
Symmetry-Based Synthesis
For Interpretable Boolean Evaluation

Andrea Costamagna
EPFL

Lausanne, Switzerland
andrea.costamagna@epfl.ch

Alan Mishchenko
UC Berkeley

Berkeley, California
alanmi@berkeley.edu

Satrajit Chatterjee
Kepler AI

Palo Alto, California
satrajit@gmail.com

Giovanni De Micheli
EPFL

Lausanne, Switzerland
giovanni.demicheli@epfl.ch

Abstract—Efficient evaluation of Boolean functions is a funda-
mental problem in computer science, impacting computational
complexity and hardware performance. A natural way to eval-
uate Boolean functions is using circuits composed of two-input
operators. However, synthesizing minimum circuits for functions
with more than 6 inputs is typically infeasible. This paper
introduces an engine based on Edward’s theory of symmetry-
based remapping for synthesizing Boolean chains. The proposed
engine can synthesize functions with up to 20 inputs within
seconds, surpassing state-of-the-art tools that require extensive
hyper-parameter tuning to handle similar functions and fail to
scale beyond that. Additionally, it enhances the interpretability of
Boolean chains, uncovering recursive substructures that facilitate
optimality proofs and inform bit-wise manipulation algorithms.

Index Terms—Boolean evaluation, combinational complexity,
symmetric functions

I. INTRODUCTION

BOOLEAN functions are fundamental to digital computa-
tion, serving as the building blocks for virtually all digital

circuits. Compactly representing these functions as circuits
is not only a theoretical challenge but also of significant
practical importance, as it directly impacts resource usage and
computation speed of such hardware components as multi-
input adders. Despite decades of extensive research, finding
optimal representations for functions with more than 6 inputs
remains an elusive goal.

The primary challenge lies in determining a Boolean func-
tion’s representation using the minimum number of binary
logic operators, a measure known as the combinational com-
plexity of the function. The process of finding this minimal
representation is referred to as exact synthesis. Current state-
of-the-art techniques encode exact synthesis as an instance
of the satisfiability problem (SAT) [1], [2]. However, for
functions whose circuits require more than 15 gates, SAT-
based methods become impractical, leaving the search for
close-to-optimal representations an open problem.

SAT-based synthesis employs a uniform encoding scheme
for all Boolean functions, regardless of their specific character-
istics. This raises a critical research question: Can we achieve
near-optimal solutions by tailoring the synthesis process to
specific classes of functions? We investigate this question
by focusing on symmetric functions, which are particularly
important for algorithms based on bit-wise manipulation [3]
and in the context of binarized neural networks [4].

This research was supported in part by the SRC Contract 3173.001,
“Standardizing Boolean transforms to improve the quality and runtime of
CAD tools,” and in part by Synopsys.

The present work targets synthesis of single-output Boolean
functions, particularly those that can be effectively manipu-
lated using truth tables but are beyond the practical reach
of SAT-based methods, namely, functions with up to 20
inputs. By narrowing our focus to this class of functions, we
demonstrate that specialized techniques can succeed where
general-purpose SAT-based approaches fall short, all while
providing a simple and efficient synthesis engine.

Inspired by a classical synthesis technique rooted in sym-
metry detection through spectral methods, our approach builds
on the seminal work of Edwards et al. [5]. They proposed
combining symmetry detection with adding operators to the
circuit representation using a synthesis procedure known as
remapping. While their method was implemented as an inter-
active program, the authors highlighted the need to identify
suitable synthesis options automatically.

Our approach enhances synthesis by analytically deriving
equations to estimate the benefits of each step, enabling
efficient automation using simple yet effective metrics. The
engine supports both manual and automated synthesis, using
an analytical model to predict the expected reward based on
the number of don’t-cares generated, as shown in [5], [6].

The representation produced by the proposed synthesis
engine are compared to the mainstream logic synthesis tech-
niques [7]. The results show that our engine not only creates
near-optimal representations for large Boolean functions, but
also identifies provably optimal sub-structures that can be used
for devising bitwise manipulation-based algorithms, demon-
strating the value of interpretable synthesis solutions.

