BOOLEAN METHODS

© Giovanni De Micheli

Stanford University

Boolean methods

© GDM =

e EXxploit Boolean properties.

— Don’t care conditions.

e Minimization of the local functions.

e Slower algorithms, better quality results.

External don't care conditions

© GDM =—

e Controllability don't care set CDC;,,:
— Input patterns never produced by the
environment at the network’s input.
e Observability don’t care set ODC,y¢:

— Input patterns representing conditions
when an output is not observed by the
environment.

— Relative to each output.

— Vector notation used: ODC,,:.

Example
© GDM s

yl ol
a X1 y2 N2 ———

X2
x3 NETWORK N1

x4 z1 02

22— 22 N3 TD_

XNN3a

e Inputs driven by a de-multiplexer.

o CUDC,, = o xorhr) +r122 + 123+ 124 + 2203+ T224 + T3T4.

e Outputs observed when [ii] =1

8

8

ODC,: =

8

8

Example

overall external don’t care set

© GDM e

DC.;: = CDCin"'ODCout —

] +xo+ 3+ 24
o] +xo+z34+ 24
ZIZQL"-ZIZQ"—ZE:-}"—ZU]_
Ty + xo + 3+ 21

Internal don’t care conditions

© GDM e

CDC
In

SUBNETWORK

NETWORK

Internal don’t care conditions

© GDM =

e Induced by the network structure.

e Controllability don’t care conditions:
— Patterns never produced at the inputs
of a subnetwork.
e Observability don’t care conditions:

— Patterns such that the outputs of a
subnetwork are not observed.

Example

© GDM e

y = abx + a’'cx

@ (b)

e CDC of vy includes ablx + a'x’.

e Minimize f, to obtain: f, = azx + d/c.

Satisfiability don’t care conditions

© GDM e

e Invariant of the network:

e SDC = > =& fs
’UxGVG

e Useful to compute controllability don’t cares .

CDC computation

© GDM e

e Network traversal algorithm:
— Consider different cuts
moving from input to output.

e Initial CDC is CDC;,,.

e Move cut forward.

— Consider SDC contributions of
predecessors.

— Remove unneded variables by consensus.

CDC computation

© GDM =

CONTROLLABILITY(Gn(V,E) , CDC;,) {

C =Vl

CDCcut = CDCz'n;

foreach vertex v, € V in topological order {
C =CUuvg;
CDCeyt = CDCryt + fz @ x;
D = {v € C s.t. all dir. succ. of v are in C'}
foreach vertex vy € D

CDCeyt = Cy(CDCcut);

C=C — D,

b

CDCoyt = CDCryy,

Example

E.||| {d,e}

zum {b,c}

P

ém {x1,a,x4}

{x1,x2,x3,x4}

Example

© GDM =
Assume C'DC;, = xxy.

Select vertex v,:
— Contribution to CDCyut: a ® (z2 ® z3).
— Drop variables D = {x5,z3} by consensus:

Select vertex wvy:

— Contribution to CDC.y: b® (21 + a).
* CDCeyt = 22, +b® (21 4+ a).

— Drop variable 1 by consensus:
* CDCey = bzl +Va.

CD00ut — 6’ — Z/2.

CDC computation
by image computation

© GDM =

Network behavior at cut: f.

CDC,yt IS just the complement of the
image of (CDC;,,)" with respect to f.

CDC.yt 1S just the complement of the range
of f when CDC;,, = 0.

Range can be computed recursively.

— Terminal case: scalar function.

+ Range of y = f(X) is y+v' (any value)
unless f (or f') is a tautology
and the range is y (or ¢/).

Example

© GDM =
RANGE VECTORS

sz_d 0 0 1
{>—e 0o 1 1

o range(f) = d range((b+ ¢)|a=pe=1)+
+d" range((b + ¢)|a=bc=0)

@)

O T

e Whend=1,thenbc=1—-b+c=1is TAUTOLOGY.

e If I choose 1 as top entry in output vector:

— the bottom entry is also 1.
1 1
72|71
e When d =0, then bc =0 —> b+ c= {0,1}.

e If I choose O as top entry in output vector:

— the bottom entry can be 0 or 1.

o range(f) =de+d(e+¢e')=de+d =d +e

Example

[{b,a,x4}
é... {x1,a,x4}

e (X1,x2,x3,x4}

X1 x2 x3 x4

@ (b) ©

f= [fl]:[(1 +a)(z4 +a)]:[$1$4+a]
(r1+a) + (x4 +a) r1+ x4+ a

Example

© GDM =—

ﬁ
S
S
Q
QN
~
2
I

d range(f?|(zpta)=1) +

d' range(f?|(z,0,4a)=0)

= d range(z1 + x4 + a|(p,z,4+0)=1) +
d' range(x1 + x4 + al(z,2,4a)=0)

d range(1) + d' range(a’(z1 ® z4))
de + d'(e + €')

e+ d

o CDCout = (e+d') =de = z125.

