
1

Scalable Sequential Logic Synthesis Using
Observability Don’t Care Conditions

Dewmini Sudara Marakkalage∗, Eleonora Testa†, Giulia Meuli‡, Walter Lau Neto†, Alan Mishchenko§,
Giovanni De Micheli∗, and Luca Amarù†

∗ Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
† Synopsys Inc., Design Group, Sunnyvale, California, USA

‡ Synopsys Inc., Design Group, Agrate Brianza, Lombardy, Italy
§ Department of EECS, University of California, Berkeley, USA

Emails: dewmini.marakkalage@epfl.ch, eleanora.testa@synopsys.com, giulia.meuli@synopsys.com,
walter.launeto@synopsys.com, alanmi@berkeley.edu, giovanni.demicheli@epfl.ch, luca.amaru@synopsys.com

Abstract—Sequential logic synthesis expands the solution space
compared to combinational logic synthesis by reasoning about the
reachable states of memory elements, leading to better Power-
Performance-Area (PPA) outcomes. As gate costs continue to rise
in advanced technologies, sequential logic synthesis is gaining
significant traction within the EDA community as a powerful
alternative. This paper introduces a scalable algorithm for don’t-
care-based sequential logic synthesis, leveraging sequential k-
step induction to perform redundancy removal and resubstitution
under Sequential Observability Don’t Cares (SODCs). SODCs
generalize Observability Don’t Cares (ODCs) by explicitly con-
sidering reachable states, making SODC-based optimization a
challenging problem due to dependencies and alignment issues
between the base case and inductive case in k-step induction. Our
approach overcomes these challenges, fully utilizing the potential
of SODCs without limiting the solution space. We rigorously prove
the correctness of our approach, discuss some limitations arising
from bounded-step induction, and analyze how our approach can
effectively be used in practice to exploit obscure optimization
opportunities. Implemented as part of an industrial tool, our
algorithm achieves an average -6.9% area improvement after tech-
nology mapping compared to state-of-the-art sequential synthesis
methods, and further provides 3.16% and 1.06% reductions in
combinational and sequential areas, respectively, in post place-
and-route results. Furthermore, all optimizations are efficiently
verified using industrial sequential verification tools.

Index Terms—Sequential redundancy removal, sequential cir-
cuits, observability don’t cares, sequential k-step induction

I. INTRODUCTION

Logic synthesis optimizes logic networks under various
metrics, such as area, power, and delay. It plays a crucial role
in modern Electronic Design Automation (EDA) flows. Combi-
national logic synthesis focuses on optimizing logic networks
while maintaining combinational equivalence. Even if a logic
network has sequential elements, combinational logic synthesis
can still be applied by treating the register inputs/outputs as
primary outputs/inputs, ignoring any constraints on reachable
states.

Sequential logic synthesis, in contrast, specifically targets
the optimization of logic networks with sequential elements.
Since it can account for the fact that not all register value
combinations are reachable, it offers a more powerful form of

logic synthesis. It is well-known that sequential logic synthesis
explores a broader solution space and generally achieves better
power, performance, and area (PPA) [1]. These PPA benefits
become increasingly critical as the cost of chip design continues
to rise [2].

Sequential logic synthesis has been studied in the past con-
sidering various approaches [1], [3]–[10]. One such approach
is to integrate combinational optimizations together with retim-
ing [4], [11], which can exploit optimization opportunities aris-
ing due to structural properties across register boundaries [8].
The key idea behind this line of work is to move registers across
combinational logic while optimizing the resulting combina-
tional logic segments with existing combinational optimization
techniques. A powerful yet scalable state-of-the-art approach
is given by the sequential SAT-sweeping (SSW) algorithm
from [1]. The basic idea of SSW is to merge sequentially equiv-
alent nodes, where it uses Bounded Model Checking (BMC),
Boolean Satisfiability (SAT), and sequential induction [12]–[14]
to prove the validity of such merge candidates.

In this work, we present a novel scalable algorithm for
don’t-cares-based sequential logic synthesis. Our approach, by
design, can work with dependencies among observability don’t
cares (ODCs), which is a challenging problem that has not
been addressed in prior approaches. Our method is based on se-
quential induction and is orthogonal to the approach presented
in [1]. In fact, our new method integrates both redundancy
removal and resubstitution, leveraging sequential observability
don’t cares (SODCs). Moreover, our method can be enhanced
to work with multi-step induction and use of assumptions to
detect additional optimization opportunities. The latter is a
version of sequential induction where the validity of candidate
logic transformations in the inductive case are verified assuming
they are already present in prior frames.

In combinational logic synthesis, ODCs—i.e., input patterns
where the value of a wire is not observed at the outputs—can be
utilized to uncover better optimization opportunities [15]–[20].
However, employing ODCs for optimization poses inherent
challenges, as the remaining ODCs can change after applying
an ODC-based optimization. These challenges are even more

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

pronounced in sequential optimizations, where it is particularly
difficult to account for the sequential nature of circuits while
managing ODC dependencies. (It is worth noting that applying
an ODC-based optimization can also alter the set of reachable
states.) Although the dependency issues can be mitigated by
restricting the analysis to compatible ODCs (CODCs) [21],
i.e., ODCs that can be used independently at each node, this
approach can result in missed optimization opportunities.

Nevertheless, the method we propose inherently handles
ODC dependencies, and hence utilizes the full power of ODCs
in sequential optimizations. This is achieved by using an induc-
tive approach that takes the reachable states into account and
performs simultaneous, in-place optimization of two networks
(base case and inductive case) using ODC-based combinational
optimization methods that are built on Boolean Satisfiability
(SAT) [22]. To make it scalable, our approach uses windowing
so that the SAT-problem sizes remain manageable.

The simultaneous optimization of the derived networks en-
ables our method to naturally identify valid ODC-based sequen-
tial optimizations that are compatible with one another, without
restricting the search space to CODC-based optimizations.
As a result, it achieves superior optimizations, particularly in
circuits with sequential feedback, which can pose challenges for
traditional retiming-based techniques. In essence, our method
uncovers sequential optimizations that were previously un-
explored by other approaches, while maintaining scalability.
Additionally, since our approach avoids moving registers over
combinational logic, the verification of the optimized networks
is more likely to succeed, making it more suitable for use
in industrial tools. In contrast, retiming-based methods often
present challenges for verification tools due to the potential
loss of anchor points essential for verification.

While an initial version of this work was presented in [23],
this paper extends the work in several aspects.

1) Building upon the proof outline presented in [23], we pro-
vide the complete proof of correctness which is applicable
to the multi-step induction as well as the setting with the
use of assumptions.

2) We provide a detailed analysis of some obscure SODC-
based optimization opportunities and explain how such
cases can be effectively addressed in practice.

