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Abstract—Approximate computing is an effective comput-
ing paradigm for improving the energy efficiency of error-
tolerant applications. Approximate logic synthesis (ALS) is
an automatic process to generate approximate circuits with
reduced area, delay, and power, while satisfying user-specified
error constraints. This paper focuses on ALS under the
maximum error constraint. As an essential error metric that
provides a worst-case error guarantee, the maximum error is
crucial for many applications such as image processing and
machine learning. This work proposes an efficient simulation-
guided ALS flow that handles this constraint. It utilizes logic
simulation to 1) prune local approximate changes (LACs) with
large errors that violate the error constraint, and 2) accelerate
the SAT-based LAC selection process. Furthermore, to enhance
scalability, our ALS flow iteratively selects a set of promising
LACs satisfying the error constraint to improve efficiency.
The experimental results show that compared with the state-
of-the-art method, our ALS flow accelerates by 30.6×, and
further reduces the circuit area and delay by 18.2% and
4.9%, respectively. Notably, our flow scales to large EPFL
benchmarks with up to 38540 nodes, which remain challenging
for existing ALS methods tackling maximum error constraint.

Index Terms—approximate logic synthesis, approximate
computing, maximum error, logic simulation

I. INTRODUCTION

Approximate computing [1] is an emerging low-power
design paradigm for error-tolerant applications such as
signal processing, data mining, and machine learning [2]. It
carefully introduces errors to significantly reduce the hard-
ware cost, while the application-level quality is almost un-
affected. Approximate logic synthesis (ALS) is an automatic
process to generate approximate circuits [3]. An ALS tool
takes an accurate circuit and user-specified error constraints
as inputs and outputs an approximate circuit with smaller
area, delay, and power, satisfying the constraints.

To evaluate the accuracy of an approximate circuit, two
types of error metrics are utilized, the average error and
maximum error [3]. Average error, such as error rate and
mean error distance, measures the average deviation be-
tween the outputs of the accurate and approximate circuits,
while the maximum error measures the maximum devia-
tion between the outputs of the accurate and approximate
circuits over all input patterns. Typical maximum errors
include maximum error distance (MaxED) and maximum
Hamming distance (MaxHD). Maximum error provides a
worst-case guarantee of the error, which is crucial for many
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applications. For instance, in image processing, even if the
average error is low, occasional large errors can lead to vis-
ible artifacts. Another example is machine learning, where
rare extreme deviations may cause mispredictions. Using
maximum error constraints ensures that every computation
remains within safe bounds, preserving overall quality and
reliability. Considering the importance of maximum error,
this paper focuses on the ALS under the maximum error
constraint.

Many ALS methods for maximum error constraint have
been proposed [4]–[7], most of which simplify the circuit
by applying local approximate changes (LACs). A LAC is
a local modification of the circuit. For example, a constant
LAC [8] replaces a signal by a constant 0 or 1, and a SASIMI
LAC [9] substitutes a signal by another. After generating
candidate LACs, an ALS flow estimates the maximum error
caused by the LACs. Based on the error estimation results,
the ALS flow then identifies LACs that can be applied to
simplify the circuit while satisfying the error constraint.
There are two categories of maximum error estimation
methods. The first category estimates an upper bound of
the maximum error [5], [10]–[12]. However, these methods
only support the simple constant LAC [8], while complex
LACs such as the SASIMI LAC [9] that can achieve better
approximate circuits are not supported. To handle complex
LACs, the second category checks whether the maximum
error is within a user-specified bound or not [13]–[15].
For each LAC, these methods convert the maximum error
checking problem for the LAC into a SAT problem, and the
SAT solving result determines whether the maximum error
caused by the LAC is within the bound or not. However, a
new challenge is the massive number of complex LACs in
a circuit. The solving of their corresponding numerous SAT
problems is time-consuming and limits the scalability of the
ALS flow. For example, for a circuit with N nodes, there are
O(N2) SASIMI LACs [9] that replace a signal by another,
and solving the corresponding O(N2) SAT problems is
impractical for large circuits.

To address the above challenges, we propose an efficient
logic simulation-guided ALS flow under the maximum error
constraint, which can handle complex LACs and scale to
large circuits. Logic simulation has shown its effectiveness
in accelerating the SAT solving process in many traditional
logic synthesis works such as [16], and this motivates us
to leverage it to accelerate the maximum error checking
process in ALS. Our main contributions are as follows:

1) We propose to utilize logic simulation to prune large-
error LACs violating the maximum error constraint,
which significantly reduces the number of LACs to be
considered, and hence accelerates the ALS flow.

2) For the remaining LACs after pruning, we propose to
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use simulation-guided SAT solving to further acceler-
ate the LAC selection process.

3) Based on the simulation-based LAC pruning and fast
LAC selection, we design an ALS flow for maximum
error constraint that iteratively applies a set of promis-
ing LACs for efficient circuit simplification.

The experimental results show that compared with the
state-of-the-art method, our ALS flow accelerates by 30.6×,
and further reduces the circuit area and delay by 18.2%
and 4.9%, respectively. Our method scales to large EPFL
benchmarks with up to 38540 nodes, which remain chal-
lenging for existing ALS methods tackling the maximum
error constraint. Our work is open-source and available at
https://github.com/changmg/SimALS-MaxError.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related works. Section III introduces the
background. Section IV elaborates the proposed simulation-
guided ALS flow under the maximum error constraint. The
experimental results are presented in Section V, followed
by conclusions in Section VI.

II. RELATED WORKS

This section reviews the related works on ALS methods
and maximum error estimation methods for ALS.

A. Approximate Logic Synthesis (ALS) Methods

As mentioned before, the average error and the maximum
error are two typical error metrics used in ALS. Some
ALS methods can handle both average and maximum error
constraints, such as [8] and [14], some focus on the average
error constraint, such as [9], [17]–[22], and others deal
with the maximum error constraint, such as [4]–[7]. Our
work differs from the above works on ALS for maximum
error constraint in two aspects: 1) supporting complex LACs
for better circuit quality, and 2) using effective simulation-
guided techniques to enhance scalability.

B. Error Estimation Methods for ALS

Error estimation of LACs is a critical step in ALS. The
average error estimation is usually based on Monte Carlo
simulation [23]–[25] or analytical methods [26]. However,
these methods cannot be directly applied for maximum error
estimation.

To estimate the maximum error caused by LACs, two
categories of methods are proposed. The first category
estimates a maximum error upper bound, such as [10], [12].
However, both [10] and [12] only consider a simple LAC
that replaces a signal by a constant 0 or 1 [8]. Complex
LACs such as the SASIMI LAC [9] that can further simplify
the circuit are not supported.

The second category directly checks whether the maxi-
mum error caused by each LAC is within the error bound,
such as [6], [13]–[15], [27]. For example, the MUSCAT
ALS flow [6] encodes the maximum error checking of
all candidate LACs into a single minimal unsatisfiable
subset (MUS) problem. The solution of the MUS problem
corresponds to an optimized approximate circuit satisfying
the maximum error constraint. However, solving the MUS
problem is very time-consuming, and MUSCAT does not
support complex LACs like the SASIMI LAC [9]. Although

MUSCAT sets a time limit for the MUS solving to en-
hance scalability, the time limit may lead to suboptimal
approximate circuits. Another approach, the MECALS ALS
flow [27], converts the maximum error checking for all
candidate LACs into a SAT sweeping problem. Unfortu-
nately, SAT sweeping also has a scalability issue, making
MECALS unable to handle large circuits in practice. Our
method, instead, uses logic simulation to accelerate the
check of maximum errors caused by numerous LACs,
which belongs to the second category of maximum error
estimation methods. Unlike the existing works, our method
can handle complex LACs and has better scalability.

III. BACKGROUND

A. Logic Circuit Terminologies

Our study focuses on multi-level combinational logic
circuits, which can be modeled as directed acyclic graphs.
For simplicity, we use the term circuit to refer to a multi-
level combinational logic circuit. In a circuit, the inputs and
outputs of a node are called its fanins and fanouts, respec-
tively. A primary input (PI) is a node without any fanin.
A functional node is one performing a logic operation. A
primary output (PO) is a dummy node driven by either a
functional node or a PI; it has a single fanin and no fanouts.
A path is a sequence of connected nodes in the circuit. If
there exists a path from node u to v, then v is a transitive
fanout (TFO) of u.

B. Maximum Error Metrics

Consider two multiple-output Boolean functions y :
BI → BO for an accurate circuit G and ŷ : BI → BO

for its approximate counterpart Ĝ, where I and O are the
numbers of PIs and POs, respectively. The maximum error
of circuit Ĝ quantifies the maximum deviation between y
and ŷ over all PI patterns x as follows:

MaxError(G) = max
x∈BI

D (y(x), ŷ(x)) , (1)

where y(x) and ŷ(x) are binary vectors of length O,
denoting the PO values of G and Ĝ under the PI pattern x,
respectively. The function D is called a deviation function,
measuring the deviation between y and ŷ.

