# ALGEBRAIC METHODS 

© Giovanni De Micheli

## Stanford University

## Outline



- Algebraic model.
- Division and substitution.
- Kernel theory.
- Kernel and cube extraction.
- Decomposition.


## Algebraic model

- Boolean algebra:
- Complement.
- Symmetric distribution laws.
- Don't care sets.
- Algebraic methods:
- Boolean functions $\rightarrow$ polynomials.
- Expressions (sum of product forms).


## Algebraic division

- Given two algebraic expressions:
- $f_{\text {quotient }}=f_{\text {dividend }} / f_{\text {divisor }}$ when:
$-f_{\text {dividend }}=f_{\text {divisor }} \cdot f_{\text {quotient }}+f_{\text {remainder }}$
$-f_{\text {divisor }} \cdot f_{\text {quotient }} \neq 0$
- and the support of $f_{\text {divisor }}$ and $f_{\text {quotient }}$ is disjoint.


## Example

- Algebraic division:

> - Let $f_{\text {dividend }}=a c+a d+b c+b d+e$ $\quad$ and $f_{\text {divisor }}=a+b$

- Then $f_{\text {quotient }}=c+d \quad f_{\text {remainder }}=e$
- Because $(a+b) \cdot(c+d)+e=f_{\text {dividend }}$ and $\{a, b\} \cap\{c, d\}=\emptyset$.
- Non-algebraic division:

$$
\text { - Let } f_{i}=a+b c \text { and } f_{j}=a+b .
$$

- Then $(a+b) \cdot(a+c)=f_{i}$ but $\{a, b\} \cap\{a, c\} \neq \emptyset$.


## An algorithm for division



- $A=\left\{C_{j}^{A}, j=1,2, \ldots, l\right\}$ set of cubes (monomials) of the dividend.
- $B=\left\{C_{i}^{B}, i=1,2, \ldots, n\right\}$ set of cubes
(monomials) of the divisor.
- Quotient $Q$ and remainder $R$ are sum of cubes (monomials).


## An algorithm for division

## ALGEBRAIC_DIVISION $(A, B)$ \{

for ( $i=1$ to $n$ ) \{

$$
\begin{aligned}
& D=\left\{C_{j}^{A} \text { such that } C_{j}^{A} \supseteq C_{i}^{B}\right\} ; \\
& \text { if }(D==\emptyset) \text { return }(\emptyset, A) ;
\end{aligned}
$$

$$
D_{i}=D \text { with var. in } \sup \left(C_{i}^{B}\right) \text { dropped ; }
$$

$$
\text { if } i=1
$$

$$
Q=D_{i} ;
$$

else

$$
Q=Q \cap D_{i} ;
$$

\}
$R=A-Q \times B ;$
return $(Q, R)$;
\}

## Example

$$
\begin{gathered}
f_{\text {dividend }}=a c+a d+b c+b d+e ; \\
f_{\text {divisor }}=a+b ;
\end{gathered}
$$

- $A=\{a c, a d, b c, b d, e\}$ and $B=\{a, b\}$.
- $i=1$ :
$-C_{1}^{B}=a, D=\{a c, a d\}$ and $D_{1}=\{c, d\}$.
- Then $Q=\{c, d\}$.
- $i=2=n$ :

$$
-C_{2}^{B}=b, D=\{b c, b d\} \text { and } D_{2}=\{c, d\} .
$$

- Then $Q=\{c, d\} \cap\{c, d\}=\{c, d\}$.
- Result:

$$
\begin{aligned}
& -Q=\{c, d\} \text { and } R=\{e\} . \\
& \quad f_{\text {quotient }}=c+d \text { and } f_{\text {remainder }}=e .
\end{aligned}
$$

## Theorem

- Given $f_{i}$ and $f_{j}$, then $f_{i} / f_{j}$ is empty when:
- $f_{j}$ contains a variable not in $f_{i}$.
- $f_{j}$ contains a cube whose support is not contained in that of any cube of $f_{i}$.
- $f_{j}$ contains more terms than $f_{i}$.
- The count of any variable in $f_{j}$ than in $f_{i}$.