3) We expand the experimental evaluation of our approach,
comparing different settings of the overall algorithm.
Namely, we compare and contrast the effects of redundan-
cies/resubstitutions, multi-step/single-step induction, en-
abling/disabling assumptions, and the use of small/large
window sizes.

4) Integrating our approach to the full optimization flow of
an industrial tool, we also present post place & route
optimization results for industrial designs.

Through optimization of technology independent logic, we
have demonstrated that each of the extensions improves the
quality of results compared to the base version. Moreover, our
approach is shown to achieve a 6.9% average reduction in area
after technology mapping on top of state-of-the-art sequential
optimization methods (e.g., SSW), with a 3.16% reduction of

combinational area and a 1.06% of sequential area post place
& route on industrial designs. All designs were verified using
state-of-the-art sequential verification tools [24].

The organization of the paper is as follows: Section II
discusses some background and relevant prior work. Section III
presents a motivating example for sequential synthesis with
ODCs followed by our novel scalable sequential logic synthesis
approach, together with the proofs of correctness for different
versions of the algorithm. Section IV presents our experimental
results, and finally, Section V concludes with a brief discussion
of the results and future work.

II. BACKGROUND

In this section, we provide some background that will be
useful to better understand the rest of the paper and briefly de-
scribe some state-of-the-art prior work in sequential synthesis.

A. Boolean Network

A Boolean network is a directed acyclic graph (DAG)
representation of a logic network where the nodes correspond
to logic gates and edges represent the connections between
gates. A node function can be arbitrary, and usually encoded
using its sum-of-products (SOPs) representation or its truth
table with respect to node inputs. The source nodes of the DAG
correspond to primary inputs (PIs) or register outputs (ROs)
while the sinks correspond to primary outputs (POs) or register
inputs (RIs). The corresponding RI/RO pairs are usually stored
in a separate data structure together with the respective initial
values of the registers. The fanins (fanouts) of a node n refer
to the set of nodes that drives (driven by) n. I.e., the fanins
of n have directed edges from them to n and the fanouts have
directed edges from n to them. The transitive fanin (TFI) cone
of a node n is the set of all nodes from which n is reachable
via a directed path. Similarly, the transitive fanout (TFO) cone
is the set of all nodes reachable from n via a directed path.

B. Sequential Logic Optimizations

In this section, we briefly introduce two important concepts
that we use in our proposed optimization approach: sequential
redundancy and sequential resubstitution.

1) Sequential Redundancy: In logic synthesis, a redundancy
is a node or a wire whose value is stuck at a constant in
all observable input (PI/RO) patterns. A redundant wire can
be optimized away by removing the origin node of the wire
from the fanin set of the destination node and modifying the
destination node’s function accordingly. A node is redundant
if all its outgoing wires are redundant. Sequential redundancy
is a generalization of a redundancy where the stuck-at-constant
property holds considering all observable input patterns and
reachable states.

2) Sequential Resubstitution: In logic synthesis, resubstitu-
tion refers to replacing a node n with a different node m ̸= n.
In general, m can be any existing node that is not in the TFO
cone of n, or it can be a new node constructed by combining
several other non-TFO nodes (called divisors). The Boolean

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

resubstitution refers to equivalence preserving resubstitutions
that are computed considering Boolean properties such as don’t
cares (DCs). Additionally, when the implicit restrictions on
reachable states of a sequential logic network are considered
during resubstitution, we refer to it as sequential resubstitution.

C. Don’t Cares in Logic Networks
In logic synthesis, a don’t care (DC) is an input pattern (i.e.,

similar to a minterm) for which the output value of a node is
not important [25]. Such patterns can be specified either with
respect to the primary inputs or any cut of the node. Note that
the latter is a generalization of the former since the set of PIs
is a valid cut for any node. Don’t cares have been extensively
used in logic optimizations [26]–[28].

There are different types of don’t cares such as Controllabil-
ity Don’t Care (CDC) and Observability Don’t Care (ODC),
which are described below. Note that, in addition to CDC
and ODCs, there is also the notion of Satisfiability Don’t
Care (SDC) [29] which are Boolean value combinations that
never occur considering an internal wire. SDCs are primarily
used in the exhaustive computation of ODCs and CDCs.

1) Controllability Don’t Cares: The CDCs for a node n
with respect to a cut I are the Boolean value combinations
for I which are impossible to occur. When the considered
cut contains some internal nodes, CDCs can occur due to
the structure of the network. For example, if a node n as
two inputs x and y where x = a ∧ b and y = a ∨ b, the
value combination x = 1 and y = 0 can never occur. Thus,
considering the cut {x, y}, the value combination x ∧ ¬y is a
CDC for n. (Consequently, if n computes x∧¬y, a CDC based
optimization algorithm might optimize it away and replace it
with the constant 0.) A logic network might also have some
impossible PI patterns due to external constraints, and such
patterns are called external CDCs.

2) Observability Don’t Cares: The ODCs for a node n with
respect to a cut I are the Boolean value combinations for I
for which the output of n is not observed at any PO. For
example, in Fig. 1 (a), consider the node w1 with respect to
the cut {a, b, d}. For any pattern where a = 1, b = 0, w1 is
not observed at the output o1 because the output gate’s second
fanin, g2, will be 0 under such a pattern. Thus a ∧ ¬b is an
ODC for w1.

The ODCs of nodes in a logic network can have dependen-
cies among themselves. Namely, if an optimization with respect
to an ODC is performed for a particular node, it can change
the ODCs of other downstream nodes, and hence, ODCs will
have to be recomputed for those nodes. This added complexity
can be avoided by using a less powerful version of ODCs,
called Compatible ODCs (CODCs) [21], [30], that do not have
dependencies among themselves. In other words, CODC-based
optimizations are a subset of ODC-based optimizations that can
be applied in parallel, without interfering with each other.

D. Prior Work on Sequential Synthesis
A common optimization approach in early works on se-

quential synthesis is to use retiming together with logic trans-
formations [8], [10]. In this approach, first, the registers are

moved around, then the resulting circuit is optimized using
combinational methods, and finally retiming is performed again
to minimize the register count. During retiming, if some re-
convergent paths have varying numbers of registers, the usual
practice is to remove such paths by duplicating the shared
nodes, considering small blocks of logic. In contrast, our
SODC-based approach does not move registers, thus it avoids
the duplication requirement of shared logic. Moreover, our
approach scales well to much larger logic blocks.