Perturbation method

© GDM

Modify network by adding an extra input 4.

Extra input can flip polarity of a signal x.

Replace local function f; by fz D 9.

Perturbed terminal behavior: f*(§).

Example

© GDM =

Observability don’t care conditions

© GDM =

e Conditions under which a change in
polarity of a signal x is not perceived at
the outputs.

e Complement of the Boolean difference:

— 0f/0x = flpz=1 @ fla=o0-

e Equivalence of perturbed function: f£(0) © f*(1).

Observability don’t care computation

© GDM =~ =—

e Problem:

— Qutputs are not expressed as function
of all variables.

— If network is flattened to obtain f,
it may explode in size.
e Requirement:
— Local rules for ODC computation.

— Network traversal.

Single-output network
with tree structure

© GDM e

e [raverse network tree.

e At root:

— ODC,,t IS given.

e At internal vertices:

— ODC, = (8f,/08z) + ODC,

Example

© GDM =

| e

b+ c) @ .
b z1 + a1 Q
¢ T mata B

x1 al a2 x4

®
|

Assume ODC,,+ = ODCe = 0.

ODCy, = (9fe/0b)' = (b~)|p=1B(b +) p=0 = c.

ODC, = (8f./dc) = b.

ODCyy = ODCy+ (0f/0x1) = c+ a;.

General networks

© GDM =
e

S
oh)

e Fanout reconvergence.

e For each vertex with two (or more) fanout
stems:

— The contribution of the ODC along the
stems cannot be added tout court.

— Interplay of different paths.

e More elaborate analysis.

Two-way fanout stem

© GDM e

e Compute ODC sets associated with edges.

e Combine ODCs at vertex.

e Formula derivation:

— Assume two equal perturbations on the
edges.

— ODC, = f*1:%2(1,1) @ f*1,%2(0,0)

ODC formula derivation

© GDM =

ODC,;

frur2(1,1) @ *1*2(0,0)
ffur2(1,1) @© *1*2(0,0)

e (f*1*2(0,1) @ f1*2(0,1))
= (fP1*2(1,1) & f1*2(0,1))

& (f°v*2(0,1) @ f°1*2(0,0))
ODC; 5>=1 D ODCx,Z|51:0
ODCqyly,=s ® ODCy:|zi=x
ODC,; y & ODC; .

r—=x

e Because x = x1 = x».

Multi-way stems
T heorem

© GDM s
Let vy, € V be any internal or input vertex.

Let {x;,:=1,2,...,p} be the edge vars
corresponding to {(z,y;) ; i=1,2,...,p}.

Let ODC,,y, , + = 1,2,...,p the edge
ODCGs.

7 /

|£L‘i_|_1:°“:$p =T

Observability don’t care algorithm
© GDM =

OBSERVABILITY(G,(V,E) , ODCuut) {
foreach vertex v, € V in reverse topological order {
for (i =1 to p)
obDbcC,, = (0f,/0z)'1 + ODC,,;
ODC, = f:loDCx,nym:---:xp —,

Example

z1 22
©d e
b C
a

1 0 b

— CI+33]_ _ a/$/+aj‘1
ODCa,b_ (c-I—CBl) o <a+374+.’131>

_ (b Fxa) _ az, + x4
OBCee= <b‘|‘$4) B <a+;1+x4)

ove. (§) sooe. = (1) o0e. (1) ovci= (?)

/ 1.0
ODC, = ODC,}|,—=a®ODC, . = ar, + T1) — < a'ry + x4) _
Ho=er® ’ (a'+$4+w1 @ a4+ x1+ xa

_(T17T4)
- \z1+ 24

Transformations with don’t cares

© GDM =

e Boolean simplification:
— Use standard minimizer (Espresso).