## Substitution

- Consider expression pairs.
- Apply division (in any order).
- If quotient is not void:
- Evaluate area/delay gain
- Substitute $f_{\text {dividend }}$ by $j \cdot f_{\text {quotient }}+f_{\text {remainder }}$ where $j=f_{\text {divisor }}$.
- Use filters to reduce divisions.


## Substitution algorithm

```
SUBSTITUTE( G
    for (i=1,2,\ldots,|V|) {
    for (j=1,2,\ldots,|V|;j\not=i) {
    A= set of cubes of f
    B= set of cubes of fj;
        if (A,B pass the filter test ) {
        (Q,R)=ALGEBRAIC_DIVISION (A,B)
        if (Q\not=\emptyset) {
            fquotient}=\mathrm{ sum of cubes of Q;
                fremainder }=\mathrm{ sum of cubes of R;
                if (substitution is favorable)
                fi}=j\cdot\mp@subsup{f}{\mathrm{ quotient }}{}+\mp@subsup{f}{\mathrm{ remainder }}{}
            }
    }
    }
    }
}
```

Extraction

- Search for common sub-expressions:
- Single-cube extraction: monomial.
- Multiple-cube (kernel) extraction.
- Search for appropriate divisors.


## Definitions

## (c) GDM

- Cube-free expression:
- Cannot be factored by a cube.
- Kernel of an expression:
- Cube-free quotient of the expression divided by a cube, called co-kernel.
- Kernel set $K(f)$ of an expression:
- Set of kernels.

$$
\begin{gathered}
\text { Example } \\
f_{x}=a c e+b c e+d e+g
\end{gathered}
$$

(C) GDM

- Divide $f_{x}$ by $a$. Get ce. Not cube free.
- Divide $f_{x}$ by $b$. Get ce. Not cube free.
- Divide $f_{x}$ by $c$. Get $a e+b e$. Not cube free.
- Divide $f_{x}$ by $c e$. Get $a+b$. Cube free. Kernel!
- Divide $f_{x}$ by $d$. Get $e$. Not cube free.
- Divide $f_{x}$ by $e$. Get $a c+b c+d$. Cube free. Kernel!
- Divide $f_{x}$ by $g$. Get 1 . Not cube free.
- Expression $f_{x}$ is a kernel of itself because cube free.
- $K\left(f_{x}\right)=\{(a+b) ;(a c+b c+d) ;(a c e+b c e+d e+g)\}$.


## Theorem <br> (Brayton and McMullen)



- Two expressions $f_{a}$ and $f_{b}$ have a common multiple-cube divisor $f_{d}$ if and only if:
- there exist kernels $k_{a} \in K\left(f_{a}\right)$ and $k_{b} \in K\left(f_{b}\right)$ s.t. $f_{d}$ is the sum of 2 (or more) cubes in $k_{a} \cap k_{b}$.
- Consequence:
- If kernel intersection is void, then the search for common sub-expression can be dropped.


## Example

$$
\begin{aligned}
f_{x} & =a c e+b c e+d e+g \\
f_{y} & =a d+b d+c d e+g e \\
f_{z} & =a b c
\end{aligned}
$$

- $K\left(f_{x}\right)=\{(a+b) ;(a c+b c+d) ;(a c e+b c e+d e+g)\}$.
- $K\left(f_{y}\right)=\{(a+b+c e) ;(c d+g) ;(a d+b d+c d e+g e)\}$.
- The kernel set of $f_{z}$ is empty.
- Select intersection $(a+b)$

$$
\begin{aligned}
f_{w} & =a+b \\
f_{x} & =w c e+d e+g \\
f_{y} & =w d+c d e+g e \\
f_{z} & =a b c
\end{aligned}
$$

## Kernel set computation

- Naive method:
- Divide function by elements in power set of its support set.
- Weed out non cube-free quotients.
- Smart way:
- Use recursion:
* Kernels of kernels are kernels.
- Exploit commutativity of multiplication.