Typical maximum errors include maximum error dis-
tance (MaxED) and maximum Hamming distance (MaxHD).
MaxED measures the maximum absolute difference be-
tween the numerical values encoded by the POs of the
accurate and approximate circuits. Its deviation function is

DMaxED(y, ŷ) = |int(y)− int(ŷ)| , (2)
where int(v) returns the integer encoded by the binary
vector v. For example, if y encodes an O-bit unsigned
integer, then int(y) =

∑O
k=1 2

k−1yk, where yk denotes the
k-th bit of the binary vector y. By measuring the numer-
ical deviation, MaxED is a suitable metric for arithmetic
circuits, such as adders and multipliers.

MaxHD measures the maximum number of bit-flips
between y and ŷ. Its deviation function is

DMaxHD(y, ŷ) =

O∑
k=1

|yk − ŷk| . (3)

By limiting the number of bit-flips, MaxHD is a suitable
metric for digital communication and error correction cir-
cuits.
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C. Error Miter for Maximum Error Checking

An error miter is an auxiliary circuit to check whether
the maximum error of an approximate circuit exceeds a
given bound or not [13], [28]. As shown in Fig. 1, it
consists of an accurate circuit G, an approximate circuit Ĝ,
a deviation function unit, and a comparator. The accurate
and approximate circuits take the same PIs x as inputs,
and their corresponding outputs are y and ŷ, respectively.
The deviation unit computes the deviation function D(y, ŷ),
such as Eq. (2) or Eq. (3). The comparator checks whether
D(y, ŷ) is larger than the bound B. If D(y, ŷ) > B, the
output of the comparator, f , is 1; otherwise, f is 0.

To check the maximum error of circuit Ĝ, the error miter
is converted into a SAT problem. If the solver returns SAT,
then there exists a PI pattern x causing f = 1. In this
case, we have D(y, ŷ) > B, and hence MaxError(Ĝ) >
B. Otherwise, if the solution is UNSAT, then f is always
0. This means that D(y, ŷ) ≤ B over all PI patterns x,
implying MaxError(Ĝ) ≤ B.

Accurate 
Circuit 𝐺

Comparator𝐷(𝒚, ෝ𝒚) > 𝐵?Deviation 
Function 𝑓𝐷(𝒚, ෝ𝒚)

𝒚={𝑦1,…,𝑦𝑂}
ෝ𝒚={ ො𝑦1,…, ො𝑦𝑂}

𝒙={𝑥1,…,𝑥𝐼}
Error bound 𝐵

Approx. 
Circuit ෠𝐺

Fig. 1. An error miter that checks whether the maximum error of the
approximate circuit Ĝ exceeds the error bound B or not.

IV. METHODOLOGY

This section introduces our simulation-guided ALS flow
under the maximum error constraint. We first overview
the flow in Section IV-A, followed by the details in Sec-
tions IV-B and IV-C.

A. Overview

Our ALS flow aims to solve this problem: Given an
accurate circuit G in any graph representation (e.g., AIG,
gate netlist, etc.) and a maximum error bound B, find
a min-area approximate gate netlist Gfinal, while ensuring
MaxError(Gfinal) ≤ B.

As shown in Fig. 2, our flow starts by initializing a
current approximate circuit Ĝ as a copy of the accurate
circuit G. Then, circuit Ĝ is iteratively simplified in a
main loop, indicated by the blue arrows in Fig. 2. Each
iteration consists of three key steps. Step 1 generates a
set of candidate LACs Lcand. Here, the generated LACs
can be any single-output LACs, i.e., LACs whose affected
local circuits have only one output, such as constant LACs
and SASIMI LACs. Since Lcand usually contains numerous
LACs, step 2 prunes the invalid LACs violating the error
constraint according to logic simulation results. The set of
remaining LACs after pruning is denoted as Lrem. Then,
step 3 selects a set of promising LACs from Lrem and
applies them to simplify the current approximate circuit Ĝ,
where a promising LAC refers to a LAC whose application
significantly reduces circuit area while satisfying the error
constraint. If the approximate circuit Ĝ is successfully
simplified compared to the previous iteration, the main loop
continues for the next iteration. Otherwise, no more valid
LACs exist, and the main loop terminates. Then, traditional
logic synthesis is performed to further simplify the circuit

Ĝ without introducing additional errors, producing the final
approximate gate netlist Gfinal.

Note that logic simulation serves as a guider in our ALS
flow. As shown in the middle right part of Fig. 2, the circuit
simulator not only guides the pruning of invalid LACs
in Lcand, but also accelerates the LAC selection process
by guiding the SAT solving. Furthermore, the simulation
patterns in the circuit simulator are updated on the fly by
the LAC selection information from step 3. This technique
further accelerates the ALS flow by reducing the number
of SAT problems to be solved.

The following subsections detail the key steps in our
ALS flow. Specifically, Section IV-B introduces step 2,
the simulation-guided LAC pruning, and Section IV-C de-
scribes step 3, the selection and application of the promising
LACs using simulation-guided SAT solving.

Accurate circuit 𝐺

3. Promising LAC 
Selection & Application 

Using Simulation-
Guided SAT

Current App. Circuit ෠𝐺 = 𝐺
1. LAC Generation

Candidate LACs 𝐿𝑐𝑎𝑛𝑑

෠𝐺 is Updated?
YES

NO

Traditional Logic Synthesis

Final Gate Netlist 𝐺𝑓𝑖𝑛𝑎𝑙

2. Simulation-Guided 
LAC Pruning

Remaining LACs 𝐿𝑟𝑒𝑚
Circuit 

Simulator

Max 
Error≤B

Update

Guide

Guide

New Current App. Circuit ෠𝐺

Fig. 2. Simulation-guided ALS flow under the maximum error constraint.

B. Simulation-Guided LAC Pruning

The LAC pruning step filters out some invalid candidate
LACs in Lcand generated in step 1 of our flow and returns
a set of remaining LACs, denoted as Lrem. There are
usually many LACs in Lcand. For example, a circuit with
N nodes has O(N2) SASIMI LACs [9] that replace a
node by another. If we use the error miter-based method
(see Section III-C) to check the maximum error of each
candidate LAC in Lcand, then O(N2) SAT problems need to
be solved, which is impractical for large circuits. Given that
simulating a small subset of all possible input patterns (e.g.,
≤ 213 patterns in our experiments) is typically much faster
than SAT solving, we propose to use simulation to quickly
prune the invalid LACs in Lcand violating the maximum
error constraint. After the pruning, the number of LACs to
be checked by SAT solving is significantly reduced, thus
improving the efficiency of the ALS flow.

In the following parts, we first introduce a theoretical
foundation of the simulation-guided LAC pruning in Sec-
tion IV-B1, i.e., simulation can obtain a lower bound of
the maximum error caused by a candidate LAC. Next, we
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describe how to efficiently compute the lower bound on the
maximum error in Section IV-B2.

1) Theoretical Foundation: Given a candidate LAC lcand,
logic simulation over a subset of PI patterns yields the
maximum observable error under these patterns, denoted as
MaxErrorLB(lcand). Since the simulation does not cover all
PI patterns, this value is a lower bound on the real maximum
error caused by lcand, i.e.,

MaxErrorLB(lcand) ≤ MaxErrorreal(lcand). (4)

This property forms the basis for the simulation-guided
LAC pruning. If simulation finds that MaxErrorLB(lcand)>
B, then lcand is guaranteed to violate the maximum error
constraint and is discarded. In our implementation, we first
simulate with a small number of Msmall random PI patterns
to roughly prune the invalid LACs, followed by a larger
number of M PI patterns to obtain a tighter lower bound
of the maximum error for further pruning. The LACs not
pruned by the two-round simulation are retained in Lrem.

2) Efficient Computation of the Maximum Error Lower
Bounds: The theoretical foundation of the simulation-
guided LAC pruning in Eq. (4) requires computing
MaxErrorLB(lcand) for each candidate LAC lcand. To com-
pute MaxErrorLB(lcand) for each candidate LAC lcand, a
naive way is to apply lcand to the current approximate circuit
Ĝ and obtain a new approximate circuit Ĝcand. After sim-
ulating the accurate circuit G and the approximate circuit
Ĝcand under some sampled PI patterns, MaxErrorLB(lcand)
can be obtained. This method is straightforward but slow,
requiring O(|Lcand|) simulation runs, where |Lcand| is the
number of candidate LACs.

Instead of using the naive method, we accelerate the
computation of all MaxErrorLB(lcand)’s based on the change
propagation matrix (CPM) proposed in [23]. The CPM P
for the current approximate circuit Ĝ is a three-dimensional
0-1 matrix of size M ×N ×O, where M is the number of
simulation patterns, N is the number of functional nodes in
the circuit, and O is the number of POs in the circuit. Each
entry in the CPM is indexed as P [i, n, ŷk], where 1≤ i≤M
represents the i-th simulation pattern, n is a functional node
in the circuit, and ŷk (1≤k≤O) is the k-th PO in Ĝ. The
entry P [i, n, ŷk] evaluates the impact of the change in n’s
value on ŷk. Specifically, P [i, n, ŷk] = 1 indicates that a flip
of n’s value will cause a flip of yk’s value under the i-th
pattern, while P [i, n, ŷk] = 0 means that ŷk’s value keeps
unchanged after a flip of n’s value under the i-th pattern.
To compute P [i, n, ŷk], under the i-th pattern we can flip
n’s value, update the values of all n’s TFOs and POs using
n’s new value, and then check whether ŷk’s value changes.
If it changes, then P [i, n, ŷk] is 1; otherwise, P [i, n, ŷk] is
0. We apply the above process to each functional node n
in the circuit to obtain its CPM entries. Thus, computing
the CPM for all functional nodes requires O(N) simulation
runs, where N is the number of functional nodes.