II. BACKGROUND

A. Boolean Basics

Let Bn be a Boolean space. A literal is a Boolean variable
or its negation, so its positive value identifies a subset of Bn. A
cube is a literal or an intersection of literals. We represent the
operations {∩,∪,⊂,⊆,△} between cubes in logic notation
{·,+, <,≤,⊕}. Also, C ′ indicates cube complementation.

We equivalently refer to a cube as intersections of literals,
as the binary labelling of their negation, or as the decimal
value of the binary labelling. For example, the two-literal
cubes in terms of variables (xi, xj) are equivalently B2,
{xjxi, xjx

′
i, xjx

′
i, x

′
jx

′
i}, {11, 10, 01, 00}, or {3, 2, 1, 0}.

Two cubes C and D are independent if they have an empty
intersection (C ·D = 0). A cube C is contained in a cube D
if C ≤ D. For instance, xix

′
j is contained in xi.

The minterms are the 2n n-literal cubes contained in Bn.
The cofactor of f with respect to a cube C is the function
fC of the variables not appearing in C and whose minterms
are the subsets of minterms of f contained in C. When C is
a minterm, fC is the value of the function. The minterms can
be partitioned based on the value of fM . If fM = 0, M is in
the offset of f , otherwise M is in the onset of f .

An incompletely specified function f is a function whose
output is not defined (or is a don’t-care) for some input
minterms, which can happen when f is a sub-function of
a larger logic block. Controllability don’t-cares (CDCs) are
patterns never appearing at the function inputs. We represent
the CDCs with a function named CDC-mask µ : Bn → B.
Given a minterm M , µM ∈ B indicates if M can appear at
the input. Given a function f with mask µ, there are 2|CDC|

compatible functions τ : Bn→B obtained by assigning 1s and
0s in all possible ways to the don’t cares of function f .

A Boolean chain for n variables (x1, ..., xn) is a sequence
(xn+1, ..., xn+r) where each step combines two previous steps
xi = xl(i)◦ixr(i) n+1 ≤ i ≤ n+r where 1 ≤ l(i) < r(i) < i
and ◦i is a binary Boolean operator [3].

A Boolean function is symmetric if the output value depends
uniquely on the number of ones appearing at its inputs. These
functions are in the form Sk1,k2,...,km , and evaluate to 1 when
the number of ones at the input is k1, k2, ..., or km.

B. Two-Variable Symmetries
Classical symmetries correspond to functional equivalences

in subspaces defined by two-literal cubes. Cofactor compar-
isons give information on these functional properties.

The fundamental two-variables symmetries are non-
equivalence symmetry (NES), equivalence symmetry (ES), and
multiform symmetry (MS). Fig. 1(a-c), show these symmetries
on the Karnough map (KM). The explicit functional form is:

1) NES{xi, xj}: f01 = f10.
2) ES{xi, xj} : f00 = f11 .
3) MS{xi, xj} : f01 = f10 ∧ f00 = f11.
The red numbers offer an example in which f is a two-input

function of xi and xj . In the general case, the equivalence
identified by the lines is among cofactors. For instance,
Fig. 1(b) means that f00 = f11, where f00, f11 : Bn−2 → B. In
the presence of don’t-cares, they can be allocated to complete
a cofactor and satisfy a symmetry. Fig. 1(b) offers an example:
assigning the don’t-care ∗ to 0 results in ES.

Single-variable symmetries (SVS) correspond to cofactor
equalities in the space identified by a single variable:

1) {SVSxi}xj : f10 = f11.
2) {SVSxi}x′

j : f00 = f01.
3) {SVSxj}xi : f11 = f01.
4) {SVSxj}x′

i : f10 = f00.

Fig. 1 (d-e) demonstrates two of these symmetries.
Fig. 1 (f) shows that more SVSs can be present at the same

time. They are called compatible single-variable symmetries
(CSVS). The compatibility check in the presence of don’t-
cares can result in an incorrect result, induced by conflicting
assignments of don’t-cares. To avoid this, it is sufficient to
combine the SVS-check with an ES-check. The compatible
symmetries and their equivalence checks are:

1) CSVS{x′
j , x

′
i} :f00 = f01 = f10.

