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Abstract—Approximate computing is an emerging paradigm
for designing error-resilient applications. It reduces circuit area,
power, and delay at the cost of introducing errors. This article
proposes a powerful technique, termed approximate resubstitu-
tion (AppResub), to approximately simplify the circuit. AppResub
replaces a node’s function with a simpler approximate function
on existing nodes in the circuit to reduce the hardware cost.
Leveraging AppResub, an efficient flow for approximate logic
synthesis (ALS) is developed by iteratively applying a set of
promising AppResubs for circuit simplification. To evaluate
errors caused by a set of AppResubs, a novel error model capable
of efficiently computing an error upper bound is used to smartly
apply AppResubs in the ALS flow. The experimental results
demonstrate that compared to a state-of-the-art method, the
proposed flow further reduces 20.9% area and 21.7% delay under
the mean error distance constraint, while being 400× faster. The
code of our flow is open-source.

Index Terms—Approximate computing, approximate logic syn-
thesis (ALS), resubstitution.

I. INTRODUCTION

AS THE power consumption of digital systems grows
rapidly, energy efficiency emerges as a pivotal con-

cern [1]. Many prevalent applications, including image
processing, data mining, and machine learning, inherently
tolerate some degree of error, paving the way for a design
paradigm called approximate computing. This paradigm
modifies functions of computing systems by deliberately
introducing some errors. If errors are carefully introduced, the
application-level quality is almost unaffected, while the area,
delay, and power of the system can be reduced dramatically.

Approximate computing can be applied to various layers
of computing systems [2], including the circuit, architecture,

Received 14 April 2024; revised 23 August 2024; accepted 9 November
2024. Date of publication 2 December 2024; date of current version
21 May 2025. This work was supported in part by the Swiss National Science
Foundation “Supercool: Design Methods and Tools for Superconducting
Electronics” under Grant 200021_1920981; in part by Synopsys Inc.; and in
part by the National Key Research and Development Program of China under
Grant 2021ZD0114701. This article was recommended by Associate Editor
H. Zheng. (Corresponding author: Weikang Qian.)

Chang Meng and Giovanni De Micheli are with the Integrated Systems
Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland (e-mail: changmeng@epfl.ch; giovanni.demicheli@epfl.ch).

Alan Mishchenko is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Berkeley, CA 94720
USA (e-mail: alanmi@berkeley.edu).

Weikang Qian is with the University of Michigan–Shanghai Jiao Tong
University Joint Institute and the MoE Key Laboratory of Artificial
Intelligence, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
qianwk@sjtu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3510513

and software layers. This work focuses on approximate com-
puting at the circuit layer, aiming to design high-quality
approximate circuits that balance low hardware costs against
an acceptable error margin. The strategies to obtain such
circuits fall into two main categories: 1) manual design and
2) approximate logic synthesis (ALS) [3]. Manual design
predominantly targets arithmetic circuits, like adders [4], [5],
[6], [7] and multipliers [8], [9], [10]. Since arithmetic circuits
have well-known regular structures, they are amenable to
manual approximation. ALS, however, is not restricted to
arithmetic circuits and is applicable to a wider range of
circuits. It takes as inputs an accurate circuit and specific error
constraints (e.g., maintaining an error rate below 1%). Then,
it automatically generates an approximate circuit satisfying
the constraints with minimized hardware costs, including area,
delay, and power. Our work studies ALS applied to general
combinational circuits, targeting minimizing circuit area under
a given error upper bound.

Most existing ALS methods simplify circuits by making
local structural modifications, known as local approximate
changes (LACs). However, existing LACs have drawbacks in
two aspects. On the one hand, some LACs may introduce large
errors. For example, a common yet simple LAC replaces a
circuit node by a constant zero or one [11], [12], [13], [14],
[15], [16]. While straightforward and widely used, they tend to
introduce large errors. On the other hand, the generation of cer-
tain LACs requires a substantial amount of computation. For
instance, a state-of-the-art LAC is based on Boolean matrix
factorization [17], [18], which approximately decomposes a
subcircuit into a compressor unit and a decompressor unit.
This decomposition effectively simplifies the circuit. However,
Boolean matrix factorization is a complex process demanding
substantial computational effort, making it a time-consuming
approach to achieve approximation.

To address the above challenges, we introduce a novel
LAC called approximate resubstitution (AppResub). AppResub
simplifies a node by approximately re-expressing its function
using a set of other nodes in the circuit. Utilizing multiple
nodes to express a new function makes AppResub more
expressive than traditional LACs, thereby usually resulting in
smaller errors. Moreover, we generate AppResubs with logic
simulation, which is efficient and scalable for large circuits.

Our main contributions are as follows.
1) We propose a powerful LAC called AppResub, which

has stronger expressive ability and induces smaller
errors, compared to the traditional LACs. For efficient
AppResubs generation, we devise an approach based
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on logic simulation. It quickly identifies AppResub
opportunities by analyzing simulation patterns, treats
unobserved patterns as don’t cares, and constructs truth
tables of approximate functions for resubstitution.

2) We present an error model to estimate the error upper
bound caused by a set of AppResubs. It has low
computational complexity and assists in selecting a
promising set of AppResubs. Using the model usually
ensures that after applying the selected AppResubs, the
resulting approximate circuit satisfies the specified error
constraint.

3) We develop an efficient resubstitution-based ALS flow.
It works by iteratively applying a set of promis-
ing AppResubs to the circuit. To select promising
AppResubs, we apply the above error model to convert
the selection process into a knapsack problem and
propose an efficient solution by solving its dual problem.

Our flow is applicable to any average error metric, including
error rate, mean error distance, mean Hamming distance, and
mean-square error. The experimental results reveal substantial
improvements in the quality of approximate circuits across
various benchmarks and error metrics. For instance, compared
to a state-of-the-art method under the mean error distance
constraint, our flow achieves additional savings of 20.9% in
area and 21.7% in delay. Our source code is available at https:
//github.com/changmg/ResubALS.

This article expands a preliminary version previously pub-
lished in [19]. The additional technical contributions lie in
Contributions 2) and 3). Specifically, we propose a novel
model on error upper bound, and based on it, we build an effi-
cient ALS flow. Moreover, we conduct extensive experiments
to demonstrate the scalability and broad applicability of our
method.

The remainder of this article is organized as follows.
Section II introduces the background. Section III reviews the
related works. Section IV elaborates the proposed LAC, i.e.,
AppResub. Section V presents the resubstitution-based ALS
flow. The experimental results are presented in Section VI,
followed by conclusions in Section VII.

II. BACKGROUND

A. Logic Circuit Terminologies

Our study focuses on multilevel combinational logic cir-
cuits, which can be modeled as directed acyclic graphs. For
simplicity, we use the term circuit to refer to a multilevel
combinational logic circuit.

In a circuit, the inputs and outputs of a node are called
its (direct) fanins and fanouts, respectively. A primary input
(PI) is a node without any fanin. A functional node is one
performing a logic operation. A primary output (PO) is a
dummy node driven by either a functional node or a PI; it has
a single fanin and no fanouts. A path is a series of connected
nodes in the circuit. If there exists a path from node u to v,
then u is a transitive fanin (TFI) of v, and v is a transitive
fanout (TFO) of u.

An AND-inverter graph (AIG) is a specific type of circuit,
where each functional node is a two-input AND gate. Edges

Fig. 1. Example AIG. Each functional node represents a two-input AND gate.
The dashed lines indicate complemented edges, and the solid lines indicate
noncomplemented edges.

in an AIG can be complemented or noncomplemented, with
a complemented edge denoting a signal negation. Fig. 1
shows an AIG with four PIs a, b, c, d, seven two-input AND
gates r, s, t, u, v,w, y, and one PO yo. Here, dashed lines
represent complemented edges, while solid lines stand for
noncomplemented edges. For example, node v receives a
complemented edge from node r and a noncomplemented edge
from node s, yielding the function v = r̄s (where r̄ denotes the
negation of r).