Example 1 In the example circuit shown in Fig. 3, assume
that the i-th PI pattern for simulation is x1x2 . . . x5 =
11101. The simulation values of the gates are shown above
the wires. To compute P [i, n, ŷ0] and P [i, n, ŷ1], we flip
node n’s value from 0 to 1, and update the values of n’s
TFOs. That is, the value of b changes from 0 to 1, the value
of c changes from 0 to 1, the values of d and ŷ0 change

𝑥1
𝑥2𝑥3𝑥4𝑥5

ො𝑦0
ො𝑦1c

𝑛
𝑏 𝑑

e

1

1

1

0

1

0→1

0→1

0→1

1→1

CPM values:𝑃 𝑖, 𝑛, ො𝑦0 = 1 𝑃 𝑖, 𝑛, ො𝑦1 = 0Flip 
0→1

Update

Update

Update

Update

𝑛’=𝑥2 Replace 
by 𝑥2

Step 1: LAC 
affects node 

Fig. 3. An example circuit. The number above each wire is the signal
value under the i-th input pattern in the simulation. The impact of the
LAC that replaces node n with node x2 is considered.

from 0 to 1, and the values of e and ŷ1 keep unchanged.
Since under the i-th pattern, the flip of n’s value causes
a flip of ŷ0’s value, while it does not affect ŷ1’s value, we
have P [i, n, ŷ0] = 1 and P [i, n, ŷ1] = 0.

CPM can be used to efficiently compute the PO values
after applying each candidate LAC, and hence the lower
bound on the maximum error of the candidate LAC. For the
single-output LACs considered in this work, each of them,
denoted as lcand, can be modeled as replacing an existing
node n in the circuit with a new node n′. After applying
lcand to the current approximate circuit Ĝ, we can obtain the
new value of the k-th PO under the i-th pattern, denoted as
y′k[i], as follows:1

y′k[i] = ŷk[i]⊕ Impact[i, lcand, ŷk]

= ŷk[i]⊕ ((n[i]⊕ n′[i]) ∧ P [i, n, ŷk]) ,
(5)

where ŷk[i] is the k-th PO’s value under the i-th pattern
before applying lcand, Impact[i, lcand, ŷk] is a binary value
called the impact factor for evaluating the impact of apply-
ing lcand on the k-th PO under the i-th pattern, which will
be explained next, n[i] and n′[i] are the values of node n
and n′ under the i-th pattern, respectively, and ⊕ and ∧ are
the XOR and AND operations, respectively.

Note that Eq. (5) has an impact factor Impact[i, lcand, ŷk],
measuring whether applying lcand changes the value of k-
th PO (ŷk) under the i-th pattern. The impact factor has
two components, corresponding to the two steps of the
impact of lcand on the PO, indicated by the green arrows
in Fig. 3. Step 1 is that the application of lcand changes
node n’s value under the i-th pattern, which is captured by
n[i] ⊕ n′[i]. If the value of the new node n′ is different
from that of the original node n under the i-th pattern, then
n[i] ⊕ n′[i] is 1, indicating the change of n’s value after
applying lcand. Otherwise, n[i] ⊕ n′[i] is 0, indicating that
applying lcand does not change node n’s value, and hence
does not affect ŷk’s value under the i-th pattern. Step 2
is that the change of n’s value causes the change of ŷk’s
value under the i-th pattern, which is captured by the CPM
entry P [i, n, ŷk]. It is obvious that only if the two steps
both occur, ŷk’s value changes after applying lcand under
the i-th pattern. Therefore, the impact factor Impact[i, lcand]
is computed by the AND of the two components, i.e.,
(n[i] ⊕ n′[i]) ∧ P [i, n, ŷk], as shown in Eq. (5). Finally,
the new PO value y′k[i] is obtained by XORing the original
PO value ŷk[i] with the binary impact factor Impact[i, lcand].

1Eq. (5) is an intermediate result derived from [23]. However, [23]
studies the ALS problem under the average error constraint. Here, we
extend its use to the ALS problem under the maximum error constraint,
where it serves as a key building block of our simulation-guided ALS flow.
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For each candidate LAC lcand, after obtaining the new
PO values y′k[i]’s for all POs under all simulation patterns,
we can further obtain the deviation between the PO values
of the accurate circuit G and those of the approximate
circuit after applying lcand. Then, MaxErrorLB(lcand) can
be obtained as the maximum deviation over all simulation
patterns.

Example 2 For the example circuit in Fig. 3, consider
a LAC lcand that replaces node n with another node x2.
Before applying lcand, the values of ŷ0 and ŷ1 under the i-th
simulation pattern, denoted as ŷ0[i] and ŷ1[i], are 0 and 1,
respectively. From Example 1, we know P [i, n, ŷ0] = 1 and
P [i, n, ŷ1] = 0. Then, the impact factors can be computed
as follows:

Impact[i, lcand, ŷ0] = (n[i]⊕ x2[i]) ∧ P [i, n, ŷ0] = 1,

Impact[i, lcand, ŷ1] = (n[i]⊕ x2[i]) ∧ P [i, n, ŷ1] = 0.

This means that applying lcand changes ŷ0’s value under the
i-th pattern, while it does not affect ŷ1’s value. Therefore,
after applying lcand, the new values of ŷ0 and ŷ1 under the
i-th simulation pattern, denoted as y′0[i] and y′1[i], can be
updated as follows:

y′0[i] = ŷ0[i]⊕ Impact[i, lcand, ŷ0] = 0⊕ 1 = 1,

y′1[i] = ŷ1[i]⊕ Impact[i, lcand, ŷ1] = 1⊕ 0 = 1.

If we consider the MaxED metric and assume that the PO
values of the accurate circuit G under the i-th simulation
pattern are y0[i] = 0 and y1[i] = 1, then the deviation
between the PO values of G and those of the approximate
circuit after applying lcand under the i-th simulation pattern
is

D (y[i], ŷ[i]) = |(2y1[i] + y0[i])− (2y′1[i] + y′0[i])| = 1.

After computing the deviation D (y[i], ŷ[i]) for all sim-
ulation patterns, the maximum value of the deviation is
MaxErrorLB(lcand), i.e., the lower bound on the maximum
error caused by the LAC lcand.

Using the CPM-based method to compute the lower
bounds on the maximum errors of all candidate LACs, the
main computational effort lies in constructing the CPM.
As mentioned above, obtaining the CPM for the current
approximate circuit Ĝ requires only O(N) simulation runs,
where N is the number of functional nodes in Ĝ. Compared
with the naive method with O(|Lcand|) simulation runs, the
CPM-based method is much more efficient, as N is usually
much smaller than |Lcand|. After obtaining the lower bounds
on the maximum errors of all candidate LACs, the LAC
pruning step can efficiently filter out the invalid LACs that
violate the maximum error constraint based on Eq. (4) and
return the set of remaining LACs Lrem to be further checked
by the promising LAC selection and application step.

C. Promising LAC Selection and Application Based on
Simulation-Guided SAT Solving

As shown in Fig. 2, the promising LAC selection and
application step is responsible for checking the validity
of the remaining LACs in Lrem after the simulation-based
pruning, selecting a subset of promising LACs Lprom to
reduce the circuit area as much as possible, and applying all
LACs in Lprom to simplify the current approximate circuit
Ĝ.

In the following parts, we will first formulate the LAC
selection problem in Section IV-C1 and then introduce a
greedy LAC selection strategy supported by simulation-
guided SAT solving in Section IV-C2. Finally, we will
discuss the order of checking LACs in Section IV-C3, which
significantly affects the quality of the final approximate
circuit and the efficiency of the promising LAC selection
and application step.

1) Formulation of the LAC Selection Problem: The LAC
selection problem can be formulated as: Given a current
approximate circuit Ĝ and a set of LACs Lrem, find a subset
of promising LACs Lprom ⊆ Lrem to reduce the circuit area
as much as possible, while satisfying the following three
constraints:

• Error constraint: the maximum error caused by apply-
ing all LACs in Lprom is within the error bound B.

• Circuit integrity constraint: the LACs in Lprom do not
introduce a logic loop in the circuit.

• LAC conflict constraint: at most one LAC can be
applied to each node in the circuit, since two LACs
cannot be applied to the same node simultaneously.

Note that our framework supports circuits represented in
any graph format, such as AIGs and gate netlists. For AIGs,
circuit area is estimated by counting the number of AND
nodes, while for gate netlists, it is obtained by summing the
areas of all gates.

Our LAC selection problem is similar to the one in
the MUSCAT method [6], which is a state-of-the-art ALS
method under the maximum error constraint. However,
the formulation of MUSCAT only considers the constant
LACs that replace a signal by a constant 0 or 1, while
ours considers arbitrary single-output LACs. To solve this
NP-hard combinatorial optimization problem, MUSCAT
converts the problem into a MUS problem and solves it
using MUS solvers, which is time-consuming and limits
its scalability. Although MUSCAT sets a time limit for
the MUS solving to enhance the scalability, the time limit
leads to suboptimal approximate circuits. In our work, we
propose a greedy selection strategy to obtain a good solution
efficiently, which will be introduced next.