2) CSVS{x′
j , xi} :f00 = f01 = f11.

3) CSVS{xj , x
′
i} :f00 = f10 = f11.

4) CSVS{xj , xi} :f01 = f10 = f11.

Fig. 1. Schematic representations of the symmetry classes.

C. Synthesis Method Using Symmetries

Edwards et al. [5] devised a synthesis strategy based on
remapping, i.e., the exploitation of two-variable symmetries to
progressively map the problem to a simpler one. The simplicity
of the problem corresponds to the fact that each synthesis
stage increases the number of CDCs. Hence, at each synthesis
stage, the number of exploitable symmetries is either the
same or higher. Sec. II-B shows that two-variable symmetries
correspond to the equivalence of a function in the subspace
identified by two two-literal cubes. Given two variables xi and
xj , let Π = (Ck)

3
k=0 be any permutation of the two-literal

cubes in B2. If we define the simple symmetries (SS) as the
group of symmetries including NES, ES, and SVS, we observe

1) SS ⇔ ∃ p ̸= q : fCp = fCq .
2) CSVS ⇔ ∃ p ̸= q ̸= r : fCp

= fCq
= fCr

.
3) MS ⇔ ∃ p ̸= q ̸= r ̸= s : fCp

= fCq
and fCr

= fCs
.

All the subscripts in the previous equalities are distinct. We
then group the cubes into three sets S, D, and N , defined as:

1) SS : S = (Cp) D = (Cq) N = (Cr, Cs).
2) CSVS : S = (Cp, Cq) D = (Cr, Cr) N = (Cs).
3) MS : S = (Cp, Cq) D = (Cr, Cs) N = ∅.

From the definitions of SS, CSVS, and MS in terms of Cp,
Cq , and Cr, replacing the i-th cube in S with the correspond-
ing i-th cube inD at the inputs of f , while preserving the cubes
in D∪N , does not affect the evaluation of f . This observation
is formalized by remapping, which defines the following map:

φ : B2 → B2

{
φ(Ck) = Dk Ck ∈ S, Dk ∈ D
φ(Ck) = Ck Ck ∈ D ∪N

(1)

Explicitly, given two symmetric variables xi, xj , the map reads

(xj , xi)→ (φj(xj , xi), φi(xj , xi))

00→ φ(00)

01→ φ(01)

10→ φ(10)

11→ φ(11)

(2)

Figure 2 shows the map for NES, which is a SS identified by
S = (10), D = (01), and N = (00, 11). The map identifies
the truth tables of two Boolean operators. Substituting xj and
xi with the newly defined variables, results in an equivalent
synthesis problem named remapped problem. The remapped
problem is simpler in the sense that the minterms contained
in the cubes in S will not appear in the remapped problem,
enlarging the set of the CDCf at the next synthesis stage.
As soon as a one-literal cube C is not observable, it can
be removed from the inputs list, so that the progressive
increase of the CDC set eventually results in obtaining a unique
variable, synthesizing the function. Fig. 2 shows the detail of
a remapping step in presence of NES. More details for the
different symmetries can be found in [5].

Fig. 2. Remapping induced by NES{xi, xj}.

III. AUTOMATED SYMMETRY-BASED SYNTHESIS

This section translates the remapping principle, as described
in section II-C, into a set of analytical equations designed
to guide the synthesis process. Adding a correct operation
to the Boolean chain brings us closer to the final solution,
simplifying the sub-problem of completing the remaining
entries. To capture this, we define cost functions that assess
the number of don’t-cares generated by adding an operator.

A. Symmetry Detection

Differently from the seminal paper [5], we check the pres-
ence of symmetries directly using truth tables. Let f be an
incompletely specified function with CDC-mask µ. If A and B
are two-literal cubes defining a symmetry via the equivalence
fA = fB , then all the compatible functions τ satisfy

fA = fB ⇔ µAµBτA = µAµBτB (3)

Indeed, this equation encodes the following cases:

1) if A ∈ CDCf ∨B ∈ CDCf then fA = fB ⇔ 0 = 0
2) if A ∈ CDC′

f ∧B ∈ CDC′
f then fA = fB ⇔ τA = τB

Hence, checking the presence of a symmetry for truth tables
corresponds to the bitwise verification of its definition.