B. Error Metrics

Error metrics are used to evaluate the accuracy of approx-
imate circuits. This work focuses on an important class of
error metrics called average errors. Consider two multiple-
output Boolean functions y : BI → B

O for an accurate circuit
Cacc and ŷ : B

I → B
O for its approximate counterpart C.

Denote the numbers of PIs and POs of the circuits by I and
O, respectively. The average error of circuit C, represented
as Error(C), quantifies the average deviation between y and ŷ
over all PI patterns

Error(C) =
∑

x∈BI

D
(
y(x), ŷ(x)

) · p(x) (1)

where y(x) and ŷ(x) are binary vectors of length O, denoting
the PO values of the circuits Cacc and C under the PI pattern
x, respectively, p(x) is the occurrence probability of the PI
pattern x, and D represents a deviation function that quantifies
the deviation between y and ŷ.

Typical average errors include error rate, mean error dis-
tance, mean Hamming distance, and mean-square error. Error
rate is the probability of a PI pattern yielding an incorrect
output in the approximate circuit. Its deviation function is
defined as

DER
(
y, ŷ
) =

{
0, if y = ŷ
1, if y �= ŷ.

(2)

Mean error distance measures the average absolute differ-
ence between the numerical values encoded by the POs of
the accurate and approximate circuits. Its deviation function
is given by

DMED
(
y, ŷ
) = ∣∣int(y) − int

(
ŷ
)∣∣ (3)

where int(v) returns the integer encoded by the binary vector v.
For example, if y encodes an O-bit unsigned integer, then
int(y) = ∑O

k=1 2k−1yk, where yk denotes the kth bit of the
binary vector y.

Besides, mean Hamming distance is the average count
of bit-flips in ŷ compared to y. Its deviation function is
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Fig. 2. Approximation miter used for error evaluation [20].

DMHD(y, ŷ) =∑O
k=1 |yk− ŷk|. Mean-square error measures the

average of the squares of errors between y and ŷ. Its deviation
function is DMSE(y, ŷ) = [int(y) − int(ŷ)]2.

In practice, the average error of the approximate circuit C is
commonly evaluated with Monte Carlo simulation by sampling
M PI patterns x1, x2, . . . , xM , as shown in

Error(C) = 1

M

M∑

i=1

D
(
y(xi), ŷ(xi)

)
. (4)

Additionally, the normalized mean error distance and nor-
malized mean Hamming distance are defined as follows:

norm._mean_error_distance = mean_error_distance

2O − 1

norm._mean_Hamming_dist. = mean_Hamming_dist.

O
.

C. Approximation Miter

An approximation miter is an auxiliary circuit used to evaluate
errors [20]. Illustrated in Fig. 2, the miter implements the
deviation function D(y, ŷ) in (1). It takes the PIs x from both
the accurate and approximate circuits as inputs. It has K ≥ 1
outputs, i.e., d1, d2, . . . , dK , capturing the computed deviation
function D. For instance, an approximation miter for error rate
has a single output d1, representing the deviation DER defined
in (2). On the other hand, a miter for mean error distance has
K = O outputs, encoding the deviation DMED in (3).

Using the approximation miter, (4) can be reformulated as

Error(C) = 1

M

M∑

i=1

K∑

k=1

2k−1dk
(
xi) (5)

where dk(xi) is the value of the kth output of the approximation
miter under the PI pattern xi.

III. RELATED WORKS

In this section, we review existing works closely related
to our study. Since we propose an LAC called AppResub,
we introduce existing LACs and highlight their relevance to
AppResub in Section III-A. Moreover, because we propose
a novel error upper bound model for ALS, we also review
existing error estimation techniques in ALS.

A. Existing Local Approximate Changes in ALS

Most ALS methods introduce approximation into circuits by
applying LACs. Among them, the simplest one is the constant
LAC. It substitutes a circuit node with a constant 0 or 1,
effectively reducing the circuit area and potentially the delay
at the cost of introducing errors. Despite its simplicity, the

constant LAC is widely used in many existing ALS methods.
Shin and Gupta [11] are the first to propose the constant
LAC. They applied it within gate netlists by substituting gates
with constants. Schlachter et al. [12] also employed constant
LACs on gate netlists. They proposed criteria to decide which
gates to be substituted by constants based on the gates’
significance and activity. Chandrasekharan et al. [13] explored
constant substitution in AIGs. To simplify a node in an AIG,
they selected a cut of the node and rewrote the cut with a
constant 0. Scarabottolo et al. [14] identified and removed the
largest subcircuit replaceable by constants without violating
the error constraint. Witschen et al. [15] modeled the selection
of constant LACs through cutpoints, converting ALS into a
minimal unsatisfiable subset problem, aiming to apply the
maximum number of constant LACs to minimize the circuit
area. Lee et al. [16] and Zhou et al. [21] utilized constant LACs
to reduce the delay of approximate circuits and developed
delay-driven ALS flows. In fact, the constant LAC is a special
case of our proposed LAC, AppResub, which will be discussed
in Section IV-B1.

Beyond constant LACs, there are also many other finer
LACs. Venkataramani et al. [22] proposed an LAC called
SASIMI, which substitutes a node u with another node v
or v’s negation. If the function of u is similar to that of v
or v’s negation, such a substitution induces a small error.
After the substitution, the maximum fanout-free cone (MFFC)
of node u can be removed, thereby reducing the area and
possibly the delay. SASIMI can be seen as a special case
of AppResub. Wu and Qian [20], [23] proposed an LAC
called ANS, which deletes some literals from the Boolean
expression of a node in the circuit. It can also be viewed as
a special case of AppResub. Liu and Zhang [24] proposed a
stochastic ALS flow including various LACs, i.e., substituting
a gate with a constant, flipping a gate’s output, and adding
a gate. The constant substitution of a gate is a special case
of AppResub. Tam et al. [25] proposed an ALS flow under
the error rate constraint. It applies two types of LACs, i.e.,
constant LAC and SASIMI, and hence both LACs can be seen
as a special case of AppResub. Ma et al. [18] proposed an ALS
flow called BLASYS. Its LAC is based on Boolean matrix
factorization, which approximately decomposes a subcircuit
into two units, i.e., a compressor unit and a decompressor
unit. The area and delay of the subcircuit can be reduced
after decomposition. While the BLASYS LAC is not a special
case of AppResub, generating AppResub is more efficient
than generating the BLASYS LAC. Meng et al. [26] proposed
an efficient ALS flow under the maximum error constraint.
They applied the constant LAC and the SASIMI LAC, and as
discussed above, both LACs are special cases of AppResub.
Rezaalipour et al. [27] proposed a novel ALS method called
XPAT. Its LAC targets approximating a multiple-input and
multiple-output subcircuit, and encodes potential approximate
subcircuits into a parametrizable template. Then, a satisfiabil-
ity modulo theories solver is called to identify approximate
subcircuits meeting the error constraint. Since XPAT’s LAC
approximates a subcircuit with multiple outputs, it is not a
special case of AppResub, which approximates a subcircuit
with a single output.
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B. Existing Error Estimation Techniques in ALS

An essential component of ALS methods is estimating
the errors introduced by LACs. Researchers have developed
many methods to estimate the error caused by a single LAC.
To estimate the average error metrics, such as error rate
and mean error distance, Su et al. [28], [29] introduced the
concept of change propagation matrix (CPM). The CPM
evaluates whether a value change at an internal node affects
the circuit outputs or not. Utilizing the CPM alongside the
specific value change at the internal node, the error caused
by each LAC can be efficiently computed. To estimate the
maximum error distance caused by a single LAC, Scarabottolo
et al. [30] proposed to partition a circuit into subcircuits
and then analyze the error propagation of these subcircuits.
Furthermore, to estimate the bit error rate caused by a single
LAC, Echavarria et al. [31] proposed an error transition model
that propagates the bit error rates through cascaded subcircuits.