Another prominent sequential optimization method is se-
quential SAT-sweeping (SSW), which is a generalization of
combinational SAT-sweeping [31], [32] to the sequential set-
ting, where the idea is to merge sequentially-equivalent nodes.
If two nodes m and n are equivalent under all observable input
patterns of n in all reachable states, n can be merged with m by
transferring the fanouts of n to m, without changing the overall
output function of the network. An efficient SSW algorithm is
proposed in [1] where the sequential equivalences among nodes
are proven using bounded model checking (BMC) [33] and
SAT together with induction [12]–[14]. Once the equivalence
classes are identified, all nodes in a class are merged into a
chosen representative node and the dangling nodes are removed.
Despite its practical success, SSW misses many optimizations
made possible due to SODCs. Notably, SSW cannot optimize
the simple sequential logic network in Fig. 2(a) into the one in
Fig. 2(b).

Additionally, Case et al. [7] considered a simulation-based
approach to find merge candidates considering ODCs. Namely,
the network is simulated with random bit patterns to identify
node pairs a, b such that for each simulated pattern, either a
and b are equal or all paths from b to combinational outputs
are non-controlling. Then a new network is created with all
candidates merged, the equivalence of the new and original
network is proven/disproven using SAT, and if disproved, the
merge candidates are refined. However, this approach does
not scale well to large networks due to large miters used
in equivalence checking and hence misses many optimization
opportunities. In contrast, we use a window-based approach
and check the validity of each optimization in isolation; hence
the SAT-based validity checks are scalable.

The method we propose in the next section is able to find
optimizations that were never found by the prior approaches.

III. SCALABLE SEQUENTIAL OPTIMIZATION

In this section, we first give a brief motivation for our
proposed method and introduce sequential induction. Then,
we discuss our novel sequential optimization approach in
detail with a formal proof of correctness. Lastly, we analyze
some of the limitations of the proposed method and possible
workarounds.

A. Motivation

Consider the purely combinational logic network shown
in Fig. 1(a) and observe that the wires g1 and g2 can never
be 1 at the same time. This implies that whenever g2 = 1, g1
must be 0. Since w2 is observed at output o1 only when g2 = 1,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

a
b

g1

d
w1

e
w2

o1
a
b

g2
a
b

g2

e o1

(a) (b)

Fig. 1. A combinational logic network (a) and its optimized version (b).

one can simplify the circuit by assuming that g1 is stuck at 0,
which, in turn, implies that w1 is also stuck at 0. This leads to
the optimized circuit in Fig. 1(b).

Now consider the sequential circuit in Fig. 2(a) which is
similar to the one in Fig. 1(a) except for the two registers at
g1 and g2. If we consider this as a combinational network (i.e.,
disregard the registers, consider g1, g2 to be POs, and consider
lo1, lo2 to be PIs), the previous reasoning no longer applies;
lo1, lo2 can take arbitrary values, and hence lo1 is observed
even when it is 1. However, if we additionally know that the
initial values of lo1, lo2 are (0, 0) (or any combination of values
different from (1, 1)), the optimization is still possible. This is
because, by design, lo1 and lo2 can never be 1 at the same
time in the subsequent clock cycles. This observation yields
the optimized circuit shown in Fig. 2(b). The state-of-the-art
sequential optimization routines such as scorr, lcorr, scl, and
retime of the logic synthesis tool ABC [34] are unable to find
this optimization. This is because the existing routines fail
to consider the reachability of states in conjunction with the
observability don’t care conditions.

The goal of the proposed method is to identify this kind
of optimization opportunities in sequential logic networks in a
scalable way. We remark that, while a retiming-based optimiza-
tion method might be able to optimize the example above, such
methods perform poorly especially when there is sequential
feedback (e.g., finite state machines) or varying numbers of
registers along different reconvergent logic paths.

B. Sequential ODCs

The optimization in the example holds due to two facts:
1) (Reachability) Not all states (value combinations for the

sequential elements) are reachable.
2) (Observability) In all reachable states, the optimization is

valid due to the ODCs.
These two facts together form a notion of sequential ODCs
(SODCs), a generalization of ODCs in combinational logic
networks into the sequential setting.

Recall that a sequential network can be optimized by con-
sidering it as a combinational network, using combinational
synthesis algorithms, where the register inputs are considered
as primary outputs and the register outputs are considered as
primary inputs. In this setting, suppose that the complete set
of unreachable states are somehow known beforehand. Then,
we can input such unreachable states as external CDCs, and
use an external-CDC-based synthesis algorithm to optimize
the network, and this would effectively perform sequential
synthesis. The ODCs that exists when such unreachable states
are considered as external CDCs are called SODCs.

In practice, the set of unreachable states is not known
beforehand; but are implicitly defined by the structure of the
network and the initial states. Thus, to consider SODCs in
optimizations, an algorithm has to somehow reason about the
reachable/unreachable states, and completely characterizing the
set of SODCs is a computationally hard problem. In what fol-
lows, we present a framework that can be used to approximate
SODCs of sequential networks.

C. Framework Definition

To use SODCs in optimization, we first take the reachability
of states into account. To this end, a widely used technique
is to use the so-called sequential induction [12], [13] which
leverages two combinational networks called the base case
network and the inductive case network that are obtained using
k-step unrolling as defined below in Definition 1.

Definition 1 (k-Step Unrolling). For a sequential logic network
N, the k-step base case network N b is the combinational
network obtained by

1) taking k copies of N (referred to as frames),
2) connecting the RIs of each frame to the corresponding ROs

of the subsequent frame,
3) replacing the ROs of the first frame with the respective

register initial values, and
4) designating RIs of the last frame as POs.

The k-step inductive case network N i is similarly defined
except with the following changes:

1) it has k + 1 frames, and
2) the ROs of the first frame are designated as PIs.

For the example network of Fig. 2(a), the base case and the
inductive case networks for 1-step (i.e., for k = 1) sequential
induction are shown in Fig. 2(c) and Fig. 2(d) respectively.
Note that in all figures, wires between frame inputs and gates
are implicit, i.e., a frame input x(i) is connected to gate pins
denoted by x. As shown in Fig. 2 (d),the RIs of the first frame
(namely, li1 and li2) are connected to ROs of the second frame
(namely, li1 and li2). In all frames, a, b, c, d, and e are PIs.
The behavior of N b is the same as that of the original network
N for the initial k clock cycles and the behavior of N i is the
same as k + 1 consecutive clock cycles of N for any initial
state. As formally stated in Theorem 1, if an optimization is
valid in all frames of the base case and the last frame of the
inductive case, then it is a valid sequential optimization for the
original network.