— Minimize the number of literals.

e Boolean substitution:

— Simplify a function by adding an extra
input.

— Equivalent to simplification
with global don’t care conditions.

Example
Boolean substitution

© GDM =—

Substitute g = a4 cd into f;, = a-+bcd+e
to get f, = a+ bqg +e.

SDC set: ¢®(a+cd) = ¢da+q'cd+qa’(cd)’.

Simplify f;, = a + bed + e with da+ q¢'cd +
qga’'(cd)’ as don’t care .

Simplification yields f;, = a + bqg + e.

One literal less by changing the support
of fh

Single-vertex optimization
© GDM =

SIMPLIFY _SV(Gn(V,E)){
repeat {
vy — Selected vertex ;
Compute the local don't care set DCYy;
Optimize the function f; ;
huntil (no more reduction is possible)

Optimization and perturbations

© GDM =

e Replace f; by gx.

e Perturbation 6z = fz @ gs.

e Condition for feasible replacement:

— Perturbation bounded by local don’t care
set

- 5.73 g Dcemt ‘|‘ ODCx

— If £ not a primary input
consider also CDC set.

© GDM =

QDL)

B % e

@ (b) ©

X

e NO external don't care set.

e Replace AND by wire: g = a

e Analysis:
—0=frDger = abDa = ab.
—_ ODCx:y/:b/—l—C/.

— §=abl C DC; =V + ¢ = feasible!

Degrees of freedom

© GDM e

e Fully represented by don’t care conditions:
— External don’t cares .
— Internal observability and controllability.
e Don’t cares represent an upper bound on
the perturbation.

e Approximations:

— Use smaller don’t care sets to speed-up
the computation.

Multiple-vertex optimization

© GDM e

Simplify more than one local function at
a time.

Potentially better (more general) approach.

Analysis:

— Multiple perturbations.

Condition for feasible replacement:

— Upper and lower bounds on the
perturbation.

— Boolean relation model.

Example

© (d)

e [he two perturbations are related.

e Cannot change simultaneously:
— ab — a.

— ¢cb — c.

Multiple-vertex optimization
Boolean relation model

a \ X
|/ z
b _{ D_
Y
¢ Y
a b c T,y
O 0 o0|{o00,01, 10}
O 0o 1|{o00,01, 10}
O 1 o0|{o00,01, 10}
o 1 1|{o00,01, 10}
1 0 0]{00,01, 10}
1 0 1|{00,01, 10}
1 1 040001, 10}
1 1 1 {11}

© GDM =

Multiple-vertex optimization
Boolean relation model

© GDM e

e Compute Boolean relation:
— Flatten the network. Analyze patterns.

— Derive equivalence relation from ODCs.

e Use relation minimizer.

e Example of minimum function:

a b c|x,y
1 x x| 10
x 1 1

01

Multiple-vertex optimization
Boolean relation model

© GDM =—

SIMPLIFY MVR(G,(V,E)){
repeat {
U —= selected vertex subset;
foreach vertex v, € U
Compute OCDy;
Determine the equiv. classes of the Boolean relation
of the subnetwork induced by U;
Find an optimal function compatible with the relation
using a relation minimizer;
huntil (no more reduction is possible);

Multiple-vertex optimization
compatible don’t cares

© GDM =

e Determine compatible don’t cares :

— CODCs: subset of ODCs.

— Decouple dependencies.

— Reduced degrees of freedom.

e Using compatible ODCs, only upper bounds
on the perturbation need to be satisfied.

Example
two perturbations
© GDM =

e First vertex:
— CODC equal to its ODC set.

— CODCyy = ODCly; .

e [he second vertex:

— CODC smaller than its ODC to be
safe enough to allow transformations
permitted by the first ODC.

e Order dependence.

Example
first vertex vy

© GDM ==
5

o 3 i o

%

Py
) U

(@) (b)

e CODCy=0DCy = ' =b 4+ ad

e ODCr =49y =0t +¢

Cy(y) + vz =y'x =@ +)ab = ab'.

Example (2)

(¢]

)

© GDM e

Z -

(@) (b)

3

hea

y

) U

a
b
c
&

e Allowed perturbation:
— fy =bc— gy =c.

— dy=bcHc="bcCCODCy="b+d

e Disallowed perturbation:
— fz=ab — gz = a.