Recursive kernel computation simple algorithm
(C) GDN

## $R \_K E R N E L S(f)\{$

$K=\emptyset ;$
foreach variable $x \in \sup (f)\{$

$$
\text { if }(|C U B E S(f, x)| \geq 2)\{
$$

$f^{C}=$ largest cube containing $x$,
s.t. $C U B E S(f, C)=C U B E S(f, x)$;
$K=K \cup R \_K E R N E L S\left(f / f^{C}\right)$; \}
\}
$K=K \cup f ;$
return(K);
\}
$C U B E S(f, C)\{$
return the cubes of $f$ whose support $\supseteq C$;

## Analysis

- Some computation may be redundant:
- Example:
* Divide by $a$ and then by $b$.
* Divide by $b$ and then by $a$.
- Obtain duplicate kernels.
- Improvement:
- Keep a pointer to literals used so far.

Recursive kernel computation

## (C) GDM <br> —

$$
\begin{aligned}
& \text { KERNELS }(f, j)\{ \\
& \quad K=\emptyset ; \\
& \text { for } i=j \text { to } n\{ \\
& \quad \operatorname{if}\left(\left|C U B E S\left(f, x_{i}\right)\right| \geq 2\right)\{ \\
& \quad f^{C}=\text { largest cube containing } x, \\
& \quad \text { s.t. } C U B E S(f, C)=C U B E S\left(f, x_{i}\right) ; \\
& \quad \text { if }\left(x_{k} \notin C \forall k<i\right) \\
& \quad K=K \cup K E R N E L S\left(f / f^{C}, i+1\right) ; \\
& \quad\} \quad \\
& \} \\
& \\
& \quad K=K \cup f ; \\
& \text { return }(K) ;
\end{aligned}
$$

$$
\begin{gathered}
\text { Example } \\
f=a c e+b c e+d e+g
\end{gathered}
$$

- Literals $a$ or $b$. No action required.
- Literal c. Select cube ce:
- Recursive call with arguments: $(a c e+b c e) / c e=$ $a+b$; pointer $j=3+1$.
- Call considers variables $\{d, e, g\}$. No kernel.
- Adds $a+b$ to the kernel set at the last step.
- Literal d. No action required.
- Literal $e$. Select cube $e$ :
- Recursive call with arguments: $a c+b c+d$ and pointer $j=5+1$.
- Call considers variable $\{g\}$. No kernel.
- Adds $a c+b c+d$ to the kernel set at the last step.
- Literal $g$. No action required.
- Adds $a c e+b c e+d e+g$ to the kernel set.
- $K=\{(a c e+b c e+d e+g),(a c+b c+d),(a+b)\}$.


## Matrix representation of kernels



- Boolean matrix:
- Rows: cubes. Columns: variables.
- Rectangle $(R, C)$ :
- Subset of rows and columns with all entries equal to 1 .
- Prime rectangle:
- Rectangle not inside any other rectangle.
- Co-rectangle ( $R, C^{\prime}$ ) of a rectangle $(R, C)$ :
- $C^{\prime}$ are the columns not in $C$.
- A co-kernel corresponds to a prime rectangle with at least two rows.

Example

$$
f_{x}=a c e+b c e+d e+g
$$

(C) GDM

|  | var | $a$ | $b$ | $c$ | $d$ | $e$ | $g$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| cube | $R \backslash C$ | 1 | 2 | 3 | 4 | 5 | 6 |
| $a c e$ | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| $b c e$ | 2 | 0 | 1 | 1 | 0 | 1 | 0 |
| $d e$ | 3 | 0 | 0 | 0 | 1 | 1 | 0 |
| $g$ | 4 | 0 | 0 | 0 | 0 | 0 | 1 |

- Rectangle (prime): (\{1, 2\}, $\{3,5\})$
- Co-kernel ce.
- Co-rectangle: (\{1, 2\}, \{1, 2, 4, 6\}).
- Kernel $a+b$.


## Single-cube extraction

(C) GDM


## Single-cube extraction

- Form auxiliary function:
- Sum of all local functions.
- Form matrix representation:
- A rectangle with two rows represents a common cube.
- Best choice is a prime rectangle.
- Use function ID for cubes:
- Cube intersection from different functions.