On top of the reachability criterion, we consider the ob-
servability to identify sequential optimization opportunities.
It seems straightforward to consider the sets of ODC-based
optimizations in the base case and inductive networks and
then take the intersection of the two sets as the final set of
optimizations. However, as discussed in Section I, this approach
only works with CODCs which do not have dependencies
among them. Unfortunately, using CODCs in place of ODCs
leads to many missed optimization opportunities. The regular
ODCs can have dependencies in them, and cause this simple

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

D Q
g1a

b
lo1

d
w1

e
w2

o1

D Q
g2a

b
lo2

D Q
g2a

b
lo2

e o1

lo1
(0)

lo2
(0)

a(0)

b(0)

d(0)

e(0)

li1
(0)

li2
(0)

o1
(0)

a
b

g1

a
b

g2

lo1
d

w1 w2

e
lo2

o1

lo1
(0)

lo2
(0)

a(0)

b(0)

d(0)

e(0)

li1
(0)

li2
(0)

o1
(0)

a
b

g1

a
b

g2

lo1
d

w1 w2

e
lo2

o1

lo1
(1)

lo2
(1)

a(1)

b(1)

d(1)

e(1)

li1
(1)

li2
(1)

o1
(1)

a
b

g1

a
b

g2

lo1
d

w1 w2

e
lo2

o1

0

0

X

Y

(a)

(b) (c) (d)

Fig. 2. A sequential logic network (a), its optimized version (b), and its base case network (c) and the inductive case network (d) for 1-step sequential induction.

algorithm to fail. In the remainder of this section, we present an
algorithm that, by design, avoids dependency issues of regular
ODCs without falling back to CODCs.

D. Proposed Method

Our proposed algorithm is based on sequential induction and
it can fully utilize ODCs by simultaneously optimizing base
case and inductive case networks.

Namely, we start by constructing the 1-step unrolled base
case and inductive case networks for sequential induction.
Then, considering one node at a time, we check if there is
a valid optimization for that node in both the base case and the
inductive case networks. If so, we immediately update both the
derived networks as well as the original network by applying
the optimization. This approach allows the algorithm to find
subsequent optimizations for the remaining nodes that may
depend on the already applied optimizations. Thus it avoids any
dependency issues that would arise if we were to use the simple
approach we stated at the end of Section III-C with regular
ODCs. Hence, the algorithm computes compatible sequential
optimizations without limiting to CODCs.

To find optimizations, the algorithm considers fanin redun-
dancies for each gate n in the network. Namely, for each fanin
f of n we check whether f is effectively stuck at 0 or 1 in

1) the the base case network, and
2) the last frame of the inductive case network.

Since both the base case and inductive case networks are
purely combinational, it is possible to use any combinational
redundancy check for this purpose. To this end, let n′ be the
node obtained by fixing fanin f of n at the target constant
value. In our implementation, we check if replacing n with n′

is valid using a SAT problem.
To formulate the SAT problem, we consider the miter for

comparing the outputs of the derived network, with and without
the candidate optimization. This miter is represented as a
CNF formula, whose satisfiability is then checked with a
SAT solver. Note that this formulation implicitly considers
both observability don’t cares and reachability constraints, i.e.,
SODCs, as explained at the end of Section III-E.

If the problem is unsatisfiable (UNSAT), then the opti-
mization is valid. To make the overall algorithm scalable, we
optimize the SAT formulation not to consider all POs and RIs,
but instead consider the leaf nodes of a small TFO cone rooted
at n. If the optimization is shown to be valid for both the

base and inductive case networks, then we apply it in both the
networks as well as in the original network (see Section III-E
for details).

As an illustrative example, consider Fig. 2(a). We can prove,
that w1 is stuck at 0, in both the base case and the inductive
case networks, which will result in the optimized network in
Fig. 2(b) (assuming all registers are initially 0).

We consider three enhancements on our proposed method
which enables it to find more optimization opportunities.

Enhancement 1: We extend our algorithm to use k-step
sequential induction where the base case network has k ≥ 1
frames and the inductive case network has k + 1 frames as
defined below:

In this case, we check if the target ∆ redundancy is valid in
1) all k frames of the base case network, and
2) the last frame of the inductive case network.

If the considered redundancy is valid in both cases, then we
apply it in all frames of the two derived networks as well as
in the original network.

Fig. 3(a) shows an example sequential network which can
be optimized to the one in Fig. 3(b) with 2-step sequential
induction (assuming all registers are initially 0). In the last
frame of the inductive network (Fig. 3(c)), lo3, lo4 are fed by
the gates g1, g2 of the first frame, so lo3, lo4 of the last frame
are never 1 at the same time. Thus the algorithm is able to
prove that w1 of the last frame is stuck at zero. In contrast,
if 1-step induction were to be used, we only get the first two
frames of Fig. 3(c), and the second frame’s lo3, lo4 are driven
by two arbitrary inputs from the first frame. Hence, all value
combinations are possible, so w1 of the second frame is not
stuck at zero.

Enhancement 2: Our approach is not limited to fanin re-
dundancies but also extends to resubstitutions under ODCs.
Namely, for a considered node n, we consider a subset D
(called divisors) of nodes that are not in the TFO cone of n.
Then, we consider all versions of n obtained by replacing one
of its fanins with one of the nodes in D as resubstitution can-
didates for n. As with the redundancies, for each resubstitution
candidate n′, we use SAT to check if some window output
would differ when n is replaced with n′.

Enhancement 3: We further improve our method by consid-
ering redundancy assumptions in the base case and the inductive
case networks. To elaborate, suppose that we found a valid
optimization ∆ for the first frame of the base case. Then,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

we check whether ∆ is also valid for the subsequent frames,
assuming that the all preceding frames are already updated with
∆. Namely, for i > 1, we check if ∆ is valid for frame i of the
base case, assuming all frames 1, . . . , i−1 are transformed with
∆. Once the validity of ∆ is confirmed in all frames of the base
case network, update the first k frames of the inductive case
network with ∆ and check for its validity in the last frame. At
any point, if we find ∆ is not valid for the considered frame,
we undo it in all previous frames.

Fig. 4(a) shows a simple sequential network with feedback
whose output is always zero provided that the initial state of
the register is zero. With assumptions, our proposed method
is able to prove this. For the base case, it is clear that g1 is
stuck at zero. For the inductive case (shown in Fig. 4(b)), if
we assume g1 of the first frame is stuck at zero, then so is g1
in the second frame. This is also an example of a sequential
network that is not optimized by retiming-based methods.