Beyond single LAC analysis, researchers have also
developed several approaches to estimate the cumulative error
caused by applying multiple LACs simultaneously. Our work
introduces an error upper bound model that falls into this cat-
egory. Wu and Qian [23] proposed a linear model, estimating
the overall error rate caused by multiple LACs as the sum
of the local error rates calculated for each LAC applied in
isolation. This linear model is further applied in subsequent
works, such as [32] and [33], to estimate other average error
metrics like mean error distance.

IV. PROPOSED LAC: APPROXIMATE RESUBSTITUTION

In this section, we propose an LAC called AppResub to
approximately simplify a circuit. We first introduce accurate
resubstitution for traditional logic synthesis. Then, we intro-
duce AppResub for ALS.

A. Accurate Resubstitution

Accurate resubstitution [34], [35], [36] is a powerful circuit
simplification technique in traditional logic synthesis. It re-
expresses a node’s function using a set of nodes already
existing in the circuit, while preserving the circuit function-
ality. These nodes used for the re-expression are referred to
as divisors. An example of accurate resubstitution is provided
below.

Example 1: Consider the AIG shown in Fig. 3(a). We can
accurately resubstitute node w using divisors {r, s} with the
function w′ = r̄s̄. By doing so, the nodes u and v are removed,
and the resulting AIG is shown in Fig. 3(b).

This resubstitution maintains w’s function, thus preserving
the overall functionality of the circuit. A simple derivation is
as follows. Given that w = ūv̄ = u+ v, u = rs̄, and v = r̄s, it
follows that w = rs̄+ r̄s = rs + r̄s̄. Substituting r = āb̄ and
s = bc, we have w = āb̄bc + r̄s̄ = r̄s̄, which is exactly the
function w′.

Given a node and a selected set of divisors, an important
problem is to check the feasibility of achieving an accurate
resubstitution for the node with these divisors. This has been
addressed by a theorem presented in [37], which we describe
as follows.

(a)

(b) (c)

Fig. 3. Example of accurate resubstitution and AppResub. (a) Original
accurate AIG. (b) New AIG after applying accurate resubstitution. (c) New
AIG after applying AppResub.

TABLE I
SIMULATION VALUES UNDER ALL PI PATTERNS FOR THE AIG IN

FIG. 3(A). THIS TABLE IS USED IN EXAMPLES 2–5. THE SHADED

PATTERNS ARE ONLY USED IN EXAMPLES 4 AND 5, DENOTING THE

RANDOMLY SAMPLED PATTERNS FOR GENERATING AN APPRESUB

Theorem 1: Consider a set of PIs denoted as x. Assume that
there exist m divisors with respective functions g1(x), g2(x),
. . ., gm(x), and a target node with function f (x). These divisors
can form an accurate resubstitution function for node f , if and
only if there are no two PI patterns x1 and x2 that satisfy:

1) gj(x1) = gj(x2) for each 1 ≤ j ≤ m;
2) f (x1) �= f (x2).
The essence of this theorem can be explained as follows.

If there is a function h(g1(x), . . . , gm(x)) that can accurately
resubstitute f (x), then for any PI patterns x1 and x2 making
gj(x1) = gj(x2) for each 1 ≤ j ≤ m, we must have f (x1) =
h(g1(x1), . . . , gm(x1)) = h(g1(x2), . . . , gm(x2)) = f (x2). An
example applying Theorem 1 is as follows.

Example 2: Consider the AIG depicted in Fig. 3(a). To
determine whether the divisors {r, s} can be used to accurately
resubstitute node w, we enumerate all 16 PI patterns for
variables {a, b, c, d} and simulate the AIG. The simulation
results are listed in Table I. Note that under all PI patterns:

1) when rs = 00, w is always 1;
2) when rs = 01 or rs = 10, w is always 0;
3) rs = 11 never occurs.

Therefore, no PI patterns x1 and x2 yield the same values for
{r, s} (satisfying condition 1), while producing different values
for w (satisfying condition 2). According to Theorem 1, the
divisors {r, s} can be used to accurately resubstitute node w.
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Conversely, {b, c} fail to serve as a valid divisor set for an
accurate resubstitution of node w. This is exemplified by the
PI patterns abcd = 0000 and 1000, where the divisors {b, c}
yield the same pattern (bc = 00), but w takes different values
0 and 1, respectively. In this case, Theorem 1 does not hold.

B. Approximate Resubstitution

For approximate computing, we propose AppResub. It sim-
plifies the circuit by approximately re-expressing a node n’s
function with a set of divisors, while the circuit functionality
is not necessarily preserved. An example of AppResub is as
follows.

Example 3: From Example 2, we cannot resubstitute node
w using the divisors {b, c}. However, if some errors are
allowed, we can approximately resubstitute w using {b, c} with
the function ŵ = bc. As shown in Table I, this AppResub
causes errors on node w under four PI patterns: abcd =
0000, 0001, 0010, and 0011. With this AppResub, nodes r,
s, u, v, and w are removed. The AIG after the AppResub is
shown in Fig. 3(c).

For each node n in a circuit, there are numerous potential
AppResubs, which involve different sets of divisors and
errors. It is impractical to enumerate all AppResubs. Instead,
we propose an efficient method to generate some candidate
AppResubs for each node n. This process involves addressing
the following three pivotal questions.

1) How to select appropriate divisors for re-expressing node
n’s function?

2) Given a divisor set g, is there a function on g that can
approximate n’s function?

3) If the answer to Question 2) is yes, how to derive the
corresponding function?

They will be answered in Sections IV-B1–IV-B3, respec-
tively. Based on the answers, we present an algorithm to
efficiently generate candidate AppResubs in Section IV-B4.

1) Selecting Divisors: It is crucial to identify suitable
divisors for each node n in the circuit, as not all nodes
are suitable choices to re-express n’s function. For instance,
n’s TFOs are unsuitable, since using a TFO as a divisor
would create a dependency loop, which is not allowed in a
combinational circuit. Our strategy only selects divisors from
n’s divisor pool. A node d is in n’s divisor pool only if:

1) d is a TFI of n; or
2) d is a direct fanout of node n’s TFI, and the logic level

of d is lower than that of n.
This choice ensures that divisors are likely to influence n’s
function. The logic level limitation avoids the case where d
is n’s TFO. This selection strategy is similar to that used
in [36] and [37] for accurate resubstitution.

After building n’s divisor pool, we select m divisors from
the pool to create a divisor set of n. We limit m to 0, 1, or 2 to
manage complexity. Our experimental results suggest that this
range yields high-quality approximate circuits with acceptable
runtime.

Specifically, when m = 0, the set is empty. In this case,
n is resubstituted by a constant, and AppResub degrades to
a constant LAC, which is widely applied in [11], [12], [13],
[14], [15], [16], [21], and [24]. When m = 1, AppResub

utilizes a single divisor to resubstitute n, which is exactly
the SASIMI LAC used in [22], [25], and [26]. When m = 2,
AppResub uses two divisors to resubstitute n. Note that the
ANS LAC proposed in [20] and [23] deletes some literals
from the Boolean expression of a node in the circuit. If an ANS
LAC is applied to a Boolean expression and eventually keeps
two variables in the expression, then it is a special case of the
AppResub, where the two divisors are exactly the two kept
variables. For example, assume that an ANS LAC is applied
to node w in the AIG shown in Fig. 3(b). Before applying
the LAC, w’s function is w = r̄s̄ = ab · bc, as we derived in
Example 1. If an ANS LAC deletes the literals a and b, then
we have an approximate function ŵ = bc, with the new AIG
shown in Fig. 3(c). The ANS LAC in this example is exactly
an AppResub on node w with two divisors b and c.