B. Remapping Equations

For the sake of readability, we rename the cubes of the
partition of B2 introduced in Sec. II-C: Π = {A,B,C,D}.
We consider the general remappings:

1) SS : A 7→ C.
2) CSVS : A 7→ C and B 7→ C.
3) MS : A 7→ C and B 7→ D.

The remapping equations are the transformations of f from
step t to step t+ 1, i.e., the assignment τ t+1, µt+1 ← τ t, µt.

The remapping equations for the mask are:

µ
SS←− A′µ+ CµA

µ
CSVS←−−− A′B′µ+ C(µA + µB)

µ
MS←− A′B′µ+ (CµA +DµB)

The first term in the disjunctions removes the minterms
contained in the source cubes from the care set. The second
term considers the possibility that a remapping process restores
a minterm from the CDC set. Indeed, cofactoring the mask
to a source cube A identifies all cubes K in the remaining
variables that, when put in conjunction with A are in the care
set (KA ∈ CDC′

f). Hence, after the conjunction with the target
cube C, the new minterms generated by the remapping process
are in the care set (KC ∈ CDC′

f).
The remapping equations for τ are

τ
SS←− B′τ +B(µBτ + µAτA)

τ
CSVS←−−− (C ′ + µC)τ + C · (µAτA + µBτB)

τ
MS←− (C ′D′ + CµC +DµD)τ + (Cµ′

CµAτA +Dµ′
DµBτB)

Also in this case there are two terms in the truth table
computation. The first contribution demands that the function
should be the same for all the minterms that were observable
at time t. Meanwhile, the second contribution takes care of the
fact that if there is a CDC in the source cubes of the remapping,
the use of the degree of freedom of the CDC comes at the
cost that we must reallocate the value of τ . Indeed, CDCs
can become visible at later stages, and ignoring the second
contribution would break the equivalence of the remapped
problem with the original one.

C. A Reward Function Based on Don’t Cares Prediction

In the seminal paper [5], the authors provide two guiding
principles for the designer using the interactive tool. Firstly,
remapping should not be performed if the destination set D
contains only don’t-cares. Secondly care minterms should not
be remapped into the don’t-care area to avoid reallocating
definite values to present don’t-cares.

The remapping equations allow us to include the first
principle in an automatic method. Indeed, if {at,i}mi=1 is the
set of available synthesis actions at time t, we can compute the

remapped mask µ[at,i]
at,i←−− µ. Next, by defining the reward

function as the number of CDCs, we can select the action as

a∗ = argmax
a
|CDC[a]| = argmax

a
|µ[a]|0 (4)

For what concerns the second principle, the remapping equa-
tions for τ allow us to perform reallocation when this is
advantageous. Our experiments show that CDC-maximization
is a powerful guiding principle for symmetric functions, but
greedily maximizing the reward function does not always yield
the best result (See Section. V-B). We address this limitation
by defining an engine that explore multiple solutions in the
presence of ties of remapping candidates, and providing more
heuristic details that proved effective in guiding synthesis.

D. Remapping-Based Solver

Algorithm 1 describes the structure of our solver. The
method takes a Boolean function as input and returns a cor-
responding Boolean chain, referred to as CHAIN. Depending
on the binary Boolean operators used, CHAIN corresponds to
one of two widely adopted network types in logic synthesis:
if ◦i ∈ {∧, <,>}, then CHAIN is an and-inverter graphs
(AIGs) [8], [9], if ◦i ∈ {∧, <,>,⊕}, then CHAIN is a xor-
and-inverter graph (XAIGs) [10].

The algorithm stores the best result after applying synthesis
a number of times. A single synthesis step takes a set of
variables named cut, initialized to the input variables, and
iteratively remaps the cut variables into new variables, while
updating the functional information using the remapping equa-
tions. The process terminates if the cut contains a single node.