—dr=abPa=abl CODC; = abc'.

e T he converse holds if v, is the first vertex.

Multiple-vertex optimization
compatible don’t cares

© GDM e

SIMPLIFY _MV(Gp(V,E)){
repeat {
U = selected vertex subset;
foreach vertex v, € U
Compute COCD,; and the corresponding
local don’t care subset 5@3;
Optimize simultaneously the functions at U;
tuntil (no more reduction is possible);

Summary
Boolean methods

© GDM =

e Boolean methods exploit don’t care sets
and simplification of logic representations.

e Don't care set computation:

— Controllability and observability.

e Single and multiple transformations.

Synthesis and testability

© GDM =

e [estability:

— Ease of testing a circuit.

e Assumptions:
— Combinational circuit.

— Single or multiple stuck-at faults.

e Full testability:
— Possible to generate test set for all faults.

— Restrictive interpretation.

Test for stuck-ats

© GDM =

e Net y stuck-at O.
— Input pattern that sets y to true.
— Observe output.

— QOutput of faulty circuit differs.

e Net y stuck-at 1.

— Same, but set y to false.

e Need controllability and observability.

Test sets
don’t care interpretation

© GDM e

e Stuck-at O on net y.

— {tly(t) - ODC)(t) = 1}.

e Stuck-at 1 on net y.

— {t]y/(t) - ODC)(t) = 1},

Using testing methods for synthesis

© GDM =

e Redundancy removal.

— Use TPG to search for untestable faults.

e If stuck-at O on net y is untestable:
— Set y = 0.

— Propagate constant.

e If stuck-at 1 on y is untestable:
— Sety=1.

— Propagate constant.

Example

© GDM

iy
nd—u
D L.
= 7

T
DQLDJ—T

- TZ}
c DLP Iy
D —

(©

Redundancy removal
and perturbation analysis

© GDM =

e Stuck-at 0 on y.
— y set to 0. Namely gz = fz|y=0.

— Perturbation:

* 0 = fz @ fely=0 = y-0fz/0y.

e Perturbation is feasible « fault is untestable.

— NoO input vector t can make
y(t) - ODCy (1) true.

— No input vector can make
y(t) - ODCL(t) - 8fz/0y true.

+ because ODCy = ODCy: + (0f/0y)’.

Redundancy removal
and perturbation analysis

© GDM =

Assume untestable stuck-at O fault.

y-ODC! -9fz/0y C SDC.

Local don't care set:

Perturbation § = y-0fz/0y.

— Included in the local don’t care set.

Svynthesis for testability

© GDM e

e Synthesize networks that are fully testable.
— Single stuck-at faults.

— Multiple stuck-at faults.

e [wo-level forms.

e Multiple-level networks.

Two-level forms

© GDM =

e Full testability for single stuck-at faults:

— Prime and irredundant cover.

e Full testability for multiple stuck-at faults:

— Prime and irredundant cover when:

x Single-output function.
x* NO product term sharing.

x Each component is PI.

Example
f=a't +bc+ ac+ ab

© GDM e

=50

Multiple-level networks
Definitions

© GDM =

e A logic network Gn(V, FE) ,
with local functions in sum of product form.
e Prime and irredundant (PI):
— No literal nor implicant of any local
function can be dropped.
e Simultaneously prime and irredundant (SPI):

— No subset of literals and/or implicants
can be dropped.

Multiple-level networks
T heorems

© GDM e

e A logic network is PI and only if:
— its AND-OR implementation is fully testable
for single stuck-at faults.
e A logic network is SPI if and only if:

— its AND-OR implementation is fully testable
for multiple stuck-at faults.

Multiple-level networks
Svynthesis

© GDM =

Compute full local don'’t care sets.

— Make all local functions PI w.r. to
don’t care sets.

Pitfall:

— Don’t cares change as functions change.

Solution:

— Iteration (Espresso-MLD).

If iteration converges, network is fully testable.

Multiple-level networks
Svynthesis

© GDM e

e Flatten to two-level form.

— When possible — no size explosion.

e Make SPI by disjoint logic minimization.

e Reconstruct multiple-level network:

— Algebraic transformations preserve
multifault testability.

Summary

e Synergy between synthesis and testing.

e [estable networks correlate to small-area
networks.

e Don't care conditions play a major role.