2) Greedy LAC Selection Strategy Supported by
Simulation-Guided SAT Solving: As shown in Fig. 4, our
method first sorts the LACs in Lrem and keeps the top K,
where K is a user-defined parameter. More details about
the sorting are discussed in Section IV-C3. Then, each LAC
in the sorted list is examined in order to determine whether
it should be applied. Denote the initial circuit before
applying any LAC as G0 = Ĝ (the current approximate
circuit) and the updated circuit after processing the j-th
(1 ≤ j ≤ K) LAC as Gj . After processing all K LACs,
the resulting circuit GK becomes the updated current
approximate circuit Ĝ for subsequent iterations. Note that
the j-th candidate LAC lj affects the circuit Gj−1. When
we process LAC lj , we first check whether applying it to
the circuit Gj−1 will introduce a logic loop in the circuit.
If so, we skip lj and keep the circuit Gj the same as
Gj−1. Then, for the LAC lj that does not introduce a logic
loop, we check its validity using the error miter-based
method introduced in Section III-C. Specifically, we build
an error miter (see Fig. 1) using the accurate circuit G and
the approximate circuit after applying lj to Gj−1, convert
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the miter into a SAT problem, and then use a SAT solver
to solve the problem. The solution of the SAT problem
determines whether to apply lj or not. There are three
possible results of the SAT solving for lj :

• UNSAT: This indicates that the maximum error caused
by LAC lj is no larger than B. In this case, LAC lj is
valid, and we apply it to the circuit Gj−1, obtaining
the resulting circuit Gj . Examples of this case are l1
and l3 in Fig. 4. Note that in order to satisfy the LAC
conflict constraint, after applying lj , we remove all
LACs that affect the same node as lj from the top K
LACs.

• SAT: This indicates that applying LAC lj to the circuit
Gj−1 causes a maximum error that exceeds B. In this
case, LAC lj is invalid and should be skipped, and
circuit Gj keeps the same as circuit Gj−1. Examples
of this case are l2 and lK in Fig. 4.

• UNDEFINED: This happens when the SAT solver
cannot give a solution within a computing resource
limit. In this case, the solver cannot determine whether
lj is valid or not. To avoid violating the error con-
straint, conservatively, we do not select lj and skip
it, and circuit Gj keeps the same as circuit Gj−1.
In our implementation, we set a maximum conflict
number for the SAT solver to avoid the long runtime
of SAT solving. In a SAT solver, a conflict happens
when the current variable assignments make a clause
false. During SAT solving, if the number of conflicts
exceeds the maximum conflict number, the solver
returns UNDEFINED. Moreover, if the SAT solver
returns UNDEFINED for LAC lj , for efficiency, we
add lj into a blacklist and do not consider it again in
future iterations of the ALS flow. An example of this
case is l4 in Fig. 4.

Circuit 
Simulator

Current App. Circuit ෠𝐺 Remaining LACs 𝐿𝑟𝑒𝑚

New Current App. Circuit ෠𝐺Greedy Selection Strategy

SAT 
Solver𝐺0=෠𝐺 𝐺1

LAC 𝑙1
Valid
apply

Invalid
skip 𝐺2 Valid

apply 𝐺3 Undef.
skip

…

Guide: 
Fast 

check

Update: 
Counter 

Examples

Sort

Max 
Error≤B

𝐺𝐾−1

Top K LACs

Invalid
skip

Max error check

LAC 𝑙2 LAC 𝑙3 LAC 𝑙4 LAC 𝑙𝐾
PI Sim. 
Patterns𝐺𝐾

Fig. 4. Greedy promising LAC selection strategy supported by simulation-
guided SAT solving.

When the solver returns SAT for LAC lj , a counter-
example pattern is also returned, which is a PI pattern
that causes the maximum error to exceed B. Note that the
counter-example pattern is not sampled in previous logic
simulation in the LAC pruning step. It can be viewed as
a sensitive pattern that activates the large deviation caused
by LAC lj . This sensitive pattern is very likely to activate
large deviations caused by other LACs, especially those af-
fecting the same node as lj . Therefore, the counter-example
pattern is very helpful in guiding the future maximum error
checking of other LACs.

We propose a reuse mechanism of the counter-example
patterns, as shown in the right part of Fig. 4. When
examining LAC lj , before solving the SAT problem for
lj , we perform logic simulation using the counter-example
patterns generated by ls’s (s < j) to quickly check whether

lj already violates the maximum error bound under these
patterns. If simulation finds that lj is invalid, then we
directly skip the LAC without solving the SAT problem.
Otherwise, we still need to solve the SAT problem for
lj to check its validity. By guiding the SAT solving with
the simulation using the counter-example patterns, we can
skip unnecessary SAT solving and improve the efficiency
of the LAC selection and application step. Furthermore, we
also update the simulation patterns by storing the counter-
example patterns. In this way, the stored counter-example
patterns will guide the future iterations of the ALS flow in
their simulation-based LAC pruning and promising LAC
selection and application steps. In practice, this method
reduces the number of SAT problems to be solved in the
ALS flow and accelerates the ALS flow.

3) The Order of Checking and Selecting LACs: As
shown in Fig. 4, before applying the greedy LAC selection
strategy, an essential step is to sort the LACs in Lrem. After
sorting, the top K LACs are kept and the other LACs are
discarded.

The sorting of LACs is crucial for both the quality of the
final approximate circuit and the efficiency of the promising
LAC selection and application step. Note that in the greedy
LAC selection strategy, a previously selected LAC changes
the circuit structure, and hence affects the validity of the
following LACs. For example, in Fig. 4, l1 is selected and
applied to the circuit, affecting the validity of l2, l3, . . . , lK .
Thus, different orders of LACs may lead to different results
of the LAC selection and finally affect the quality of the
final approximate circuit. Moreover, a poor order of LACs
may slow down the LAC selection process. For example, if
invalid LACs are checked first, then the promising LAC
selection and application step may spend a lot of time
checking and discarding them with no simplification of the
circuit, hence wasting time.

We propose a sorting strategy based on two criteria: 1) the
maximum error lower bound (primary) and 2) the estimated
area reduction of the LAC (secondary). First, the LACs are
sorted in the ascending order of their maximum error lower
bounds, obtained from logic simulation. The motivation is
that only the top K LACs are kept after the sorting. We
want to keep as many valid LACs as possible within the
top K so that the circuit area can be effectively reduced
by applying these valid LACs. Given that a LAC with a
small maximum error lower bound is more likely to be
valid, sorting the LACs by the lower bounds can increase
the probability of keeping valid LACs in the top K LACs.

Only if multiple LACs share the same maximum error
lower bound, they are further sorted in descending order of
the estimated area reduction, prioritizing LACs that reduce
more area. Our method supports circuits represented in any
graph format, such as AIGs and gate netlists. For AIGs, a
LAC’s area reduction is estimated by counting the nodes in
the maximum fanout-free cone (MFFC) [29] of the node
where the LAC is applied, instead of performing time-
consuming logic synthesis to obtain the exact reduction. For
gate netlists, a LAC’s area reduction is obtained by sum-
ming the areas of the gates in the corresponding MFFC.
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V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement the proposed ALS flow under the maxi-
mum error constraint in C++ and test it on a single core of
an AMD Ryzen 9 5900X processor with 64GB RAM. Our
flow is developed upon a state-of-the-art open-source logic
synthesis and verification system, ABC [30]. The flow also
integrates CryptoMiniSat [31], a modern SAT solver with
rich features and a simple interface. To avoid long runtime
of SAT solving, we set a maximum conflict number of 218

for each SAT problem.
In all experiments, the initial circuits are represented

as AIGs, although our flow can also handle other circuit
representations, such as gate netlists. The reason for using
AIGs is that many AIG-based logic synthesis works [32],
[33] and ALS works [20], [34] have shown significant ad-
vantages in reducing hardware cost, particularly for CMOS
technologies. The standard cell library used in our exper-
iments is the Nangate 45nm library [35]. The traditional
logic synthesis in the last step of our flow (see Fig. 2)
consists of AIG optimization and technology mapping. For
AIG optimization, we apply the ABC script “resyn2rs”
for 3 iterations. This script combines four transformations,
i.e., rewriting, refactoring, balancing, and resubstitution,
to simplify the local structure of the AIG, and has been
shown effective and widely used in recent works [36]–[39].
Iteratively applying the script can further reduce the AIG
size and depth, and in our experiments, 3 iterations provide
a good trade-off between circuit quality and runtime. For
technology mapping, we use the standard area-oriented
mapping script “dch; amap” to convert the AIG into a
gate netlist, as recommended in the ABC tutorial [40].
Unless otherwise specified, the following default parameters
are used in all experiments. For the simulation-based LAC
pruning (see Section IV-B1), we first use Msmall = 210

simulation patterns to quickly filter out LACs inducing large
errors, and then use M = 213 simulation patterns for a more
fine-grained filtering. For the parameter K in the sorting
strategy in Section IV-C3, we set K = 100. To build the
error miter in Fig. 1 for maximum error checking, we use
Verilog to describe the error miter and then use Yosys [41]
and ABC to synthesize the Verilog description.