First, we initialize statet, which is the encoding of the
partial solution. The statet object represents the partial
Boolean chain, not yet synthesizing the function, and char-
acterized with the following attributes: 1) The cut of the last
synthesis stage; 2) the target function (τt, µt); 3) the functions
of the cut variables; 4) the CDCs of the cut.

Next, we synthesize the network a few gates at a time.
At each step, the analyzer(·) function identifies a set of
candidate moves from the current state of the solution. The
analyzer function evaluates the symmetries in the current
state, and enumerate all possible remapping-based actions
using Equation 3. For each candidate action, the remapping
equations for the mask allow us to compute the number of
CDCs induced by each action.

After selecting an action using an iteration-dependent
policy(·,it), move(·) updates the partial solution. When
statet corresponds to a circuit satisfying the specifications
defined by f , we synthesize the desired network represen-
tation. The method returns the smallest size representation
identified in the synthesis process.

If only one iteration of the engine is performed, we prioritize
symmetries acting on the same groups of variables. Intuitively,
we do so to eliminate variables from the representation as
soon as possible. This policy detail also allows us to identify
recursive sub-structures when running the engine in the non-
automatic mode. When considering multiple iterations, say
N , we relax this filter to explore more synthesis solutions,
and choose uniformly at random among actions with the
same reward. Moreover, when multiple logic blocks yield the

Algorithm 1 CHAIN chain ← SOLVER<CHAIN>(f)
1: |chainbest| ← ∞
2: while (it++<number of iterations) do
3: statet ← initialize(f)
4: while (f not satisfied) do
5: actions← analyzer(statet)
6: actiont ← policy(actions,it)
7: statet+1 ← move(statet,actiont)
8: chain← synthesize<CHAIN>(statet)
9: if |chain| < |chainbest| then

10: chainbest ← chain
11: return chainbest

same don’t care gain, we prioritize lower numbers of Boolean
operators. The difference arises when synthesizing AIGs over
XAIGs since the number of Boolean operators to represent an
XOR (MS-remapping) in an AIG is 3.

IV. A BOOLEAN EVALUATION-BASED ALGORITHM

This section shows that synthesizing compact represen-
tations of Boolean functions allows for designing efficient
algorithms based on Boolean evaluation, providing a concrete
example of the importance of symmetric functions.

A. Recursive Sub-Structure of the One-Hot Encoding

Table II shows the number of binary operators needed to
represent threshold functions and k-hot encoding functions.
Interestingly, it is possible to see that the 1-hot encoding chain
for n inputs differs from the one for n+ 1 inputs by 3 gates.
This section shows that this regularity is due to the recursive
sub-structure of this function, thanks to which it is possible to
write the Boolean chain for arbitrary input size.

Lemma IV.1 (One-hot encoding). The combinational com-
plexity of the n-inputs one-hot encoding is C(Sn

1) = 3n− 2.

Proof. For n = 2, S2
1 = x1 ⊕ x0. Hence, C(S1) = 1 = 3− 1.

Let us define the map φ : Bn 7→ Bn−1:

φi({xi}ni=1) =

xi if i < n− 2

xn−1 ∨ xn if i = n− 2

xn−2 ∨ (xn−1 ∧ xn) if i = n− 1

(5)

We classify the minterms based on the number of ones in
(xn, xn−1, xn−2). The minterm with k ones is Mk. Then,

1) Sn
1 (M0) = Sn−1

1 (φ(M0)) = Sn−3
1 ({xi}n−3

i=1)
2) Sn

1 (M1) = Sn−1
1 (φ(M1)) =

∧n−3
i=1 x′

i

3) Sn
1 (M2) = Sn−1

1 (φ(M2)) = 0
4) Sn

1 (M3) = Sn−1
1 (φ(M3)) = 0

Which yields the recursive formula Sn
1 (x) = Sn−1

1 (φ(x)) with
termination S2

1(x) = x1 ⊕ x0.
Since the combinational complexity of the map is C(φ) = 3,

n − 1 recursive steps are needed to reach the termination
condition, and the combinational complexity of the terminating
structure is C(S2

1) = 1, the combinational complexity is
C(Sn

1) = 3(n− 1) + 1 = 3n− 2

B. A Linear-Time Algorithm to Find Essential Sets

The set covering problem is a significant NP-hard problem
in combinatorial optimization [11]. Given a collection of
elements U , the goal is to find the minimum number of
sets that cover these elements. The Boolean evaluation of the
one-hot-encoding function yields an efficient bit-manipulation
algorithm to identify sets that must be included in the solution.