## Example

- Expressions:

$$
\begin{aligned}
& -f_{x}=a c e+b c e+d e+g \\
& -f_{s}=c d e+b
\end{aligned}
$$

- Auxiliary function:

$$
-f_{a u x}=a c e+b c e+d e+g+c d e+b
$$

- Matrix:

|  |  | var | $a$ | $b$ | $c$ | $d$ | $e$ | $g$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| cube | ID | $R \backslash C$ | 1 | 2 | 3 | 4 | 5 | 6 |
| $a c e$ | $\times$ | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| $b c e$ | $\times$ | 2 | 0 | 1 | 1 | 0 | 1 | 0 |
| $d e$ | $\times$ | 3 | 0 | 0 | 0 | 1 | 1 | 0 |
| $g$ | $\times$ | 4 | 0 | 0 | 0 | 0 | 0 | 1 |
| $c d e$ | s | 5 | 0 | 0 | 1 | 1 | 1 | 0 |
| $b$ | s | 6 | 0 | 1 | 0 | 0 | 0 | 0 |

- Prime rectangle: $(\{1,2,5\},\{3,5\})$
- Extract cube ce.


## Cube extraction algorithm

CUBE_EXTRACT( $\left.G_{n}(V, E)\right)\{$ while (some favorable common cube exist) \{ $C=$ select common cube to extract;
Generate new label $l$;
Add to network $v_{l}$ and $f_{l}=f^{C}$;
Replace all functions $f$, where $f_{l}$ is a divisor, by $l \cdot f_{\text {quotient }}+f_{\text {remainder }}$;
\}
\}

## Multiple-cube extraction

(C) GDM


## Multiple-cube extraction

- We need a kernel/cube matrix.
- Relabeling:
- Cubes by new variables.
- Kernels by cubes.
- Form auxiliary function:
- Sum of all kernels.
- Extend cube intersection algorithm.


## Example

- $f_{p}=a c e+b c e$.

$$
-K\left(f_{p}\right)=\{(a+b)\} .
$$

- $f_{q}=a e+b e+d$.

$$
-K\left(f_{q}\right)=\{(a+b) ;(a e+b e+d)\} .
$$

- Relabeling:

$$
\begin{aligned}
-x_{a}=a ; x_{b} & =b ; x_{a e}=a e ; x_{b e}=b e ; x_{d}=d ; \\
* K\left(f_{p}\right) & =\left\{\left\{x_{a}, x_{b}\right\}\right\} \\
* K\left(f_{q}\right) & =\left\{\left\{x_{a}, x_{b}\right\} ;\left\{x_{a e}, x_{b e}, x_{d}\right\}\right\} .
\end{aligned}
$$

## Example (2)



- Co-kernel: $x_{a} x_{b}$.
- $x_{a} x_{b}$ corresponds to kernel intersection $a+b$.
- Extract $a+b$ from $f_{p}$ and $f_{q}$.


## Kernel extraction algorithm

KERNEL_EXTRACT( $\left.G_{n}(V, E), n, k\right)\{$
while (some favorable common kernel intersection exist)
Compute kernel set of level $\leq k$;
for ( $i=1$ to $n$ ) \{
Compute kernel intersections;
$f=$ select kernel intersection to extract;
Generate new label $l$;
Add $v_{l}$ to the network with expression $f_{l}=f$; Replace all functions $f$ where $f_{l}$ is a divisor by $l \cdot f_{\text {quotient }}+f_{\text {remainder }}$;

## Decomposition

## 

(C) GDM
$\longrightarrow$


## Decomposition



- Different ways:
- Method of Ashenhurst and Curtis.
- NAND/NOR decomposition.
- Kernel-based decomposition:
- Divide expression recursively.


## Example

$$
f_{x}=a c e+b c e+d e+g
$$

(C) GDM

- Select kernel $a c+b c+d$.
- Decompose: $f_{x}=t e+g ; \quad f_{t}=a c+b c+d$;
- Recur on the quotient $f_{t}$ :
- Select kernel $a+b$ :
- Decompose: $f_{t}=s c+d ; f_{s}=a+b$;


## Decomposition algorithm



Summary

## Algebraic transformations

(C) GDM

- View Boolean functions as algebraic expression.
- Fast manipulation algorithms.
- Some optimality lost, because Boolean properties are neglected.
- Useful to reduce large networks.