2) Checking Existence of AppResub: Given a divisor set for
a node n, we can use Theorem 1 to check whether the divisor
set can be used to accurately resubstitute n. Theorem 1 should
be checked for all PI patterns, which is typically done by
time-consuming SAT-based methods. However, for approximate
computing, it is unnecessary to enumerate all PI patterns. We
propose to check the conditions of Theorem 1 under some PI
patterns encountered in random logic simulation. If Theorem 1 is
satisfied under these PI patterns appearing in limited simulation
rounds, then the given divisor set is considered as a feasible
divisor set, which can be used to approximately resubstitute
node n. Otherwise, it is infeasible and thus discarded.

Example 4: Consider the AIG in Fig. 3(a). Assume that
logic simulation randomly samples five PI patterns abcd =
0100, 0101, 0111, 1011, and 1110 (refer to the shaded entries
in Table I). Now, we check whether the divisors {b, c} can
approximately resubstitute node w under these PI patterns. In
the simulation, the patterns on {b, c} are bc = 10, 10, 11, 01,
and 11, and the corresponding w values are 1, 1, 0, 1, and 0,
respectively. It is evident that each pattern on {b, c} maps to a
unique value of w. That is, 10, 11, and 01 map to 1, 0, and 1,
respectively. Thus, Theorem 1 holds under the five PI patterns,
and {b, c} is a feasible divisor set that can approximately
resubstitute node w.

3) Deriving AppResub: Given a feasible divisor set for a
node n, we need to derive a new function h on the divisor
set to approximately resubstitute n’s function. Specifically, we
employ the same PI patterns used for existence checking in
Section IV-B2 and perform logic simulation. We build the
truth table of the function h on the divisor set under these PI
patterns. Assume that the size of the divisor set is m. Then,
the truth table has 2m input–output pairs. In the truth table,
each input is a possible pattern on the divisor set, and the
corresponding output denotes the function h’s value for that
pattern on the divisor set. If a pattern on the divisor set appears
in simulation, then the corresponding output in the truth table
is set as node n’s value under the pattern. Otherwise, if a
pattern on the divisor set does not appear in simulation, then
this pattern is treated as a don’t care pattern. Note that since
the divisor set is feasible, although multiple PI patterns may
produce the same pattern on the divisor set, n’s values for all
of them are the same.

From the truth table, we can obtain the sum-of-products
(SOP) expression of h, which can be done using a two-level
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TABLE II
TRUTH TABLE OF AN APPROXIMATE FUNCTION WITH INPUTS b AND c

AND OUTPUT ŵ IN EXAMPLE 5

Algorithm 1: GenerateCandidateAppResubs(C,R,L)
Input: Circuit C, user-specified simulation round R, maximum

number of candidate AppResubs L
Output: A set of candidate AppResubs �

1 Simulate C for R rounds;
2 The set of candidate AppResubs � ← ∅;
// Add 0-divisor const AppResubs into �

3 foreach node n in C do
4 if |�| ≥ L then break;
5 count0← count of 0s in n’s simulation values;
6 if count0≥R/2 then � ← � ∪ {Const0Resub(n)};
7 else � ← � ∪ {Const1Resub(n)};
// Add 1-divisor AppResubs into �

8 � ← AddSomeAppResubs(�, nDiv=1,C,L);
// Add 2-divisor AppResubs into �

9 � ← AddSomeAppResubs(�, nDiv=2,C,L);
10 return �;

logic synthesis tool such as Espresso [38]. The resulting SOP
expression is then converted to one or more nodes in the
circuit, which are used to approximate the original node n,
thus simplifying the circuit.

Example 5: Building on Example 4 and referring to
Fig. 3(a), {b, c} is a feasible divisor set that can approximately
resubstitute node w, if logic simulation is performed with
five PI patterns abcd = 0100, 0101, 0111, 1011, and 1110.
To derive the new function on {b, c} for resubstitution, a
truth table shown in Table II is built with inputs b and c
and output ŵ. In this simulation, the pattern bc = 00 does
not appear, so it is treated as a don’t care pattern. On the
other hand, for the patterns bc = 01, 10, and 11 appearing
in the simulation, the corresponding output values are set as
ŵ = 1, 1, and 0, respectively, which can be directly obtained
from the shaded entries in Table I. Given this truth table, a
possible SOP expression is ŵ = bc. This expression is then
implemented in the AIG as a node with a complemented output
edge, as shown in Fig. 3(c).

4) Generating Candidate AppResubs: Based on the
answers to the three questions in Sections IV-B1–IV-B3, we
propose a procedure to generate candidate AppResubs for
each node n in the circuit C, as shown in Algorithm 1.

Algorithm 1 inputs a circuit C, a user-specified simulation
round R, and a maximum count of candidate AppResubs L.
It outputs a set of candidate AppResubs, denoted as �.
The algorithm first performs R rounds of logic simulation
on circuit C (line 1). Then, it generates 0-divisor constant
resubstitutions (lines 3–7), 1-divisor AppResubs (line 8), and
2-divisor AppResubs (line 9) in sequence.

To generate constant resubstitutions, for each node n in the
circuit C, we count the number of 0 s in n’s simulation values
across R rounds of simulation (line 5). If the number is larger
than or equal to R/2, indicating n aligns more closely with

Algorithm 2: AddSomeAppResubs(�, nDiv,C,L)
Input: The current set of candidate AppResubs �, number of

divisors nDiv, the circuit C associated with simulation
results, maximum number of candidate AppResubs L

Output: The updated set of candidate AppResubs �
1 foreach node n in C do
2 S←divisor sets with nDiv divisors;
3 foreach divisor set g in S do
4 if |�| ≥ L then break;
5 if g is feasible to resubstitute n then
6 New function f̂ ← BuildFunction(n, g);
7 if Resub(n, g, f̂ ) can reduce area then
8 � ← � ∪ {Resub(n, g, f̂ )};
9 return �;

a constant 0, then we add a constant-0 resubstitution into the
candidate AppResub set � (line 6). Otherwise, a constant-1
resubstitution is added (line 7).

The generation of 1-divisor and 2-divisor AppResubs has
a similar process, as shown in Algorithm 2. Specifically, for
each node n, we first select some divisor sets with nDiv
elements, denoted as S, using the method in Section IV-B1
(line 2). For each divisor set g in S, we check whether g is
feasible to approximately resubstitute n using the method in
Section IV-B2 (line 5). If it is feasible, we build an AppResub
function f̂ for n on g using the method in Section IV-B3
(line 6). Finally, if this AppResub, denoted as Resub(n, g, f̂ ),
can reduce the circuit area (line 7), then we add it into the
candidate AppResub set � (line 8).

In the worst case, for a circuit C with N nodes, the
potential number of candidate AppResubs is O(N3). It is
because for each node in the circuit, we generate one constant
resubstitution, no more than N 1-divisor AppResubs, and no
more than N2 2-divisor AppResubs. Thus, the upper bound on
the total number of candidate AppResubs for all N nodes in C

is N× (1+N+N2), i.e., O(N3). For efficiency consideration,
we also limit the total number of candidate AppResubs. Line 4
of Algorithm 1 and line 4 of Algorithm 2 ensure that the
number of candidate AppResubs does not exceed L.

V. RESUBSTITUTION-BASED EFFICIENT ALS FLOW

In this section, we propose an efficient ALS flow based on
AppResub. We first describe the overall flow in Section V-A.
Then, we detail a key step of the flow in Section V-B, i.e.,
determining a set of promising AppResubs.

A. Overall Flow

Our previous work [19] described an ALS flow that iter-
atively applies the minimum-error AppResub to simplify the
circuit, until the error constraint is no longer satisfied. Since
the minimum-error AppResub usually increases the error by
a small amount, the flow in [19] may require a large number
of iterations to reach the error threshold and obtain the final
approximate circuit, causing a long runtime.