Proposition IV.1 (Essential columns). Let |S| be the number
of sets in a set covering problem S = {Si}|S|

i=1. The detection
of the essential sets requires 4|S| − 2 set operations.

Proof. We represent U and each set Si as a truth-table in the
space Bn, s.t., 2n ≥ |U|. Then, the algorithm goes as follows

1) Using Lemma IV.1, B = S
|S|
1 ({Si · U}|S|

i=1) ∈ Br×1 is
computed in 3|S|−2 operations. Bi = 1 iff the element
i present in f is covered by a single column of A.

2) Foreach set Si, if |ASi · B|1 > 0 the set is essential.
This step requires |S| steps in the worst case.

The overall computational cost is 3|S|−2+|S| = 4|S|−2

V. EXPERIMENTS

In this section, we evaluate the performances of our solver
on symmetric functions. Section V-A compares the synthesis
quality obtained by the engine with a state-of-the-art tech-
nique. Section V-B evaluates the assumptions of our heuristic.
Finally, Section V-C investigates the quality of the solvers on
functions with known combinational complexity. The experi-
ments were conducted on a machine with an i7-1365U CPU.

A. One-Shot Synthesis and Comparison with State-of-the-Art

This experiment has two goals: to verify if high-effort op-
timization can improve the results produced by our heuristics,
and to compare the results against those produced by state-of-
the-art synthesis and optimization.

Table I shows the experimental results. We focus on a
subset of the threshold functions named majority functions,
evaluating to 1 when the majority of the inputs is 1. We vary
the input size from 3 to 20, and report the quality of the results
when running the version of the heuristic introducing most a-
priori information in the definition of the reward function.

As a first test, we perform aggressive optimization on top of
the result obtained with our solver. We use the ABC command
deepsyn. Deepsyn contains a random initialization proce-
dure on which the quality of results depends. We consider
20 random initializations and halt the optimization after 500
iterations without any improvement (&get; &deepsyn -I
20 -J 500;&put;). The entries of type X 7→ Y show that
an AIG with X gates can be optimized to an AIG of size
Y . Column T[s] reports the synthesis time of our procedure.
With up to 17 inputs, we can synthesize functions in less than a
second. High-effort optimization fails in finding optimizations
in most of the representations obtained by our engine, showing
the stability of the minimum found by our solver.

The absence of optimization does not give a guarantee on
the globality of the minimum. To obtain a strong baseline,
we synthesize the functions as functionally reduced AIGs
(FRAIG), that are compact AIGs in which no two nodes have

TABLE I
COMPARISON OF OUR SOLVER AND FRAIG-BASED SYNTHESIS.

HYPERPARAMETER TUNING OUR ENGINE×1

n |FRAIG| |FRAIG∗| T∞[s] |AIG| T[s]
3 6 4 0.02 4 0.00
4 13 7 0.02 7 0.00
5 23 10 0.02 10 0.00
6 36 15 0.05 15 0.00
7 68 20 1.94 20 0.00
8 99 25 2.59 25 0.01
9 142 30 14.52 30 0.01
10 207 40 23.61 37 0.02
11 301 49 13.47 44 0.04
12 452 49 29.18 49 0.05
13 637 64 33.09 58 0.07
14 985 62 31.54 67 7→ 66 0.10
15 1357 71 86.46 72 0.18
16 2155 105 120.76 79 0.45
17 − − − 92 1.27
18 − − − 101 2.62
19 − − − 116 12.86
20 − − − 121 32.39