Note that the use of assumptions as an enhancement is not to
be confused with the inductive hypothesis we use in our proofs.
To elaborate, while we use mathematical induction to show the
equivalence of the original network and the optimized network,
the sequential induction is a construction we use to find eligible
optimizations. In the context of enhancements, assumptions are
considered in sequential induction. Namely, we assume the
candidate optimization is already applied in the first k frames
of the inductive case combinational network before checking its
validity in the last frame. To formalize the difference between
having assumptions and not having assumptions, we define the
validity of a candidate optimization ∆ in the inductive case
network as follows: Let N i(∆, {j1, . . . , jt}) denote the induc-
tive case network modified with transformation ∆ applied in
frames j1, . . . , jt. When assumptions are not used, to check the
validity of ∆ in the inductive-case network, we check whether
N i is combinationally equivalent to N i(∆, {k + 1}). When
assumptions are used, we check whether N i(∆, {1, . . . , k}) is
combinationally equivalent to N i(∆, {1, . . . , k, k + 1}).

E. Complete Algorithm
The high-level pseudocode of our method without assump-

tions (i.e., with the first and second enhancements above) is
presented in Algorithm 1 whereas the Algorithm 2 shows the
pseudocode considering all three enhancements.

In both our algorithms, we use the following definition of
dangling registers:

Algorithm 1: High-level pseudocode of sequential op-
timization with k-step induction without assumptions.

input : Input network N . Number of frames k.
1 N b ← N unrolled into k frames and first frame ROs

replaced with initial states.
2 N i ← N unrolled into k + 1 frames.
3 Let N b,j , N i,j denote the j-th frame of N b, N i

respectively.
4 for each gate g ∈ N do
5 for each candidate optimization ∆ for g do
6 if ∆ is not valid in all frames of N b then
7 Continue loop.

8 if ∆ is invalid for g in N i,k+1 then
9 Continue loop.

10 Apply ∆ in N b,1, . . . , N b,k.
11 Apply ∆ in N i,1, . . . , N i,k+1.
12 Apply ∆ in N .

13 Recursively remove all dangling registers and their
MFFCs from N .

14 return N

Definition 2 (Dangling Registers). We say that a register r in
a logic network N is non-dangling if there is a combinational
logic path from the RO of r to either

1) any PO, or
2) the RI of any other non-dangling register.

All remaining registers are called dangling registers.

In Algorithm 1, after constructing the two derived networks
N b and N i, the gates of the input network are processed one
at a time. For each gate, the algorithm iterates of candidate
optimizations ∆ and checks if ∆ is valid for all frames of the
base case network N b. If so, it checks if ∆ is also valid for
the last frame of the inductive network N i. If both checks
succeed, the algorithm applies ∆ in all frames of the two
derived networks as well as in the original network N .

Algorithm 2 is an enhanced version of Algorithm 1 which
additionally support temporary application, and if necessary,
undoing of unconfirmed candidate optimizations. In Line 4 of
Algorithm 2, the algorithm iterates over all gates in the original
network, and in Line 5, it considers different optimization

D Q
g1a

b
D Q

lo1 lo3

d
w1

e
w2

o1

D Q
g2a

b
D Q

lo2 lo4

D Q
g2a

b
D Q

lo2 lo4

e o1

X

Y

Z

W

lo1
(0)

lo2
(0)

lo3
(0)

lo4
(0)

a(0)
b(0)
d(0)
e(0)

li1
(0)

li2
(0)

li3
(0)

li4
(0)

o1
(0)

a
b

g1

a
b

g2

lo3
d

w1 w2

e
lo4

o1

lo1
(1)

lo2
(1)

lo3
(1)

lo4
(1)

a(1)
b(1)
d(1)
e(1)

li1
(1)

li2
(1)

li3
(1)

li4
(1)

o1
(1)

a
b

g1

a
b

g2

lo3
d

w1 w2

e
lo4

o1

lo1
(2)

lo2
(2)

lo3
(2)

lo4
(2)

a(2)
b(2)
d(2)
e(2)

li1
(2)

li2
(2)

li3
(2)

li4
(2)

o1
(2)

a
b

g1

a
b

g2

lo3
d

w1 w2

e
lo4

o1

(a)

(b) (c)

Fig. 3. A sequential logic network (a), its optimized version (b), and its inductive case network (c) for 2-step sequential induction.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

g1
D Q

g2 lo1

o1

a
b

lo1
(0)

a(0)

b(0)

li1
(0)

o1
(0)

g1
g2

lo1
a

b

lo1
(1)

a(1)

b(1)

li1
(1)

o1
(1)

g1
g2

lo1
a

b

X

(a) (b)

Fig. 4. A sequential logic network with feedback (a) and its inductive case
network (b) for 1-step sequential induction before applying assumptions in the
first frame.

Algorithm 2: High-level pseudocode of sequential op-
timization with k-step induction with assumptions.
input : Input network N . Number of frames k.

1 N b ← N unrolled into k frames and first frame ROs
replaced with initial states.

2 N i ← N unrolled into k + 1 frames.
3 Let N b,j , N i,j denote the j-th frame of N b, N i

respectively.
4 for each gate g ∈ N do
5 for each candidate optimization ∆ for g do
6 for j = 1, . . . , k do
7 if ∆ is invalid for g in N b,j then
8 Undo ∆ in all frames N b,1, . . . , N b,j−1.
9 Continue outer loop.

10 Apply ∆ in N b,j .

11 Apply ∆ in N i,1, . . . , N i,k.
12 if ∆ is invalid for g in N i,k+1 then
13 Undo ∆ in N b,1, . . . , N b,k and

N i,1, . . . , N i,k.
14 Continue loop.

15 Apply ∆ in N i,k+1.
16 Apply ∆ in N .

17 Recursively remove all dangling registers and their
MFFCs from N .

18 return N

candidates ∆. We use the letter ∆ to denote a simple logic
transformation such as a fanin redundancy or a resubstitution.
Then, for each frame of the base case network, the algorithm
checks if ∆ is valid in that frame; if it is valid, then the
algorithm applies ∆ in that frame (Line 6-Line 10). If it is
valid in all frames of the basecase network, then it applies ∆
in the first k frames of the inductive case network (Line 11)
and checks for the validity in the last frame (Line 12) of the
inductive case network. If it is valid, the algorithm applies ∆
in the last frame (Line 15) as well as in the original network
(Line 16). At any point, if ∆ is invalid for the considered frame,
it undoes all preceding applications of it (Line 8 and Line 13).

This undoing is necessary to keep the two derived networks,
N b and N i, consistent with the current version of the sequential
network N . The consistency between the derived networks
and the original network is crucial for the correctness of the
algorithm.

In Lines 7 and 12, to check for the validity of a target

optimization ∆, the algorithm first constructs a window around
the target node in the respective network. (Note that the
window is not restricted to the considered frame; to take the
reachable states into consideration, the window should span to
all previous frames in general.) Then it encodes the following
as a SAT problem:

Is there an input pattern (for the window) that would
make at least one output differ for the window with
and without the candidate optimization?

To put differently, we construct a miter to compare the
window outputs, with and without the candidate optimization,
the miter is represented as a CNF formula using the Tseytin
transformation [35]. The satisfiability of the miter is then
checked with a SAT solver.