To evaluate the hardware cost, we measure the area,
delay, and power consumption of the synthesized gate
netlist (post-synthesis, before place-and-route). The area
is computed by summing the individual gate areas in the
netlist. The delay is obtained using the static timing analysis
command “stime” in ABC. The power is estimated with the
Synopsys Design Compiler [42] at 2MHz under a uniform
input distribution. We then define area ratio, delay ratio,
and power ratio as the respective values of the approximate
netlist normalized to those of the accurate one. Smaller
ratios are preferred. To evaluate the accuracy of circuits, two
different maximum error metrics, MaxED and MaxHD, are
considered in our experiments. Note that the focus of this
work is ALS under the maximum error constraint, so we
do not compare it with other ALS methods under average
error constraints, such as [34] and [43]. For all generated
approximate circuits, the error miter in Fig. 1 is used to
formally verify that the maximum errors of the circuits
satisfy the given error bounds.

TABLE I
EXPERIMENTAL BENCHMARKS. AREA, DELAY, AND POWER ARE
MEASURED BY MAPPING AIGS INTO GATE NETLISTS WITH THE

NANGATE 45NM LIBRARY.

Benchmark
suite Circuit #PIs/#POs AIG Gate netlist

Size Depth
Area
/um2

Delay
/ns

Power
/µW

Used in
MECALS

[27]

absdiff 16/8 141 14 87.3 0.42 80.9
add8 16/9 66 10 42.0 0.36 36.8
add32 64/33 252 64 184.6 1.84 173.0
binsqrd 16/18 1562 50 1052.3 1.53 989.5
buttfly 32/34 265 48 170.5 1.01 172.6
mac 12/8 145 20 92.8 0.60 73.4
mult8 16/16 649 40 435.4 1.26 410.2
mult16 32/32 1981 72 1418.8 1.98 1707.2
mult32 64/64 8340 53 5723.3 1.87 7868.3

EPFL*

arith-
metic

add128 256/129 1297 28 933.4 0.96 825.0
bar 135/128 2688 14 1267.8 0.92 1753.1
log2 32/32 38540 419 21480.6 14.26 40410.0
max 512/130 2686 549 1646.3 15.81 1971.2
mult64 128/128 33242 326 16447.3 9.47 31105.0
sine 24/25 7044 180 4112.1 5.93 5968.1
sqrt 128/64 21951 4591 13464.1 216.92 58397.0
square 64/128 20030 296 12801.8 7.96 18836.0

ISCAS85

c880 60/26 313 22 198.2 0.59 129.8
c1355 41/32 390 16 235.9 0.56 260.1
c1908 33/25 367 25 229.6 0.86 222.6
c2670 233/140 579 17 385.2 0.68 325.4
c3540 50/22 937 32 521.1 1.02 404.4
c5315 178/123 1306 28 720.3 0.72 643.7
c7552 207/108 1469 26 903.6 1.43 898.8

* The large benchmark hyp is omitted and cannot be handled by both
our and baseline methods. The div benchmark is omitted since there is
no space of approximation under the given MaxED bounds.

The benchmarks used in our experiments are listed in
Table I, which includes circuit names, PI/PO numbers,
AIG size, AIG depth, circuit area, circuit delay, and circuit
power. They are the benchmarks used in MECALS [27],
EPFL arithmetic benchmarks [44], and ISCAS85 bench-
marks [45]. The initial AIGs have been well optimized to
ensure as little redundancy as possible. These AIGs are then
used as input to our ALS flow and those ALS flows for
comparison. The baseline methods are the MECALS [27]
and MUSCAT [6] methods. MECALS is a state-of-the-
art ALS method, in which the maximum error checking
problem is converted into a SAT sweeping problem. MUS-
CAT is another state-of-the-art method that converts the
ALS problem under maximum error constraint into a MUS
problem and solves it using a MUS solver. MECALS can
handle both constant [8] and SASIMI [9] LACs, while
MUSCAT only supports constant LACs. In our experiments,
for a circuit with N nodes, our method and MECALS
consider 2N constant LACs and O(N2) SASIMI LACs,
while MUSCAT only considers the 2N constant LACs.

B. Experiments Under the MaxED Constraint

This set of experiments tests the arithmetic benchmarks
used in MECALS and from the EPFL benchmark suite in
Table I under the MaxED constraint. Note that MaxED is
a suitable error metric for arithmetic circuits, because from
Eq. (2), the deviation function of MaxED considers the
different significance of different POs, which measures the
absolute difference between the numerical values encoded
by the POs of accurate and approximate circuits. In what
follows, we first compare our flow with the state-of-the-art
methods on the benchmarks used in MECALS and then
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TABLE II
COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART METHODS UNDER THE MAXED CONSTRAINT. BOLD ENTRIES INDICATE THE
SMALLEST AREA, DELAY, AND POWER RATIOS, OR THE SHORTEST RUNTIME. N/A MEANS MUSCAT CANNOT OBTAIN FINAL APPROXIMATE

CIRCUITS IN 24 HOURS.

Circuit MaxED
bound

Area ratio Delay ratio Power ratio Runtime/s
Ours MECALS MUSCAT Ours MECALS MUSCAT Ours MECALS MUSCAT Ours MECALS MUSCAT

absdiff 1 64.0% 65.2% 86.2% 107.2% 108.9% 94.6% 68.1% 65.2% 83.7% 0.2 0.4 1.1
3 59.7% 69.2% 84.7% 95.1% 106.2% 105.7% 59.5% 62.4% 70.3% 1.7 0.6 1.1

add8 1 76.0% 92.5% 95.0% 77.3% 88.1% 101.6% 81.4% 92.3% 94.3% 0.12 0.11 0.7
3 72.2% 81.7% 85.5% 76.7% 95.7% 87.0% 76.7% 80.7% 85.6% 0.7 0.2 1.0

add32 9 70.3% 71.9% 84.1% 95.0% 99.6% 76.3% 77.6% 79.6% 100.0% 28 50 23
97 63.0% 62.5% 82.6% 84.9% 86.0% 83.7% 69.5% 68.5% 82.6% 114 84 28

binsqrd 3 78.4% 79.9% 99.9% 95.2% 93.8% 100.0% 83.1% 84.0% 100.4% 15 1432 377
12 76.9% 78.6% 97.2% 95.2% 93.9% 99.7% 81.6% 82.7% 98.2% 271 8947 7230

buttfly 10 79.4% 86.9% 97.7% 81.6% 91.8% 99.3% 81.5% 83.6% 93.1% 15 3.6 2.2
111 74.6% 85.3% 94.9% 101.1% 83.7% 99.3% 77.3% 78.8% 86.9% 56 5.8 2.3

mac 1 87.1% 86.6% 96.6% 94.4% 95.8% 99.6% 92.7% 91.3% 92.4% 0.3 1.0 1.9
2 85.1% 82.8% 89.4% 94.4% 91.5% 87.4% 88.3% 87.8% 82.4% 0.8 4.5 4.5

mult8 3 74.1% 75.1% 98.2% 81.1% 82.0% 100.0% 75.1% 72.4% 98.6% 1.3 78 949
9 72.5% 73.1% 96.3% 85.9% 81.9% 100.0% 76.3% 70.8% 97.3% 7.7 111 7225

Average of above 73.8% 77.9% 92.0% 90.4% 92.8% 95.3% 77.8% 78.6% 90.4% 37 766 1132

mult16 9 98.3% 99.7% N/A 98.1% 100.7% N/A 99.0% 99.9% N/A 9.3 154 N/A
84 93.7% 95.7% N/A 92.1% 97.1% N/A 94.5% 96.0% N/A 83 368 N/A

mult32 84 98.0% 99.6% N/A 97.5% 102.0% N/A 98.2% 99.1% N/A 203 997 N/A
7131 93.9% 98.6% N/A 100.9% 93.8% N/A 94.7% 97.8% N/A 1544 3364 N/A

Average of all 78.7% 82.5% N/A 91.9% 94.0% N/A 82.0% 82.9% N/A 131 867 N/A

show the scalability of our flow using the EPFL arithmetic
benchmarks.

1) Comparison with State-of-the-Art Methods: We com-
pare our ALS flow with MECALS and MUSCAT. The
tested benchmarks are those used in MECALS. We run the
open-source codes of MECALS and MUSCAT on the same
platform for fair comparison. The MaxED bounds are set
to ⌊2O/10⌋ and ⌊2O/5⌋ for each benchmark, where O is
the number of POs of the benchmark, and the function ⌊x⌋
gives the greatest integer less than or equal to x. In each
iteration of our flow, the LAC generation step (see Fig. 2)
produces both constant and SASIMI LACs.