the same functionality [9]. Next, we perform aggressive opti-
mization. Column |FRAIG| reports the number of AND gates
in the FRAIG generated from the truth table. Next, we repeat
deepsyn-based optimization with high-effort hyperparameter
tuning to obtain the most compact representation possible,
whose size is indicated as |FRAIG∗|. The real-world time to
obtain most of the results in Table I is of the order of minutes.
However, we report an underestimation of the time invested by
removing the time needed for the hyperparameter optimization
and the time invested by deepsyn in performing unsuccessful
optimizations. Despite the aggressive optimization and the
underestimation of the state-of-the-art synthesis time, our
method finds the same solution or a better one in most cases,
and our engine runs within milliseconds for all the functions
that we can represent as truth tables in ABC [7] (n ≤ 16).

B. Evaluating the Reward Function
The one-shot version of the solver uses several assump-

tions: it considers only actions that maximize the number
of remapped don’t cares, prioritizes those introducing the
fewest Boolean operators into the representation, and favors
exploiting symmetries within the same subgroup of variables
across iterations. The last synthesis policy comes from the fact
that actions with the same reward are equally likely to map the
problem to a simpler one. Likewise, selecting actions involving
variables manipulated in previous synthesis steps is likely to
induce the removal of variables, simplifying the problem.

Table II shows the results for two classes of functions:
• The threshold functions S≥k evaluate to 1 when there are

at least k ones at the input.
• The k-hot-encoding functions Sk evaluate to 1 when there

are k ones at the input.
The functions not represented in the table relate to one entry
by duality. The vertical line identifies the majority function.

We consider 33 iterations of the solver and indicate the
quality of the results as δX

∆, where:
1) X is the minimal number of Boolean operators observed

during synthesis.

TABLE II
XAIGS FOR THRESHOLD FUNCTIONS AND k-HOT ENCODING FUNCTIONS.

THRESHOLD FUNCTIONS

2 01
0

01
0

3 02
0

04
0

4 03
0

07
0

07
0

5 04
0

010
0

010
0

6 05
0

013
0

015
0

015
0

7 06
0

016
0

018
0

020
0

8 07
0

019
0

021
0

025
0

025
0

9 08
0

022
0

024
0

030
0

030
2

10 09
0

025
0

029
0

035
0

037
2

037
2

11 010
0

028
0

032
0

040
0

042
4

044
4

12 011
0

031
0

035
0

045
0

249
4

049
6

049
6

13 012
0

034
0

038
0

050
0

252
6

056
6

258
4

14 013
0

037
0

041
0

055
0

261
4

063
6

263
8

265
8

15 014
0

040
0

044
2

060
0 664 070

6
072

6
072

10

16 015
0

043
0

047
0

065
0

273
4

077
8

079
10

079
16

079
18

17 016
0

046
0

050
0

070
0

076
10

282
8

288
8

090
10

092
12

18 017
0

049
0

055
0

075
0

087
4

089
10

093
12

099
10

099
12

0101
10

n S≥1 S≥2 S≥3 S≥4 S≥5 S≥6 S≥7 S≥8 S≥9 S≥10

k-HOT ENCODING FUNCTIONS

2 01
0

01
0

3 04
0

04
0

4 07
0

07
0

07
0

5 010
0

012
0

012
0

6 013
0

015
0

017
0

015
0

7 216
2

218
2

022
0

022
0

8 019
0

021
0

027
0

027
4

027
0

9 022
0

026
0

032
0

032
4

032
4

10 025
0

029
0

037
0

239
4

039
6

239
4

11 028
0

032
0

042
0

044
4

246
6

046
6

12 031
0

035
0

047
0

251
6

253
6

053
8

053
6

13 034
0

238
2

052
0

056
6

260
8

062
8

062
8

14 037
0

041
0

057
0

065
4

067
8

069
8

071
8

467
10

15 040
0

244
2

062
0

068
8

472
8

278
8

476
10

078
10

16 043
0

047
0

067
0

077
6

481
8

283
10

085
14

287
12

087
10

17 046
0

052
0

072
0

080
8

286
8

294
10

098
10

098
12

098
16

18 049
0

055
0

077
0

089
6

091
14

097
12

4103
12

0105
16

0109
14

0105
18

n S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

2) δ is the difference between the number of Boolean
operators obtained by the one-shot version and X .