To accelerate ALS, we propose a new ALS flow in
Algorithm 3, featuring two phases:
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Algorithm 3: ResubALS(Cacc,Et,R,L)
Input: accurate circuit Cacc, error threshold Et, user-specified

simulation round R, max number of candidate
AppResubs L

Output: approximate circuit C
1 Approximate circuit C← Cacc, error E← 0;
// 1)apply MULTIPLE promising AppResubs

2 while true do
3 � ← GenerateCandidateAppResubs(C,R,L);
4 Promising resubs. �∗ ← GetPromAppResubs(�,C);
5 E← error of an approximate circuit obtained by applying

to C all AppResubs in �∗;
6 if E > Et then break;
7 else C←SimplifyWithMultipleAppResubs(C,�∗);
// 2)apply SINGLE best AppResub

8 while true do
9 � ← GenerateCandidateAppResubs(C,R,L);

10 Best resub. π∗ ← GetSmallestErrorAppResub(�,C);
11 E← error of an approximate circuit obtained by applying

π∗ to C;
12 if E > Et then break;
13 else C←SimplifyWithOneAppResub(C, π∗);
14 return C;

1) iteratively applying multiple promising AppResubs
(Algorithm 3 lines 2–7);

2) iteratively applying the single best AppResub
(Algorithm 3 lines 8–13).

Phase 1) accelerates the convergence of the ALS flow, and
Phase 2) aims to further improve the quality of the final
approximate circuit.

Algorithm 3 inputs an accurate circuit Cacc, an error thresh-
old Et, a user-specified simulation round R for generating
candidate AppResubs, and the limit L for the maximum count
of candidate AppResubs. It returns an approximate circuit C
with an error no more than Et. The error metric can be any
average error metric, including error rate, mean error distance,
mean Hamming distance, and mean-square error.

Phase 1) iteratively applies a set of promising AppResubs
to simplify the circuit until the error reaches the threshold
(lines 2–7). Each iteration begins with generating a set of
candidate AppResubs � (line 3) using Algorithm 1. From
these candidates, a subset of promising AppResubs �∗ is
selected (line 4). The selection method will be detailed in
Section V-B. The error E of an approximate circuit obtained
by applying to C all AppResubs in �∗ is computed. If E
exceeds Et (line 6), the process transitions to Phase 2). If not,
all AppResubs in �∗ are applied to the circuit C, followed by
traditional logic synthesis to remove redundancy in C (line 7).

Phase 2), in contrast to Phase 1), only applies the
best AppResub with the smallest error in each iteration
(lines 8–13). Essentially, Phase 2) is similar to the flow in [19],
which is not further elaborated here.

B. Determine Set of Promising AppResubs

In Algorithm 3, line 4 determines a set of promising
AppResubs, denoted as �∗, from the set of candidate
AppResubs �. The objective of our flow is to achieve maxi-
mum area reduction in the circuit, leading to the formulation

of the optimization problem in

max
�⊆�

∑

π∈�
AreaReduction(π)

s.t. 1) Error(�) ≤ Et

2) ∀π1, π2 ∈ �, if π1 �= π2,Node(π1) �= Node(π2) (6)

where � is a subset of the candidate AppResub set �,
with each π being an AppResub in �. The function
AreaReduction(π) indicates the area saved when applying an
AppResub π to the circuit C. For instance, consider the AIG
in Fig. 3(a). After applying an AppResub that resubstitutes
node w using ŵ = bc, four nodes r, s, u, and v are removed,
achieving an area reduction of 4. The function Error(�)
computes the error of an approximate circuit obtained by
applying all AppResubs in � to the circuit C. Here, the error
can be any average error metric, such as error rate, mean
error distance, mean Hamming distance, and mean-square
error. The function Node(π) returns the node resubstituted by
AppResub π .

The objective of the problem in (6) is to maximize the
total area reduction by applying all AppResubs in � to
the circuit C. The first constraint guarantees that the error
induced by � is within the threshold Et. The second constraint
ensures that each node in C is only resubstituted once, thereby
preventing any two AppResubs in � from resubstituting the
same node.

In what follows, the method of obtaining Error(�) is
introduced in Sections V-B1 and V-B2. Following that,
Section V-B3 describes a dynamic-programming-based solu-
tion to the problem.

1) Computing the Error for a Set of AppResubs: To
determine the error introduced by a set of AppResubs �,
previous studies [32] and [33] used a linear model as follows:

Error(�) ≈ Error(C)+
∑

π∈�
�Error(π) (7)

where Error(C) is the initial error of circuit C before applying
any AppResub in �, and �Error(π) is the incremental error
caused by individually applying AppResub π to circuit C.
Specifically, �Error(π) is computed as the difference between
the error of an approximate circuit obtained by applying π to
C and Error(C).

However, the linearity assumed in (7) does not account
for the potential interactions among AppResubs, leading to
inaccuracies. For instance, in the AIG shown in Fig. 3(a),
one AppResub modifying node w impacts the PO yo, while
another AppResub modifying node t could also influence yo.
Such interactions among AppResubs mean that Error(�),
could be less than, equal to, or greater than Error(C) +∑
π∈� �Error(π), as discussed in [32]. Thus, the error model

in (7) is unsuitable for solving the problem in (6), since the
error constraint Error(�) ≤ Et is highly likely to be violated.
If the error constraint is violated, then Algorithm 3 will exit
Phase 1) and proceed to Phase 2), which only applies the
single best AppResub in each iteration, dramatically slowing
down the ALS flow.
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To avoid violating the error constraint and efficiently esti-
mate Error(�), we establish an approximate upper bound of
Error(�) by calculating

ErrorUpBound(�) = Error(C)+
∑

π∈�
�ErrorUpBound(π)

(8)

where �ErrorUpBound(π) represents an upper bound of
�Error(π), i.e., the incremental error caused by an indi-
vidual AppResub π . Note that we call ErrorUpBound(�)
an approximate upper bound, since it is not a strict upper
bound but rather an upper bound with a high probability. The
details of computing ErrorUpBound(π) and the justification
for it being an approximate upper bound will be discussed in
Section V-B2.

Using (8), we relax the error constraint of the problem in
(6), leading to the relaxed problem in

max
�⊆�

∑

π∈�
AreaReduction(π)

s.t. 1) ErrorUpBound(�) ≤ Et

2) ∀π1, π2 ∈ �, if π1 �= π2,Node(π1) �= Node(π2). (9)

Clearly, if ErrorUpBound(�) serves as a true upper bound
of Error(�), then any solution satisfying the constraints of
the relaxed problem must also satisfy those of the problem
in (6). This relaxation not only ensures adherence to the
error constraint but also facilitates the error computation,
thereby accelerating the overall ALS flow. However, since
ErrorUpBound(�) is an approximate upper bound, in rare
cases, Error(�) may exceed ErrorUpBound(�), which may
further lead to an invalid solution �∗wrong to the problem in (6).
Nevertheless, the real error caused by �∗wrong will be measured
and checked by lines 5 and 6 of Algorithm 3, deciding
whether to apply �∗wrong or not. This mechanism ensures that
Algorithm 3 finally generates an approximate circuit satisfying
the error constraint.

2) Computing the Approximate Error Upper Bound: This
section shows how to compute an approximate upper bound
of Error(�). By (8), it is based on �ErrorUpBound(π). Thus,
we first describe how to compute �ErrorUpBound(π) for an
AppResub π in the circuit C.