Table II compares the area ratio, delay ratio, power ratio,
and runtime of our flow, MECALS, and MUSCAT under the
MaxED constraint. The bold entries indicate the smallest
area ratio, delay ratio, power ratio, and runtime among
the three methods, and we use the same highlighting in
the following tables. We can see that our method achieves
the smallest area ratios for most benchmarks. For the first
7 smaller benchmarks, our method achieves an average
area, delay, and power ratio of 73.8%, 90.4%, and 77.8%,
respectively. Compared to MECALS, our method reduces
area, delay, and power by 4.1%, 2.4% and 0.8% on
average. Compared to MUSCAT, our method reduces area,
delay, and power by 18.2%, 4.9%, and 12.6% on average.
Moreover, MUSCAT cannot obtain the final approximate
circuit in 24 hours for the benchmarks mult16 and mult32,
while our method and MECALS can. Over all benchmarks,
our method reduces area, delay, and power by 3.8%, 2.1%,
and 0.9% on average compared to MECALS. Note that
for the benchmarks add8 and mult16, our method achieves
smaller area, delay, and power ratios than MECALS for
both MaxED bounds. However, for the benchmark add32
under the MaxED bound of 97 and the benchmark mac,
our method is worse than MECALS in terms of the area
ratio. One possible reason is as follows. Both our flow
and MECALS iteratively simplify the circuit. In each it-
eration, our flow selects multiple promising LACs (see
Section IV-C2), while MECALS only selects one. This
difference may lead to better performance of MECALS on

some benchmarks. However, our flow reduces more area
than MUSCAT for all benchmarks. This is because our flow
can handle more complex LACs than MUSCAT, which can
achieve better approximate circuits.

Our method is more efficient than MECALS and MUS-
CAT. Over the first 7 benchmarks, our method is 20.7×
faster than MECALS and 30.6× faster than MUSCAT on
average. Over all benchmarks, our method speeds up by
6.6× on average compared to MECALS. Note that our
method is slower than MECALS for some benchmarks.
For the small benchmarks absdiff and add8, the total
runtime of our method is within 2 seconds, so the run-
time difference is negligible. For the benchmark buttfly,
compared to MECALS, our method takes more time but
dramatically reduces the area, which is worth the trade-
off. For the benchmark add32 under the MaxED bound
of 97, our method consumes more time than MECALS
and MUSCAT, while the area and delay ratios are still
competitive. Additionally, across all benchmarks in Table II,
our method finishes after an average of 5.8 iterations.
The average number of LACs applied per iteration is 7.4,
obtained by dividing the total number of applied LACs
across all iterations and benchmarks over the total number
of iterations across all benchmarks. In contrast, MECALS
needs an average of 8.3 iterations with only one LAC
applied per iteration. Applying multiple LACs per iteration
reduces the number of iterations, thereby shortening the
overall runtime.

2) Experiments on EPFL Benchmarks: To show the
scalability of our ALS flow, we test it on the large EPFL
arithmetic benchmarks. The MUSCAT method cannot han-
dle them, so we do not compare our method with MUSCAT
and we only compare our method with MECALS. Similarly,
the MaxED bounds are set to ⌊2O/10⌋ and ⌊2O/5⌋ for each
benchmark, where O is the PO number of the benchmark.
To accelerate our flow, we first apply the constant LACs
to quickly simplify the circuit, followed by the SASIMI
LACs for further simplification. Specifically, the constant
LACs are first applied to the circuit POs (like truncation)
until the MaxED bound is reached and then to the internal
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TABLE III
COMPARISON OF OUR ALS FLOW WITH THE MECALS METHOD ON THE EPFL ARITHMETIC BENCHMARKS UNDER THE MAXED CONSTRAINT.
BOLD ENTRIES INDICATE SMALLER AREA, DELAY, AND POWER RATIOS, OR SHORTER RUNTIME. N/A MEANS THAT MECALS CANNOT OBTAIN

THE FINAL APPROXIMATE CIRCUIT IN 24 HOURS.

Circuit MaxED
bound

Area ratio Delay ratio Power ratio Runtime/s
Ours MECALS Ours MECALS Ours MECALS Ours MECALS

add128 7.6E+03 86.9% 94.2% 105.4% 96.4% 86.6% 92.0% 7.2 474
5.8E+07 77.6% 84.1% 99.9% 100.1% 77.1% 81.2% 11 3264

bar 7.1E+03 97.5% 97.9% 99.9% 100.6% 95.1% 96.0% 2.2 412
5.1E+07 96.2% 95.7% 100.2% 100.4% 90.8% 90.3% 2.6 753

max 8.2E+03 94.2% 94.2% 82.4% 82.4% 90.5% 90.1% 273 6362
6.7E+07 93.1% 93.2% 80.8% 80.9% 87.5% 87.9% 303 8580

mult64 7.1E+03 96.1% 99.1% 100.6% 98.5% 98.3% 101.0% 4347 45437
5.1E+07 95.7% 98.2% 102.4% 99.2% 97.8% 99.6% 1996 78970

square 7.1E+03 92.9% 99.4% 93.3% 98.9% 96.3% 99.1% 1504 53925
Average of above 92.2% 95.1% 96.1% 95.3% 91.1% 93.0% 938 22020
square 5.1E+07 93.0% N/A 89.8% N/A 95.7% N/A 13903 N/A

log2 9.0E+00 94.1% N/A 104.8% N/A 91.9% N/A 37143 N/A
8.4E+01 93.9% N/A 103.7% N/A 90.9% N/A 36754 N/A

sin 5.0E+00 94.9% N/A 110.2% N/A 94.6% N/A 1195 N/A
3.2E+01 79.7% N/A 96.7% N/A 72.0% N/A 22293 N/A

sqrt 8.4E+01 81.2% N/A 81.3% N/A 77.7% N/A 400 N/A
7.1E+03 62.6% N/A 62.9% N/A 56.4% N/A 363 N/A

Average of all 89.3% N/A 94.6% N/A 87.4% N/A 7531 N/A

nodes of the circuit until the MaxED bound is reached.
Finally, the SASIMI LACs are applied until the MaxED
bound is reached. We emphasize that despite the above
modification, the ALS flow is still based on the general
framework presented in Fig. 2. This modification is intro-
duced only to reduce runtime on large benchmarks, where
directly considering all constant and SASIMI LACs in each
iteration is computationally expensive (> 24 hours). With
the modification, we reduce the number of LACs to be
checked while still following the same ALS flow in Fig. 2.

Table III compares the area ratio, delay ratio, power
ratio, and runtime of our flow and MECALS on the EPFL
arithmetic benchmarks under the MaxED constraint. We can
see that our method can handle all benchmarks in the table
with an average runtime of 7531 seconds, while MECALS
cannot handle the benchmarks log2, sin, sqrt, and square
(under 5.1 × 107 MaxED bound) in 24 hours. For the
benchmarks that both our method and MECALS can handle
(the top part of the table), our method further reduces the
area by 2.9% and power by 1.9% on average with a small
delay overhead, while being 23.5× faster than MECALS
on average. Notably, for the benchmark add128, under the
two MaxED bounds of 7.6×103 and 5.8×107, our method
speeds up by 65.8× and 296.7×, respectively, compared to
MECALS and reduces area by 7.3% and 6.5%, respectively,
and power by 5.4% and 4.1%, respectively. Only for the
benchmark bar under the MaxED bound of 5.1 × 107,
our method is slightly worse than MECALS in terms of
the area ratio. However, our method is far more efficient
than MECALS with a competitive delay ratio. Moreover,
across the cases where both methods succeed (the top part
of Table III), our method finishes after an average of 3.8
iterations, and the average number of LACs applied per
iteration is 11.4. In contrast, MECALS needs an average
of 37.6 iterations with only one LAC applied per iteration.
This again shows the efficiency of our method.
C. Experiments Under the MaxHD Constraint

This set of experiments approximates the ISCAS85 and
EPFL arithmetic benchmarks in Table I under the MaxHD
constraint. We compare our ALS flow with MECALS. We
modify the open-source codes of MECALS to support the
MaxHD constraint and run both methods on the same

platform for fair comparison. MUSCAT is not compared in
this experiment as its open-source code does not support the
MaxHD constraint. The MaxHD bounds are set to ⌊O/10⌋
and ⌊O/5⌋ for each benchmark, where O is the number
of POs of the benchmark. For the max benchmark, we set
the parameter K in the sorting strategy in Section IV-C3 to
1000 to achieve better approximate circuits with lower hard-
ware costs, while for the others, K still keeps the default
value of 100. Similar as in Section V-B2, to accelerate our
flow, the constant LACs are first applied until the MaxHD
bound is reached, and then the SASIMI LACs are applied
until the MaxHD bound is reached.

Table IV compares the area ratio, delay ratio, power
ratio, and runtime of our flow and MECALS. Our method
completes all benchmarks within 7 hours, while MECALS
fails to process sqrt within 24 hours. For log2, MECALS
cannot obtain the final approximate circuit due to out of
memory. Under the given MaxHD bounds, our flow cannot
apply any LAC to simplify log2 and therefore terminates
after one iteration, with the one-round runtime reported
in Table IV. Our method achieves smaller area and delay
ratios on most benchmarks, and smaller power ratios on all
benchmarks. Excluding log2 and sqrt, our method achieves
average area, delay, and power ratios of 75.8%, 83.6%,
and 74.0%, respectively, with an average runtime of 517
seconds. Compared to MECALS, our method reduces area,
delay, and power by 9.4%, 5.6%, and 11.1% on average,
respectively. Notably, for benchmark c7552, both area and
power savings exceed 50%. For benchmark c1908 under
the MaxHD bound of 5 and benchmark c2670 under the
MaxHD bound of 28, although our method is worse than
MECALS in terms of the area ratio, it reduces delay and
power consumption. Moreover, our method is more efficient
than MECALS, accelerating over MECALS by 11.7× on
average. The efficiency is attributed to the reduced number
of iterations by our method. Across all benchmarks in
Table IV, our method finishes after an average of 5.6
iterations, and the average number of LACs applied per
iteration is 21.3. In contrast, MECALS needs an average of
48.9 iterations with only one LAC applied per iteration.

