 & 0011 & \text { CNTC } \\
001 & 0110 & \text { CNTD }
\end{array}
$$

- Possible codes:

$$
\begin{aligned}
& -C N T A=00, C N T B=01, C N T C= \\
& \quad 10 \text { and } C N T D=11
\end{aligned}
$$

Example disjunctive relations

(C) GDM

- Assume the code of $C N T D$ is the or of the codes of $C N T B$ and $C N T C$.

$$
\begin{array}{lll}
100 & 1111 & \text { CNTA } \\
010 & 1100 & \text { CNTB } \\
010 & 0011 & \text { CNTC } \\
001 & 1110 & \text { CNTB } \\
001 & 0111 & \text { CNTC }
\end{array}
$$

- Possible codes:

$$
\begin{aligned}
& -C N T A=00, C N T B=01, C N T C= \\
& 10 \text { and } C N T D=11
\end{aligned}
$$

Output encoding algorithms

- Often solved in conjunction with input encoding.
- Exact algorithms:
- Prime dichotomies compatible with output constraints.
- Construct prime/seed table.
- Solve covering problem.
- Heuristic algorithms:
- Construct E column by column.
- Input constraint matrix of second stage:

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

- Output constraint matrix of first stage:

$$
\mathbf{B}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

- Assume the code of $C N T D$ covers the codes of $C N T B$ and $C N T C$.

Example

- Seed dichotomies associated with A

- Seed dichotomies s_{2}, s_{7} and s_{8} are not compatible with B.

Example (2)

- Prime dichotomies compatible with B :

```
\begin{tabular}{l|lll}
\(p_{1}\) & \((\{\) CNTC, CNTD \(\}\) & \(;\) & \(\{\) CNTA, CNTB \(\})\) \\
\(p_{2}\) & \((\{\) CNTB,CNTD \(\}\) & \(;\) & CNTA, CNTC \(\})\)
\end{tabular}
\(p_{3}(\{\) CNTA, CNTB, CNTD \} ; \{CNTC \} \()\)
```

- Cover: p_{1} and p_{2}
- Encoding matrix:

$$
\mathbf{E}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

State encoding of finite-state machines

- Given a state table of a finite-state machine
- With symbols representing:
* present-states.
* next-states.
- Find a consistent encoding of the states
- That minimizes the size of the cover.
- With minimum number of bits.

Example

INPUT	P-STATE	N-STATE	OUTPUT
0	s_{1}	s_{3}	0
1	s_{1}	s_{3}	0
0	s_{2}	s_{3}	0
1	s_{2}	s_{1}	1
0	s_{3}	s_{5}	0
1	s_{3}	s_{4}	1
0	s_{4}	s_{2}	1
1	s_{4}	s_{3}	0
0	s_{5}	s_{2}	1
1	s_{5}	s_{5}	0

Example

- Minimum symbolic cover:

$*$	$s_{1} s_{2} s_{4}$	s_{3}	0
1	s_{2}	s_{1}	1
0	$s_{4} s_{5}$	s_{2}	1
1	s_{3}	s_{4}	1

- Covering constraints:
- s_{1} and s_{2} cover s_{3}
- s_{5} is covered by all other states.
- Encoding constraint matrices:

$$
\mathbf{A}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Encoding matrix (one row per state):

$$
\mathbf{E}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Encoded cover of combinational component:

$$
\begin{array}{llll}
* & 1^{* *} & 001 & 0 \\
1 & 101 & 111 & 1 \\
0 & * 00 & 101 & 1 \\
1 & 001 & 100 & 1
\end{array}
$$

- Symbolic minimization:
- Reduce size of tabular representations where symbols in table can be encoded.
- Requires solving encoding problems:
- Find minimum-length encoding that is valid for a minimum symbolic cover.
- Applicable to optimizing:
- Interconnected combinational blocks.
- Combinational part of finite-state machines