We first build an approximation miter with the accurate
circuit Cacc and the approximate circuit C, as shown in Fig. 2.
As mentioned in Section II-C, the miter encodes the deviation
function D between Cacc and C using K bits d1, d2, . . . , dK .
Notably, the approximation miter can compute the error of C
for any average error metric, including error rate, mean error
distance, mean Hamming distance, and mean-square error.
Recall that (5) utilizes the approximation miter to compute the
error of C as Error(C) = (1/M)∑M

i=1
∑K

k=1 2k−1dk(xi).
Assume that after applying AppResub π to circuit C, the

resulting approximate circuit is C
′. We also assume that the

miter including Cacc and C
′ has K outputs d′1, d′2, . . . , d′K .

By (5), Error(C′) can be computed similarly. The incremental
error caused by applying AppResub π to circuit C, denoted
as �Error(π), is then expressed as

�Error(π) = Error
(
C
′)− Error(C)

= 1

M

M∑

i=1

K∑

k=1

2k−1(d′k
(
xi)− dk

(
xi))

= 1

M

K∑

k=1

2k−1

(
M∑

i=1

(
d′k
(
xi)− dk

(
xi))

)
. (10)

Considering dk(xi) and d′k(xi) can only be 0 or 1, we further
have

�Error(π)

= 1

M

K∑

k=1

2k−1

⎛

⎝
∑

i:dk(xi)=0

d′k
(
xi)+

∑

i:dk(xi)=1

(
d′k
(
xi)− 1

)
⎞

⎠

≤ 1

M

K∑

k=1

2k−1

⎛

⎝
∑

i:dk(xi)=0

d′k
(
xi)
⎞

⎠. (11)

Thus, we let

�ErrorUpBound(π) = 1

M

K∑

k=1

2k−1

⎛

⎝
∑

i:dk(xi)=0

d′k
(
xi)
⎞

⎠ (12)

which serves as an upper bound of �Error(π). To efficiently
compute d′k(xi) for each k and i, we utilize the method based
on the CPM in [29].

By substituting �ErrorUpBound(π) from (12) into (8),
we can compute ErrorUpBound(�). Now, we explain why
ErrorUpBound(�) is an approximate upper bound of Error(�)
(the real error caused by �).

Assume that � = {π1, . . . , πS}, where πj represents a
specific AppResub in the set of AppResubs �. Based on
Constraint 2 in the problems in (6) and (9), we can assume
that each πj targets a unique node for resubstitution. After
applying all πj’s in � to the circuit C, the resulting approx-
imate circuit is denoted as C

�, with the miter outputs being
d�1 , d�2 , . . . , d�K . Similar to (10) and (11), the error after
applying all AppResubs in � is computed as

Error(�) = Error(C)+�Error(�)

= Error(C)+ 1

M

K∑

k=1

2k−1

(
M∑

i=1

(
d�k
(
xi)− dk

(
xi))

)

≤ Error(C)+ 1

M

K∑

k=1

2k−1

⎛

⎝
∑

i:dk(xi)=0

d�k
(
xi)
⎞

⎠. (13)

Assume that after applying AppResub πj to circuit C, the
resulting approximate circuit is C

πj , and the corresponding
miter outputs are d

πj
1 , d

πj
2 , . . . , d

πj
K . By (8) and (12), we have

ErrorUpBound(�)

= Error(C)+ 1

M

K∑

k=1

2k−1

⎛

⎝
∑

i:dk(xi)=0

⎛

⎝
∑

πj∈�
d
πj
k

(
xi)
⎞

⎠

⎞

⎠. (14)

Comparing (13) and (14), to prove that ErrorUpBound(�)
is an approximate upper bound of Error(�), we only need to
show that for all k’s and i’s satisfying dk(xi) = 0, it is very
likely that d�k (x

i) ≤∑πj∈� d
πj
k (x

i).
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Since d�k (x
i) and d

πj
k (x

i) can only be 0 or 1, we only need
to consider the case where d�k (x

i) = 1. When dk(xi) = 0,
the assumption that d�k (x

i) = 1 means that under the PI
pattern xi, the application of all AppResubs in � influences the
miter output dk, changing dk’s value from 0 to 1. Similarly, if
dk(xi) = 0 and d

πj
k (x

i) = 1, this indicates that the application
of πj influences the miter output dk, changing dk’s value from
0 to 1. In essence, if any single AppResub πj in � influences
dk, then the simultaneous application of all AppResubs in �
will also influence dk with a high probability.

Formally, this relationship can be expressed as

d�k
(
xi) ≈ dπ1

k

(
xi) ∨ dπ2

k

(
xi) ∨ . . . ∨ dπS

k

(
xi) ≤

∑

πj∈�
d
πj
k

(
xi)

where ∨ denotes the OR operation, and the inequality is
because the OR of a set of binary variables is no more than
their sum. The inequality means that for all k’s and i’s satisfy-
ing dk(xi) = 0, d�k (x

i) ≤∑πj∈� d
πj
k (x

i) approximately holds.
Therefore, Error(�) ≤ ErrorUpBound(�) also approximately
holds.

3) Knapsack-Based Solution: The problem in (9) can be
formulated as a specific knapsack problem as follows.

1) Elements:
a) Item: Each AppResub π in the candidate

AppResub set � corresponds to an item.
b) Value: The area reduction caused by an AppResub

π , denoted as AreaReduction(π), corresponds to
the value of the item.

c) Weight: The approximate upper bound of the incre-
mental error caused by an AppResub π , denoted
as �ErrorUpBound(π), corresponds to the weight
of the item.

2) Objective: Maximizing the total value (area reduction)
of the items selected for the knapsack.

3) Constraints:
a) Capacity constraint [corresponding to Constraint 1

of the problem in (9)]: The error margin Emargin =
Et − Error(C) is set as the knapsack capacity.

b) Selection constraint [corresponding to Constraint
2 of the problem in (9)]: Assume that circuit
C consists of N nodes n1, n2, . . . , nN . The can-
didate AppResubs in � are categorized into N
groups, �1, �2, . . . , �N , where each �i contains
all candidate AppResubs for node ni. From each
group of items (i.e., �i), at most one item (i.e.,
one AppResub) can be selected and put into the
knapsack.

Although this knapsack model is similar to the one in [20],
our method significantly diverges from [20] in several ways.
First, unlike the method in [20], which is limited to the
error rate metric, our approach supports any average error
metric, such as error rate, mean error distance, mean Hamming
distance, and mean-square error. Second, we introduce a more
precise model [i.e., (8) and (12)] to estimate an error upper
bound for a set of AppResubs. Lastly, rather than solving the
knapsack problem as in [20], we propose a more efficient
solution by addressing its dual problem, which is described
next.

A classical method to solve the knapsack problem is based
on dynamic programming with the state-transition equation
shown in

DP(i,w) = max
{
DP(i− 1,w),

DP
(
i− 1,w−�ErrorUpBound(ψi,1)

)

+ AreaReduction
(
ψi,1

)
,

DP
(
i− 1,w−�ErrorUpBound(ψi,2)

)

+ AreaReduction
(
ψi,2

)
,

. . . ,

DP
(
i− 1,w−�ErrorUpBound(ψi,|�i|)

)

+ AreaReduction
(
ψi,|�i|

)}
(15)

where DP(i,w) denotes the maximum total value achievable
with the first i groups under the capacity w, and ψi,j is the
jth item in the ith group �i. The term DP(i− 1,w) accounts
for not selecting any item from group i, while DP(i− 1,
w − �ErrorUpBound(ψi,j)) + AreaReduction(ψi,j) represents
selecting the jth item from group i. This equation aligns with
the selection constraint, ensuring at most one item from each
group is chosen for the knapsack. The final solution to the
knapsack problem is DP(N,Emargin), where N is the number
of groups and Emargin is the knapsack’s capacity.