D. Effectiveness of Simulation and Parameter Study
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TABLE IV
COMPARISON OF OUR ALS FLOW WITH THE MECALS METHOD ON THE ISCAS AND EPFL ARITHMETIC BENCHMARKS UNDER THE MAXHD

CONSTRAINT. BOLD ENTRIES INDICATE SMALLER AREA, DELAY, AND POWER RATIOS, OR SHORTER RUNTIME. N/A MEANS THAT MECALS
CANNOT OBTAIN THE FINAL APPROXIMATE CIRCUIT IN 24 HOURS. OOM MEANS THAT MECALS TERMINATES DUE TO OUT OF MEMORY.

Circuit MaxHD
bound

Area ratio Delay ratio Power ratio Runtime/s
Ours MECALS Ours MECALS Ours MECALS Ours MECALS

c880 2 88.3% 97.3% 100.5% 105.6% 85.9% 97.6% 0.9 1.9
5 67.5% 92.4% 113.1% 106.8% 55.6% 95.3% 1.1 2.8

c1355 3 10.1% 10.4% 3.4% 3.4% 8.1% 8.3% 0.6 73
6 9.1% 10.8% 3.4% 3.4% 7.3% 8.6% 0.4 17

c1908 2 89.9% 97.3% 89.5% 101.1% 89.7% 101.0% 1.0 5.0
5 73.6% 65.5% 84.3% 86.6% 62.2% 75.3% 1.5 53

c2670 14 64.2% 84.9% 62.9% 99.6% 66.2% 83.4% 29 26
28 42.3% 41.2% 36.9% 54.4% 42.8% 44.9% 32 80

c3540 2 93.8% 95.5% 92.8% 109.1% 94.2% 97.6% 1.3 64
4 92.1% 95.6% 98.7% 102.8% 91.8% 94.6% 1.6 105

c5315 12 92.7% 96.5% 104.2% 103.5% 94.0% 96.8% 25 158
24 84.6% 90.5% 93.8% 99.6% 85.7% 91.7% 34 877

c7552 10 41.2% 95.8% 77.6% 99.8% 40.6% 96.2% 16 193
21 32.7% 84.2% 68.2% 100.1% 29.6% 83.9% 29 627
12 92.0% 92.4% 113.2% 96.3% 89.3% 90.2% 8.2 9.7add128 25 83.7% 88.9% 101.7% 101.3% 80.4% 84.8% 35 16
12 97.0% 99.5% 101.0% 98.8% 94.5% 99.2% 27 13761bar 25 90.8% 98.5% 99.8% 95.8% 85.0% 95.0% 35 18128

3 100.0% OOM 100.0% OOM 100.0% OOM 22045 OOMlog2 6 100.0% OOM 100.0% OOM 100.0% OOM 24133 OOM
13 86.6% 94.2% 74.7% 83.1% 82.7% 89.9% 260 38max 26 77.0% 92.7% 64.7% 80.3% 71.7% 86.7% 172 79
12 95.9% 99.1% 98.9% 98.9% 97.1% 100.9% 357 13932mult64 25 94.9% 98.6% 95.2% 97.9% 96.4% 100.2% 2192 22736

2 93.6% 97.9% 104.9% 101.5% 93.7% 97.9% 3002 1436sin 5 92.8% 97.1% 100.9% 102.0% 92.7% 96.9% 4832 2062
6 81.2% N/A 82.2% N/A 78.1% N/A 560 N/Asqrt 12 65.2% N/A 64.8% N/A 58.9% N/A 753 N/A

12 92.9% 99.0% 95.1% 95.5% 94.7% 98.4% 284 37073square 25 91.8% 98.5% 93.4% 92.4% 92.6% 97.7% 2075 45644
Average w/o log2 & sqrt 75.8% 85.2% 83.6% 89.2% 74.0% 85.1% 517 6046

This section evaluates the effectiveness of simulation in
our ALS flow. It also studies the impact of several important
parameters in our method on the synthesis quality and
runtime.

1) Effectiveness of Simulation-Guided LAC Pruning:
To show the effectiveness of the simulation-guided LAC
pruning (see Section IV-B) in our ALS flow, we conduct an
ablation study on the arithmetic circuits used in MECALS
in Table I under the MaxED constraint. We compare our
flows with and without the simulation-guided LAC pruning.
For the flow without the pruning, we evaluate all candidate
LACs in each iteration and select the first K valid LACs to
simplify the circuit. Similar to the previous experiments,
we choose MaxED bounds of ⌊2O/10⌋ and ⌊2O/5⌋ for
each benchmark, where O is the number of POs of the
benchmark. Since the flow without the pruning is very slow,
we only use the simple constant LACs in this experiment
to ensure that the experiment finishes in a reasonable time.

Table V compares our ALS flows with and without
the simulation-guided LAC pruning under the MaxED
constraint in terms of the area ratio, delay ratio, runtime,
and the number of SAT problems solved in the flow. We
can see that with pruning applied, the number of SAT
problems solved in our flow is dramatically reduced by
98.7% on average, leading to an average runtime reduction
of 96.2%. Meanwhile, applying the pruning almost does
not affect the area and delay ratios of the approximate
circuits. This is because the pruning just removes the invalid
LACs according to the simulation results, and the valid
LACs are still preserved in the design space, ensuring
good qualities of the approximate circuits. An exception
is the benchmark absdiff under the MaxED bound of 3,

where the area ratio with the pruning is much larger than
that without the pruning, while the delay ratio with the
pruning is much smaller than that without the pruning. We
believe that this is caused by an area-delay trade-off of the
technology mapping process, since the final approximate
AIGs produced with and without the pruning before the
technology mapping has similar size (i.e., 116 with pruning
versus 115 without pruning) and the same depth (i.e., 12).

2) Impact of Simulation Count on Synthesis Quality and
Runtime: We study the impact of the simulation count
(Msmall and M in Section IV-B1) on both synthesis quality
and runtime. Recall that our method adopts a two-phase
simulation-guided LAC pruning (see Section IV-B1). First,
Msmall patterns are used for rough pruning of LACs, fol-
lowed by a larger set of M patterns for further filtering. We
evaluate the impact of M and Msmall on four benchmarks,
binsqrd, buttfly, mult16, and mult32, under a fixed MaxED
constraint of ⌊2O/5⌋, where O is the PO number of the
benchmark. For each benchmark, we test seven (Msmall,M)
pairs: (25, 28), (25, 211), (25, 213), (25, 216), (210, 211),
(210, 213), and (210, 216). Note that (210, 213) is the default
setting in all previous experiments.

Fig. 5 shows the impact of the simulation count on the
final circuit area and runtime of our method. For all bench-
marks, under the same Msmall, the final area decreases or
remains unchanged as M increases. This is because a larger
M can filter out more invalid LACs, thereby retaining more
valid ones in the top K candidates for further evaluation,
which produces smaller approximate circuits. Meanwhile,
under the same Msmall, the runtime generally increases with
M , since more simulation patterns require more simulation
time. An exception occurs for mult32 with Msmall = 25,
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TABLE V
COMPARISON OF OUR ALS FLOWS WITH AND WITHOUT THE SIMULATION-GUIDED LAC PRUNING UNDER THE MAXED CONSTRAINT. ONLY

CONSTANT LACS ARE USED IN THIS EXPERIMENT. BOLD ENTRIES INDICATE SMALLER AREA OR DELAY RATIOS, SHORTER RUNTIME, OR FEWER
SAT PROBLEMS SOLVED.

Circuit MaxED
bound

Area ratio Delay ratio Runtime/s Solved #SAT
With pruning W/o pruning With pruning W/o pruning With pruning W/o pruning With pruning W/o pruning

absdiff 1 81.7% 81.7% 88.7% 88.7% 0.1 1.4 10 518
3 78.0% 53.6% 77.9% 94.2% 0.1 1.7 10 492

add8 1 86.1% 86.1% 91.2% 91.2% 0.03 0.1 0 122
3 72.2% 72.2% 77.0% 77.0% 0.05 0.2 4 212

add32 9 72.0% 72.0% 98.3% 98.3% 0.2 5.7 18 952
97 63.5% 63.5% 88.3% 88.3% 0.4 4.9 39 874

binsqrd 3 77.7% 77.7% 94.2% 94.2% 52 1233 20 6180
12 77.0% 77.5% 94.2% 94.2% 343 1362 67 6134

buttfly 10 78.2% 78.2% 110.7% 110.7% 0.3 1.1 36 1046
111 75.5% 75.5% 113.2% 113.2% 0.3 1.1 58 1028

mac 1 92.6% 92.6% 100.8% 100.8% 0.1 1.3 4 554
2 85.7% 85.7% 95.5% 95.5% 0.1 1.2 9 532

mult8 3 73.9% 73.9% 85.6% 85.6% 0.4 71 4 2560
9 72.5% 72.3% 80.5% 81.0% 0.8 106 27 2532

mult16 9 99.3% 99.3% 100.5% 100.0% 3.5 1208 15 7886
84 93.6% 93.7% 91.7% 91.8% 57 1357 124 7700

mult32 84 98.4% 98.4% 93.5% 95.2% 162 14549 111 15872
7131 94.5% 94.7% 94.8% 101.2% 669 14437 417 15398

Average 81.8% 80.5% 93.2% 94.5% 72 1909 54 3922
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Fig. 5. Impact of simulation count on final area after applying our method and runtime of our method under ⌊2O/5⌋ MaxED constraint. Runtime data
differs from that in Table II since a different computer is used in this experiment.

where runtime first decreases and then increases. When
both Msmall and M are small, pruning is ineffective, and
many invalid LACs remain in the top K LACs and must
be verified by SAT solving, which dominates the runtime.
As M increases from 28 to 213, more invalid LACs are
eliminated by simulation, leading to fewer SAT problems
and reduced runtime. When M further increases to 216, the
runtime rises again due to the long simulation time. Overall,
the default setting of (Msmall,M) = (210, 213), shown as
brown bars in Fig. 5, provides a good trade-off between
the final area and runtime across the four benchmarks.