If it is UNSAT, then the target optimization is valid. The
size of the window and the conflict limit for the SAT solver
are configurable parameters.

Our algorithm is able to find SODC-based optimizations
instead of merely settling for ODC-based optimizations (or
CODC-based optimizations, which are a subset of ODC-based
optimizations). This is facilitated by two crucial aspects of our
method: First, by considering unrolled networks over 2 or more
clock cycles, the algorithm is able to conclude that certain state
combinations are never reachable. To see this, note that the
logic values of the wires corresponding to ROs of the last frame
are not arbitrary, but are determined by the combinational logic
in the previous frames. Second, the SAT formulation we use
implicitly considers the observability of signals, as the miter
is satisfiable only if the candidate optimization changes the at
least one output of the network.

F. Correctness of the Proposed Approach

In this section, we show the correctness of our algorithms,
both with and without the use of assumptions. To this end, we
consider sequential networks in the following setting:

1) All sequential elements in the network are positive-edge-
triggered D flip-flops,

2) PIs are set on the negative edge of the clock, and
3) The clock edge that immediately following the reset is a

negative edge.
We label the positive clock edges that follows reset by

non-negative integers 0, 1, 2, Unless explicitly mentioned
otherwise, we use the following notations in our theorems
and proofs: we denote the input sequential logic network by
N , and assume that it has m PIs, n POs, and ℓ registers.
Let For x ∈ Bm and y ∈ Bℓ, let PO(N, x, y) ∈ Bn and
RI(N, x, y) ∈ Bℓ, respectively, denote the PO and RI values of
N when PIs are set to x and register states (ROs) are set to y.
We use y0 ∈ Bℓ to denote the initial state of the registers. Let
{x}T0 = x0, x1, . . . , xT where xi ∈ Bm for all i = 0, 1, . . . , T
be a sequence of Boolean vectors. Given a sequence {x}T0 and
initial state y ∈ Bℓ, suppose that registers are set to y at reset
and that xt is set as PI values at t-th negative clock edge. We
observe the PO and RI values just before the T -th positive clock
edge. Let PO(N, {x}T0 , y) ∈ Bn and RI(N, {x}T0 , y) ∈ Bℓ,
respectively, denote the resulting PO values and RI values.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

For two networks N1, N2, we define EQ(N1, N2, T) to be
the proposition that for any sequence of T PI vectors, the
PO values of the two networks are the same, when started,
respectively, from y1 and y2 as the initial state. Formally,
EQ(N1, N2, T, y

1, y2) := for all sequences {x}T0 ∈ Bm×T ,
PO(N1, {x}T0 , y1) = PO(N2, {x}T0 , y2).

Similarly, we define EQ⋆(N1, N2, T, y) to be the proposition
that for any sequence of T PI vectors, the PO and RI values
of the two networks are the same, when started from y as the
initial state. Formally, EQ⋆(N1, N2, T, y) := for all sequences
{x}T0 ∈ Bm×T , PO(N1, {x}T0 , y) = PO(N2, {x}T0 , y) and
RI(N1, {x}T0 , y) = RI(N2, {x}T0 , y). Note that, here, both
networks are initialized with the same initial state y.

We now define the notion of sequential equivalence and
strong sequential equivalence.

Definition 3 (Sequential Equivalence). Suppose that N1 and
N2 are two sequential networks with m PIs and n POs, and
suppose that N1 has ℓ1 registers and N2 has ℓ2 registers.
Let y10 ∈ Bℓ1 and y20 ∈ Bℓ2 be the initial states of the
registers of N1 and N2, respectively. We say that two se-
quential networks N1 and N2 are sequentially equivalent if
EQ(N1, N2, T, y

1
0 , y

2
0) is true for all T ∈ N0.

When ℓ1 = ℓ2 and y10 = y20 , we say that N1 and N2 are
strongly sequentially equivalent if EQ⋆(N1, N2, T, y

1
0) is true

for all T ∈ N0.

Our goal is to show that the output of Algorithm 2 is
sequentially equivalent to the input network. Outline of our
proof is as follows:

1) Show that the intermediate network we get before re-
moving dangling registers, i.e., the network N just before
Line 17, is sequential equivalent to the input network.

2) Show that removing the dangling registers in Line 17 does
not affect the sequential equivalence.

For step 1 above, we in fact show the stronger result that the
intermediate network is strongly sequentially equivalent to the
input network. To this end, we first start with the following
lemma, which essentially yields an alternative definition of
sequential equivalence.

Lemma 1. Let N1, N2 be two logic networks with the same
initial state y0, and let S ⊆ Bℓ be the set of all reachable states
of N1. If PO(N1, x, y) = PO(N2, x, y) and RI(N1, x, y) =
RI(N2, x, y) for all x ∈ Bm and y ∈ S, then N1 and N2 are
strongly sequentially equivalent.

Proof. The proof is relatively straightforward. We include it in
the appendix for completeness.

With Lemma 1, we now show that the strong sequential
equivalence holds with respect to a single valid transformation
∆. Namely, we show the following lemma:

Lemma 2. Consider a logic network N and its k-step base
case and inductive versions N b and N i. Let ∆ be a logic trans-
formation and let N∆, N

b
∆, N

i
∆, respectively, be the networks

obtained by applying ∆ to N, to all frames of N b, and to the last
frame of N i. If N b and N i, respectively, are combinationally

equivalent to N b
∆ and N i

∆, then N and N∆ are sequentially
equivalent.

Proof. Let S be the set of reachable states, and note that S can
be decomposed as the countable union S = S0 ∪ S1 ∪ S2 . . .,
where S0 is the set with only the initial state, S1 is the set
of reachable states after the first clock cycle, S2 is the set of
reachable states after the second clock cycle, and so on.

We first claim the following: For i = 0, 1, 2, . . ., for any
x ∈ Bm and y ∈ S0∪S1∪S2 . . ., we have that PO(N, x, y) =
PO(N∆, x, y) and RI(N, x, y) = RI(N∆, x, y).

To see this, first fix any i ∈ {0, . . . , k − 1}, and let y ∈ Si.
Let x0, . . . , xi−1 be the sequence of PI vectors that resulted in
state y after i clock cycles. Now, for networks N b and N b

∆, set
the j-th frame PIs to xj for j = 0, . . . , i−1, set i-th frame PIs
to x, and set the remaining PIs arbitrarily (but same for both
networks). By design of N b, we must have its i − 1-th frame
RIs set to y, and by combinational equivalence, the same holds
for N b

∆. Thus, considering the combinational equivalence for
i-th frame POs and RIs, the claim above holds for i-th frame.