A critical issue in solving the knapsack problem using (15)
is the noninteger nature of item weights, which represents the
error upper bounds of the AppResubs. Even if we multiply
all the weights by a large constant α to make them integers,
as proposed in [20], both the time and space complexity of
the dynamic-programming-based method will also increase
significantly, where the time complexity is O(αNEmargin). To
address this issue, we propose to solve the dual problem of the
knapsack problem using the state-transition equation shown in

DP′(i, v) = min
{
DP′(i− 1, v),

DP′
(
i− 1, v− AreaReduction(ψi,1)

)

+�ErrorUpBound
(
ψi,1

)
,

DP′
(
i− 1, v− AreaReduction(ψi,2)

)

+�ErrorUpBound
(
ψi,2

)
,

. . . ,

DP′
(
i− 1, v− AreaReduction(ψi,|�i|)

)

+�ErrorUpBound
(
ψi,|�i|

)}
(16)

where DP′(i, v) denotes the minimum total weight (error
upper bound) achievable with the first i groups to obtain a
value of at least v (total area reduction). The dual problem’s
advantage lies in the typical integer nature of item values
(area reduction). For example, if our flow works on AIGs, the
area reduction (value) caused by an AppResub (item) is the
number of nodes removed, inherently an integer. By avoiding
the noninteger issue, the shift to the dual problem significantly
reduces the time and space complexity. The solution to the
dual problem is denoted as V∗, which is the largest integer
satisfying DP′(N,V∗) ≤ Emargin. It can be proven that the
original knapsack problem has the same solution as its dual
problem, i.e., DP(N,Emargin) = V∗. From the solution to the
dual problem, we can easily recover the selected items in the
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knapsack. These selected items (i.e., AppResubs) can further
construct the solution to the problem in (9), i.e., the set of
promising AppResubs �∗. Note that sometimes there does
not exist any � satisfying the error constraint of the problem
in (9). In this case, Algorithm 3 terminates Phase 1), i.e.,
iteratively applying multiple promising AppResubs, and moves
to Phase 2), i.e., iteratively applying the single best AppResub.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Our resubstitution-based ALS flow is implemented in C++
and evaluated on a laptop with AMD Ryzen9 7945HX
processors and 64-GB RAM. To boost our method’s effi-
ciency, our flow is parallelized using 32 threads, particularly
focusing on the most time-consuming steps in Algorithm 3:
GetPromAppResubs and GetSmallestErrorAppResub. These
steps involve estimating the errors for all candidate
AppResubs, with each thread tasked with computing the error
estimation for a specific candidate AppResub.

In all experiments, our ALS flow begins by converting the
original circuit into an AIG and applies AppResubs to the
AIG. The reason for using AIGs is that many AIG-based
logic synthesis works [35], [39] and ALS works [16], [33]
have shown significant advantages in reducing hardware cost,
particularly for CMOS technologies. After simplifying the
original AIG with our ALS flow, the resulting approximate
AIG is mapped into a gate netlist using ABC [40]. Unless
otherwise specified, the standard cell library employed is
the Nangate 45nm library [41]. Furthermore, as mentioned
in Section V-A, the SimplifyWithMultipleAppResubs function
in Algorithm 3 not only simplifies the circuit by applying
AppResubs but also performs traditional logic synthesis to
further remove circuit redundancy. Since our goal is reducing
area, the area-oriented optimization script “compress2rs” in
ABC is applied. Given the randomness in logic simulation,
our ALS flow may produce different approximate circuits
in different runs. Thus, all experiments on our method are
performed three times, and the circuit with the smallest area
is reported. Meanwhile, the runtime of our method is reported
as the total runtime of the three runs.

To evaluate the hardware cost of a circuit, we utilize area
ratio (the area of the approximate circuit over that of the
accurate one) and delay ratio (the delay of the approximate
circuit over that of the accurate one). Smaller ratios are
preferred due to more reduction in area and delay. Unless
otherwise specified, in all experiments with our ALS flow
and other ALS flows, the area and delay of circuits are
measured after technology mapping using ABC. To evaluate
the accuracy of circuits, four different average error metrics,
error rate, normalized mean error distance, normalized mean
Hamming distance, and mean-square error are considered in
our experiments. They are measured by performing 102 400
rounds of logic simulation to ensure accuracy. Note that our
method only supports average errors, so we do not compare it
with other ALS methods under the maximum error constraints,
such as [26] and [27].

TABLE III
EXPERIMENTAL BENCHMARKS. AREA AND DELAY ARE MEASURED BY

MAPPING THE AIGS INTO THE NANGATE 45 NM LIBRARY

The benchmarks used in our experiments are listed
in Table III. They are accurate circuits selected from
ISCAS85 [42], BACS [43], and EPFL [44] benchmarks.
These circuits are used in the related works that we compare
against [18], [25], and [45]. Table III reports the sizes and
depths of the benchmarks in AIGs. As in [45], the AIGs have
been well optimized to ensure as little redundancy as possible.
These AIGs are then used as inputs to our ALS flow and those
ALS flows for comparison. Table III also includes the areas
and delays of the benchmarks after mapping the optimized
AIGs using the Nangate 45 nm library.

In the following, we first describe an experiment used to
choose parameters of our ALS flow. Then, we will compare
our ALS flow with state-of-the-art methods under different
error metrics, i.e., error rate, normalized mean error distance,
normalized mean Hamming distance, and mean-square error.

B. Parameter Choices

Our ALS flow, as detailed in Algorithm 3, has two impor-
tant parameters: 1) the number of simulation rounds R for
generating the candidate AppResubs and 2) the maximum
number of candidate AppResubs L. We design the following
experiment on the ISCAS85 benchmarks for choosing these
parameters. The applied error metric is error rate, set with a
threshold of 5%.

First, we do not limit the total number of candidate
AppResubs (L = +∞) and observe the impact of varying R on
the number of AppResubs, the area ratio of final approximate
circuits, and the runtime. The upper part of Fig. 4 plots the
number of candidate AppResubs in the first iteration versus R.
It is observed that increasing R generally results in a decrease
in the number of candidate AppResubs. This is reasonable
because with a larger R, the truth tables of the resubstitution
functions are built with more PI patterns, and the resubstitution
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Fig. 4. Impact of the number of simulation rounds R on the number
of candidate AppResubs in the first iteration, the area ratio of the final
approximate circuits, and the total runtime of generating the final approximate
circuits.

functions are closer to the accurate ones. This narrows the
space for approximation and thus reduces the number of
candidate AppResubs. However, exceptions do exist, such as
the case of c1908 when R increases from 32 to 64. This is
caused by the randomness of logic simulation.

The middle part of Fig. 4 plots the area ratios of the final
approximate circuits versus R. The area ratios remain relatively
stable for different R’s. Notably, for all benchmarks, the area
ratios achieved by a smaller R are slightly smaller than those
with a larger R. For example, for benchmarks c880, c2670,
and c3540, the area ratios achieved by R = 16, 32, and 64
are obviously smaller than those achieved by R = 8192 and
16 384. As analyzed above, a smaller R means more candidate
AppResubs, and thus our ALS flow explores a larger solution
space and has more opportunities to find better approximate
circuits with smaller area ratios.

In the bottom part of Fig. 4, the total runtime of generating
the final approximate circuits is plotted. As R increases,
the runtime for the smallest benchmarks c880 first slightly

TABLE IV
COMPARISON OF OUR FLOW WITH THE BLASYS FLOW UNDER ERROR

RATE THRESHOLDS OF 0.5% AND 5%. THE BOLD ENTRIES INDICATE

THAT OUR FLOW OUTPERFORMS BLASYS

decreases and then remains stable, and the runtime for the
small benchmarks c1355, c1908, and c2670 shows an overall
decreasing trend. This is because a larger R leads to fewer
candidate AppResubs, which requires less time to estimate the
errors caused by the AppResubs, hence reducing the runtime
of the whole ALS flow. Conversely, for larger benchmarks
c3540, c5315, and c7552, the runtime initially decreases but
then increases with R. The reason that R decreases initially
is similar to that for the small benchmarks. However, as R
further increases, additional rounds of simulation are required
to generate the candidate AppResubs. The simulation time for
generating the candidate AppResubs becomes significant and
impacts overall runtime, and hence, the runtime of the whole
ALS flow increases when R is large.