3) Impact of Simulation Count on SAT Solving Statistics:
We further study how the simulation count influences the
SAT solving statistics. In this study, we fix Msmall = 25

and vary M ∈ {28, 211, 213, 216}, while keeping the other
settings identical to those in the previous experiment in
Section V-D2. Table VI shows, for different M values, the
total number of SAT problems solved, the percentages of
SAT and UNSAT results, and the number of UNDEFINED
results observed in the first two iterations of our method.
Since different M values lead to different iteration numbers,
we restrict the comparison to the first two iterations for
fairness. As M increases, the percentage of SAT results
generally decreases while that of UNSAT results generally

increases. This trend is expected because a larger M prunes
more invalid LACs, which increases the likelihood that
the preserved top K LACs are valid. As valid LACs
correspond to UNSAT results when their maximum errors
are formally checked, the UNSAT ratio rises, while the SAT
ratio decreases. Moreover, UNDEFINED results are only
observed in mult32 when M = 211, 213, and 216. Due to
the large size of mult32, the SAT solver may fail to resolve
some instances within the computation budget.

4) Impact of Number of Top LACs (Parameter K):
Recall that during the LAC selection step shown in Fig. 4,
only the top K LACs are kept for further evaluation based
on their maximum error lower bounds and estimated area
reductions. We study the impact of K on the final area, run-
time, and iteration number of our method. Specifically, we
test K ∈ {50, 100, 1000, 10000} on the four benchmarks
binsqrd, buttfly, mult16, and mult32 under the MaxED
constraint of ⌊2O/5⌋. The results are shown in Table VII.

The impact of K on the final area and runtime varies
across benchmarks, but a common related trend can be ob-
served. As K increases, the number of iterations decreases,
since more candidate LACs are evaluated and applied in
each iteration. However, a larger K with fewer iterations
does not necessarily yield shorter runtime, because evalu-
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TABLE VI
IMPACT OF SIMULATION COUNT ON SAT SOLVING STATISTICS IN THE

FIRST TWO ITERATIONS OF OUR METHOD UNDER ⌊2O/5⌋ MAXED
CONSTRAINT. Msmall IS FIXED TO 25 .

Circuit M
All SAT

calls
SAT

percentage
UNSAT

percentage
#UNDEF

count

binsqrd

28 98 42.9% 57.1% 0
211 60 3.3% 96.7% 0
213 60 3.3% 96.7% 0
216 60 3.3% 96.7% 0

buttfly

28 100 95.0% 5.0% 0
211 100 95.0% 5.0% 0
213 100 95.0% 5.0% 0
216 36 80.6% 19.4% 0

mult16

28 17 17.6% 82.4% 0
211 15 0.0% 100.0% 0
213 15 0.0% 100.0% 0
216 15 0.0% 100.0% 0

mult32

28 106 42.5% 57.5% 0
211 69 5.8% 88.4% 4
213 33 6.1% 90.9% 1
216 33 6.1% 90.9% 1

TABLE VII
IMPACT OF NUMBER OF TOP LACS SELECTED (K) ON FINAL AREA,
RUNTIME, AND NUMBER OF ITERATIONS OF OUR METHOD UNDER

⌊2O/5⌋ MAXED CONSTRAINT. RUNTIME DATA DIFFERS FROM THAT IN
TABLE II SINCE A DIFFERENT COMPUTER IS USED IN THIS

EXPERIMENT.

Circuit K
Final

Area/µm2 Runtime/s #Iterations

binsqrd

50 801.7 562 10
100 797.5 445 7

1000 795.6 851 5
10000 790.3 927 5

buttfly

50 127.2 48 7
100 127.2 73 7

1000 127.2 49 5
10000 127.2 32 4

mult16

50 1327.3 149 12
100 1316.2 142 7

1000 1323.1 123 5
10000 1328.9 729 4

mult32

50 5379.1 1240 19
100 5353.0 866 10

1000 5360.4 1377 7
10000 5382.2 2924 4

ating more LACs per iteration also requires solving more
SAT problems per iteration. Thus, the overall runtime is
determined by the trade-off between the iteration count and
the number of SAT calls per iteration. For binsqrd, mult16,
and mult32, runtime decreases at first as K increases, but
then rises again when K further increases. For buttfly,
runtime exhibits the opposite trend, first increasing and then
decreasing.

The effect of K on the final circuit area also differs
by benchmarks. For binsqrd, the final area consistently
decreases with K. For buttfly, the final area remains the
same for different K values. For mult16 and mult32, the
final area first decreases and then increases as K grows. One
possible reason is that a small K may exclude promising
LACs from further evaluation, leading to suboptimal results
with larger area. Conversely, when K is very large, too
many LACs are applied in each iteration under the greedy
selection strategy (see Fig. 4). This causes the circuit to
deviate significantly from the current approximate circuit,
making the previously computed maximum error lower
bounds of LACs inaccurate. Guided by these inaccurate

values, some poor LACs with large errors may be applied,
which eventually causes the flow to terminate prematurely
and produces a circuit with larger area.

E. Comparison on Approximate Adder and Multiplier De-
signs

Given the importance of approximate adders and mul-
tipliers, especially in AI accelerators, we compare the
approximate adders and multipliers synthesized by our
ALS flow with those from the EvoApproxLib [46] (version
2022), a widely-used open-source library of approximate
adders and multipliers. The benchmarks compared are the
12-bit and 16-bit unsigned adders and the 8-bit, 11-bit,
12-bit, and 16-bit unsigned multipliers. The approximate
designs from the EvoApproxLib are those synthesized under
the MaxED constraint. Our ALS flow starts from the
accurate circuits from the EvoApproxLib, converts them
to AIGs, and applies the constant and SASIMI LACs to
simplify the circuits under the MaxED constraint. The
MaxED bounds are set as the MaxEDs of the approximate
circuits from the EvoApproxLib, which means that the
approximate circuits generated by our flow have the same or
smaller MaxEDs compared to those in the EvoApproxLib.

Fig. 6 shows the comparison results, where each sub-
figure corresponds to an approximate adder or multiplier
and plots the area ratio-MaxED and the delay ratio-MaxED
curves of the approximate circuits synthesized by our flow
and those from the EvoApproxLib. Comparing the results
from our flow (shown in red) with those from the EvoAp-
proxLib (shown in blue), we can see that under the same
MaxED bound, the approximate circuits synthesized by our
ALS flow have much smaller area and delay ratios than
those from the EvoApproxLib for all benchmarks. Notably,
when the MaxED is small, there is a large gap between
both the area and delay ratios of the approximate circuits
synthesized by our flow and those from the EvoApproxLib.
This shows the effectiveness and practicality of our flow,
since reducing the hardware cost and delay under a small
error bound is more challenging but important for real-
world applications. As the MaxED bound increases, the
area and delay ratios of the approximate circuits from both
our flow and the EvoApproxLib decrease due to more ap-
proximation opportunities given by the large error bounds.
When the MaxED is large, the improvement of our flow
over the EvoApproxLib is reduced, since the approximation
opportunities are more abundant and the ALS method used
for producing the EvoApproxLib can also generate good
approximate circuits in this case.

VI. CONCLUSION

This paper studies ALS under the maximum error con-
straint. We propose to utilize logic simulation to guide the
pruning of invalid LACs that violate the error constraint and
the selection of promising LACs for better circuit simpli-
fication. By leveraging the simulation-guided techniques,
we further propose an efficient ALS flow that iteratively
applies a set of promising LACs to approximate the input
circuit. The proposed flow can handle complex LACs and
scale to large circuits with tens of thousands of gates. The
experimental results show that our ALS flow can achieve a
better trade-off between error and hardware cost compared
to the state-of-the-art ALS methods.
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(a) 12-bit unsigned adder.
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(b) 16-bit unsigned adder.
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(c) 8-bit unsigned multiplier.
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(d) 11-bit unsigned multiplier.
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(e) 12-bit unsigned multiplier.
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(f) 16-bit unsigned multiplier.

Fig. 6. Comparison between approximate adders and multipliers synthesized by our flow and those from the EvoApproxLib under the MaxED constraint.
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