Now, fix any i ≥ k, let y ∈ Si and let x0, x1 . . . xi−1 be
the sequence of PI vectors that resulted in state y after i clock
cycles as before. This time, we use the equivalence of N i and
N i

∆, and for this, we set ROs of the 0-th frame to state we
get on sequence x0, . . . , xi−k, and we set j-th frame PIs to
xi−k+j for j = 0, . . . , k − 1, and k-th frame PIs to x. Then,
by the combinational equivalence of N i and N i

∆, considering
the last frame POs and RIs, we have that the claim holds for
i-th frame.

With Lemma 2, we now proceed to show that the input
network of Algorithm 2 is sequentially equivalent to the output
network.

Theorem 1. Let N be the input network of Algorithm 1 and
let N⋆ be the output network. Then N and N⋆ are sequentially
equivalent.

Proof. Let N int denote the intermediate network produced by
Algorithm 1 just before removing dangling registers, i.e., just
before Line 17. Note that N int is obtained from N by applying
a sequence of valid transformations, and each transformation
preserves the strong sequential equivalence due to Lemma 2.
Thus N int and N are strongly sequentially equivalent, which
is a special case of being sequentially equivalent.

Observe that removing dangling registers and their MFFCs
does not affect the value of any PO or any remaining non-
dangling register. Thus, N int and N⋆ are sequentially equiva-
lent. Finally, since sequential equivalence is transitive by defi-
nition, we have that N and N⋆ are sequentially equivalent.

G. Characterizing SODC-Optimizable Transformations

As proven above, our approach only finds correct SODC-
based optimizations, so it has the soundness property. However,
due to the limitations of sequential induction, the proposed
algorithm is not complete, i.e., it is unable to prove all valid
SODC-based fanin redundancies/resubstitutions.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

D Q
R1

D Q
R2

D Q
R3

a
b

en

en

a
b

c

o

ro1

ro2

ro3

ri1

ri2

ri3

ro1

en

ro1
ro2

ro2

en

ro1
ro2

c

o1ro1
ro2
ro3

en

a

b

c

Fig. 5. An example sequential circuit and its frame representation.

ro1
(0)

ro2
(0)

ro3
(0)

ri1
(0)

ri2
(0)

ri3
(0)

o1
(0)

ro1

en

a
b

ro2

en

a
b

c

ro1
ro2
ro3

en(0)

a(0)

b(0)

c(0)

ro1
(1)

ro2
(1)

ro3
(1)

ri1
(1)

ri2
(1)

ri3
(1)

o1
(1)

ro1

en

a
b

ro2

en

a
b

c

ro1
ro2
ro3

en(1)

a(1)

b(1)

c(1)

Fig. 6. The inductive network for the sequential circuit in Figure 5.

In the remainder of this section, we examine in what
situations the proposed method can find the SODC-based
optimizations and propose workarounds for situations where
it may struggle to do so.

1) Networks without sequential feedback: Consider a se-
quential network with no sequential feedback. This means that
for any register, its future (not necessarily the immediate next
state) state does not depend its current state. For such a network
N , let d be the sequential depth, which is the maximum
number of registers in any path from a PI to a PO. If our
proposed methods is used to optimize N using d-step sequential
induction, then our method is capable of finding any valid
SODC-based optimization. This is because, the reachable states
approximated by the inductive case network will be the same
as the actual reachable states after d clock cycles.

2) Networks with sequential feedback: In networks with
sequential feedback, the future state of a register can depend
on its current state. In such networks, the number of sequential
induction steps required to characterize all reachable states can
be exponential, and hence it is impractical. Moreover, unless
assumptions are used, it may not be possible to find all valid
SODC-based optimizations with sequential induction.

Consider the following example sequential circuit (Fig. 5)
and its inductive case network for sequential induction (Fig. 6).
Suppose that all registers are initially set to 0, and observe that
R1 and R2 can never be 1 at the same time. Thus, the output
o is stuck at 0.

We analyze under what conditions our proposed method is
able to find the above optimization.

Note that in the 1-step inductive case network shown in
Fig. 6, the ro1 and ro2 of the initial frame are considered as
PIs, thus they can take arbitrary values. When en is 0, these
values can propagate to the next frame, and if ro1, ro2, and c
of initial frame are all 1 and en = 0, then the output o1 of the
last frame is 1. Thus, this setup is unable to prove the the stuck-
at-0 property of o1, unless we use assumptions. This remains

ro1
(0)

ro2
(0)

ro3
(0)

ri1
(0)

ri2
(0)

ri3
(0)

o1
(0)

ro1

en

a
b

ro2

en

a
b

c

ro1ro2
ro3

en(0)

a(0)

b(0)

c(0)

ro1
(1)

ro2
(1)

ro3
(1)

ri1
(1)

ri2
(1)

ri3
(1)

o1
(1)

ro1

en

a
b

ro2

en

a
b

c

ro1ro2
ro3

en(1)

a(1)

b(1)

c(1)

Fig. 7. The inductive network for the sequential network in Figure 5, where the
decomposition of the 3-input AND is unfavorable to the proposed algorithm.

the case even if use k-step induction with any k > 1 since the
values of ro1 and ro2 of the initial frame can propagate to the
last frame as long as en remain 0.

However, from Fig. 5, we clearly see that the values of both
R1 and R2 can never be 1 at the same time if the initial states
are 0. This is because, if R1 and R2 are not 1 in the current
clock cycle, then they are not 1 in the next clock cycle as well.
Thus, one would hope to find the optimization considering the
assumptions. The challenge for our algorithm is to find the right
assumptions to make.

In the proposed method, we consider a simplified set of
assumptions. Namely, as assumptions, we always use the candi-
date redundancy (or resubstitution) property that we are trying
to prove. Consequently, there arise cases where these simplified
assumptions are not sufficient as-is to prove the property.

To illustrate, consider again the sequential network in Fig. 5
or a different version of the same network as shown in Fig. 7
where the 3-input AND gate is decomposed into two 2-input
AND gates. Let us assume that o1 is 0 in the initial frame.

With the goal of proving that o is stuck at 0 in the last
frame, suppose that o is 0 in the initial frame. Unfortunately,
the condition of o1 = 0 in the initial frame does not prevent
ro1 and ro2 from being 1 at the same time in the first frame,
because o1 = 0 is possible with ro1 = 1, ro2 = 1, and ro3 = 0.
Thus, with this assumption, the algorithm is unable to prove the
stuck-at-0 property of o1.