3) ∆ is the difference between the maximal number of
Boolean operators observed during synthesis and X .

We highlight in red (δX
∆) the cases in which the one-shot

version yields an empirically provable sub-optimal result. This
experiment empirically validates the a-priori assumptions of
the one-shot approach. Nevertheless, in some cases, breaking
ties at random can identify more compact representations.
This remark is interesting in light of the analysis done in
Section V-A: multiple runs of fast synthesis with stochastic
selections of moves with high expected rewards can find
solutions that are hardly reachable with traditional engines.

C. Comparison with Exact Synthesis

In this experiment, we compare the quality of results for
four- and five-input symmetric functions with known combina-
tional complexity [3]. Table III shows the results. The notation
X 7→ Y indicates that applying an XAIG optimization
algorithm [12] on top of the synthesis result X allows us to
further reduce the gate count to Y . We also ran the same
experiment with 100 iterations, but there was no considerable
variation in the results, confirming the effectiveness of our
single-pass heuristic. This experiment shows that the engine
can find many close to minimum circuits in at most 10ms.

VI. CONCLUSIONS

We propose a synthesis engine based on Edward’s theory of
symmetry-based remapping. We empirically investigated the

TABLE III
COMPARISON OF EXACT XAIGS SYNTHESIS WITH OUR ENGINE.

n = 4 n = 5

f C(f) [3] |XAIG| f C(f) [3] |XAIG|

S3 7 7 S4 10 10
S4 3 3 S4,5 10 10
S3,4 7 7 S3 9 12
S2 6 7 S3,5 10 10
S2,4 6 7 S3,4 10 13
S2,3 6 9 7→ 8 S3,4,5 9 10
S2,3,4 7 7 S2,5 10 14
S1 7 7 S2,4 8 10
S1,4 7 9 7→ 8 S2,4,5 9 12
S1,3 3 3 S2,3,5 10 15
S1,3,4 6 7 S2,3 8 15
S1,2 6 9 7→ 8 S2,3,4 10 13 7→ 12
S1,2,4 7 9 7→ 8 S1,5 9 13 7→ 12
S1,2,3 5 7 S1,4 9 15
S1,2,3,4 3 3 S1,3,4 11 13

effectiveness of this method by synthesizing two-input gate cir-
cuits for several classes of symmetric functions. We showcase
the effectiveness of the proposed synthesis engine by showing
that it outperforms state-of-the-art synthesis and optimization.
While the engine fails to find the known minimum circuits for
some functions, the regularity of the resulting circuits allow
for identifying a recursive sub-structure of a Boolean function,
which can be used to create bitwise manipulation algorithms.

REFERENCES

[1] M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. G. Amarù, R. K.
Brayton, and G. De Micheli, “Practical exact synthesis,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2018, pp. 309–314.

[2] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “Sat-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 4, pp. 871–884, 2019.

[3] D. E. Knuth, The art of computer programming, volume 4A: combina-
torial algorithms, part 1. Pearson Education India, 2011.

[4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[5] C. R. Edwards and S. L. Hurst, “A digital synthesis procedure under
function symmetries and mapping methods,” IEEE Transactions on
Computers, vol. 27, no. 11, pp. 985–997, 1978.

[6] C. Scholl, “Multi-output functional decomposition with exploitation of
don’t cares,” in Proceedings Design, Automation and Test in Europe.
IEEE, 1998, pp. 743–748.

[7] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

[8] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proceedings of the 34th annual Design Automation Confer-
ence, 1997, pp. 263–268.

[9] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “Fraigs:
A unifying representation for logic synthesis and verification,” ERL
Technical Report, Tech. Rep., 2005.

[10] G. Meuli, M. Soeken, and G. De Micheli, “Xor-and-inverter graphs for
quantum compilation,” npj Quantum Information, vol. 8, no. 1, p. 7,
2022.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[12] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2573–2586, 2021.