Given the above observations, to make the ALS flow
efficient and effective, R should neither be too small (to avoid
long runtime) nor too large (to avoid long runtime and bad
quality). In practice, we choose R = 64 to balance the final
circuit quality and runtime. Meanwhile, we set L = 105 to
limit the total number of candidate AppResubs. This is guided
by the observation that the number of candidate AppResubs in
the first iteration is less than 105 for most benchmarks when
R = 64. In the following experiments, we choose R = 64 and
L = 105 as the default parameters for our ALS flow.

C. Experiments Under the Error Rate Constraint

This experiment approximates the ISCAS85 benchmarks
under the error rate constraint. Note that these benchmarks are
random or control circuits, and error rate is a suitable error
metric for them.

Ma et al. [18] developed an ALS flow known as
BLASYS [18], which uses Boolean matrix factorization to
reduce circuit area. We run BLASYS’s source code and
compare it with our flow under error rate thresholds of 0.5%
and 5%. For fairness, both the BLASYS flow and our flow
utilize 32 CPU threads and apply the same ABC script
for synthesis (“compress2rs”) and mapping (“dch;amap”).
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TABLE V
COMPARISON OF OUR FLOW WITH THE BLASYS FLOW UNDER

NORMALIZED MEAN ERROR DISTANCE (NMED) THRESHOLDS OF 0.59%
AND 2.94%. THE BOLD ENTRIES INDICATE THAT OUR FLOW

OUTPERFORMS BLASYS

Table IV compares the results with bold entries indicating
when our flow outperforms BLASYS.

For all cases except c1355 at a 5% error rate threshold, our
flow reduces more area than BLASYS. On average, our flow
generates approximate circuits with an area ratio of 80.8%,
improving over BLASYS by 2.6%. In addition, our flow
typically generates approximate circuits with shorter delays
than BLASYS. On average, our flow achieves a 5.7% delay
reduction over BLASYS. However, our flow may produce
approximate circuits with larger delays than the original
circuits, as in the case of benchmarks c880, c1355, c5315,
and c7552. This happens because our approach prioritizes
area reduction, potentially at the expense of increased delay.
In terms of runtime, our flow demonstrates significant effi-
ciency, consistently outperforming BLASYS. On average, it
can approximate these benchmarks with only 19.5 s, which is
88× faster than BLASYS.

D. Experiments Under the Normalized Mean Error Distance
Constraint

This experiment approximates the BACS benchmarks under
the normalized mean error distance constraint. Given that these
benchmarks are arithmetic circuits, normalized mean error dis-
tance, which considers the significance of the circuit outputs, is
a suitable error metric for them. Our flow is compared against
BLASYS under the normalized mean error distance thresholds
of 0.59% and 2.94%. The setup of BLASYS remains the same
as that outlined in Section VI-C.

The comparison result is shown in Table V. We can see that
our flow always achieves larger area reduction than BLASYS.
On average, our method produces approximate circuits with
an area ratio of 21.9%, showing a 20.9% improvement over
BLASYS. Moreover, except for the benchmark mac at the
0.59% normalized mean error distance threshold, our flow can
generate approximate circuits with smaller delay ratios than
BLASYS. On average, our flow reduces 21.7% delay over
BLASYS. In terms of runtime, our method only needs 16.2 s
on average. It significantly outperforms BLASYS and is 400×
faster.

TABLE VI
COMPARISON OF OUR FLOW WITH THE BLASYS FLOW UNDER

NORMALIZED MEAN HAMMING DISTANCE (NMHD) THRESHOLDS OF

5% AND 10%. THE BOLD ENTRIES INDICATE THAT OUR FLOW

OUTPERFORMS BLASYS. N/A INDICATES THAT THE DATA IS NOT

REPORTED IN [18]

E. Experiments Under the Normalized Mean Hamming
Distance Constraint

This experiment approximates the EPFL benchmarks under
the normalized mean Hamming distance constraint. We com-
pare our flow with BLASYS under the normalized mean
Hamming distance thresholds of 5% and 10%, which are the
same thresholds used in [18]. We do not run the source code
of BLASYS in this experiment, since the benchmarks are too
large and the runtime of BLASYS is extremely long. Instead,
we directly use the data reported in [18] for comparison.
Although they are not obtained using the same Nangate 45 nm
library as our flow, the relative area and delay ratios can still
provide a reference on the performance of our flow. Given that
the EPFL benchmarks are large, we limit the total number of
candidate AppResubs as L = 20 000 in this experiment, while
R is still set as 64.

The comparison result is shown in Table VI. We can
see that our flow consistently outperforms BLASYS in area
reduction. On average, our flow achieves an area ratio of
59.1%, improving over BLASYS by 26.5%. Particularly, for
the benchmark div under the 5% normalized mean Hamming
distance threshold, our flow reduces the area by 80.1% over
BLASYS. Meanwhile, our flow can generate approximate
circuits with smaller delay ratios than BLASYS for the
benchmarks div and max. However, we also notice that our
flow may produce approximate circuits with larger delays than
the original circuits. Moreover, our flow is significantly faster
than BLASYS. We can approximate these benchmarks under
the normalized mean Hamming distance constraint in 16 275 s
on average.
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TABLE VII
COMPARISON OF OUR FLOW WITH THE DASALS FLOW UNDER

MEAN-SQUARE ERROR (MSE) CONSTRAINT. THE MSE BOUNDS ARE

EXACTLY THE SAME AS THE ONES USED IN [45]. THE BOLD ENTRIES

INDICATE THAT OUR FLOW OUTPERFORMS DASALS

F. Experiments Under the Mean-Square Error Constraint

This experiment approximates some benchmarks from the
BACS and EPFL suites under the mean-square error con-
straint. The compared ALS flow is DASALS [45]. DASALS
formulates the ALS problem as a differentiable architecture
search problem. It tries to directly search the whole circuit
structure to generate better approximate circuits. Only part
of the benchmarks in the BACS and EPFL suites are tested
in [45], and we select them for comparison. Note that the
work [45] only tests the mean-square error constraint and does
not report the performance under other error metrics, so we
only compare our flow with DASALS under the mean-square
error constraint. We directly use the data reported in [45]
and maintain the same mean-square error bounds as those
used in [45] for a fair comparison. Moreover, both our flow
and DASALS utilize the MCNC standard cell library [46] for
technology mapping.

As shown in Table VII, our flow outperforms DASALS in
terms of area ratios for all benchmarks, and reduces more
delays than DASALS for all but two benchmarks, mult8 and
adder32. On average, our flow achieves an 8.4% area reduc-
tion, compared to DASALS. Moreover, we can approximate
these benchmarks under the mean-square error constraint in
1173 s on average. Table VII omits the runtime of DASALS
since [45] does not report it.

VII. CONCLUSION

This work proposes an efficient resubstitution-based ALS
flow. The proposed flow is based on an effective LAC called
AppResub, which approximately simplifies a circuit by re-
expressing a node’s function using a set of other nodes in the
circuit. We design a simulation-based method to efficiently
generate candidate AppResubs in a circuit. Furthermore, we
design a two-phase ALS flow. The first phase iteratively
applies multiple promising AppResubs to accelerate the ALS
flow, while the second further improves the circuit quality
by iteratively applying the AppResub with the smallest error.
To determine a set of promising AppResubs in the first
phase, we formulate a problem to maximize the area reduction
while satisfying the error constraint. It is solved by dynamic
programming on a relaxed problem using a proposed error
upper bound model. Experiments show that our flow is effi-
cient and significantly reduces the hardware cost of resulting
approximate circuits.
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