Alternatively, consider the case where the 3-input AND gate
is decomposed into two 2-input AND gates in a different man-
ner, as shown in Fig. 8. In contrast to the previous case, in this
network, the algorithm is able to prove the stuck-at-0 property
of o1, by first proving that gate g1 of the decomposition is stuck
at 0. Namely, the algorithm first assumes that g1 is stuck at 0
in the first frame. This implies that ro1 and ro2 are not 1 at the
same time in the first frame. For the second frame, the value
of g1 is either AND of ro1 and ro2 values from the first frame,
or its the and of a ∧ ¬b and ¬a ∧ b, which can never be 1 at
the same time.

Considering the two scenarios described above, it is clear
that the proposed method’s ability to find the SODC-based
optimizations depends on the network structure. To mitigate
this issue, we propose two approaches.

a) Equivalent Structural Transformations: One straight-
forward way to address the issue is to consider different
equivalent structures for different portions of the network and
different decompositions of complex gates. This will allow

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

ro1
(0)

ro2
(0)

ro3
(0)

ri1
(0)

ri2
(0)

ri3
(0)

o1
(0)

ro1

en

a
b

ro2

en

a
b

c

g1
ro1
ro2 ro3

en(0)

a(0)

b(0)

c(0)

ro1
(1)

ro2
(1)

ro3
(1)

ri1
(1)

ri2
(1)

ri3
(1)

o1
(1)

ro1

en

a
b

ro2

en

a
b

c

g1
ro1
ro2 ro3

en(1)

a(1)

b(1)

c(1)

Fig. 8. The inductive network for the sequential network in Figure 5, where
the decomposition of the 3-input AND is conducive to the proposed algorithm.

ro1
(0)

ro2
(0)

ro3
(0)

ri1
(0)

ri2
(0)

ri3
(0)

o1
(0)

ro1

en

a
b

ro2

en

a
b

c

ro1
ro2
ro3

a1
ro1
ro2

a2
ro2
ro3

a3
ro1
ro3

en(0)

a(0)

b(0)

c(0)

ro1
(1)

ro2
(1)

ro3
(1)

ri1
(1)

ri2
(1)

ri3
(1)

o1
(1)

ro1

en

a
b

ro2

en

a
b

c

ro1
ro2
ro3

a1
ro1
ro2

a2
ro2
ro3

a3
ro1
ro3

en(1)

a(1)

b(1)

c(1)

Fig. 9. The inductive network for the sequential network in Figure 5, where
shadow nodes are added to reflect the assumptions on the reachable states of
registers.

the algorithm to consider different anchor nodes and explore
assumptions on them.

b) External Assumptions: The other approach is to expand
the possible types of assumptions used by the algorithm. The
current method uses the candidate redundancy property as the
only assumption. However, this is strictly not necessary, and
the algorithm may consider any arbitrary assumption on the
reachable states of registers. Such general assumptions can be
proven by the current algorithm, simply by introducing addi-
tional shadow nodes to serve as anchors for the assumptions.

To elaborate on external assumptions, suppose that the
algorithm is faced with the network in Fig. 7. From the
initial conditions, we know that o1 is stuck at zero. If no
decomposition is preformed, the algorithm will again construct
the inductive network as shown in Fig. 6. However, instead of
assuming that the 3-input AND gate of the first frame gate is
stuck at 0 and then trying to prove the same for the second
frame, the algorithm may perform the following steps:

1) Find the registers on which the value of o1 depends. This
can be done by traversing the transitive fanin cone of
o1. (In general, such registers can be efficiently computed
for all gates, using a topological traversal from inputs to
outputs.) In this case, the registers are ro1, ro2, and ro3.

2) Explore different subsets of value combinations for these
registers which would make o1 stuck at 0. The number of
such subsets grows doubly-exponentially with the number
of registers (e.g., for r registers, there are 2r possible
states, so there are 22

r

many subsets of states). Since
exploring all possible subsets is impractical, the algorithm
may use heuristics to select a subset of states to explore.

For example, the algorithm may choose states where a pair
of registers are not both 1 at the same time.

3) For each considered subset S of states, construct a new
temporary node nS in the network which is 0 if and only
if the register value combination is in S. E.g., for o1 of the
network in Fig. 5, the algorithm may create new temporary
AND gates ro1∧ro2, ro2∧ro3, and ro2∧ro3 as shown in
Fig. 9. The gate a1 denotes the assumption that the state
(ro1 = 1, ro2 = 1, ro3 = ∗) is not reachable, gate a2
denotes the assumption that the state (ro1 = 1, ro2 =
∗, ro3 = 1) is not reachable, and gate a3 denotes the
assumption that the state (ro1 = ∗, ro2 = 1, ro3 = 1)
is not reachable.

4) Assuming that nS is stuck at 0 in the first frame, check
whether the nS is stuck at 0 in the second frame. If so,
assuming that nS is stuck at 0 in the second frame, check
whether the nS is stuck at 0 in the third frame, and so
on. If nS is stuck at 0 in all frames, then conclude that
the assumption is valid, and hence o1 is stuck at 0 in all
reachable states.

Once the algorithm has proven the stuck at 0 property of o1, it
proceeds to remove the redundant gates and the shadow nodes.

To summarize, while the proposed algorithm always finds
correct SODC-based optimizations, the limited horizon of
sequential induction and the implementation choices for ac-
commodating assumptions can lead to missed optimization
opportunities. These drawbacks can be mitigated by using
symmetry-breaking logic transformations and adding support
for more elaborate assumptions.

IV. EXPERIMENTAL RESULTS

In this section, we present and discuss the experimental
results obtained using the proposed approach which is imple-
mented as part of a commercial EDA tool. For the evaluations,
we consider a subset of OpenCores [36] and some industrial
designs as the sequential benchmark design suite.

We proceed in three steps. First, we compare the ef-
fects of different configurations of our algorithm by optimiz-
ing technology-independent logic, using And-Inverter Graphs
(AIGs) as the logic representation. Next, we evaluate the
performance of the model on technology-mapped designs, and
finally we present the results obtained on industrial designs
after place and route.

A. Comparison of Different Configurations
Recall that, on top of our base algorithm, we also proposed

several extensions, namely, multi-step sequential induction,
assumptions, and support for resubstitutions. To compare the
effectiveness of these extensions, we optimize a subset of Open-
Cores designs using different configurations of our algorithm.

As the baseline for comparisons, we consider a state-of-the-
art sequential optimization flow [1] together with combinational
rewriting (commands scorr and rewrite in ABC [34]). The two
optimizations are interleaved and run until saturation, i.e., no
further reduction is observed. In the experimental flow, we
additionally run our algorithm (without and with respective
extensions) on top of the baseline.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

TABLE I
COMPARISON OF THE PROPOSED METHOD AGAINST THE BASELINE (REDUNDANCY REMOVAL VS. REDUNDANCY REMOVAL + RESUBSTITUTION)

Baseline Our Method (redundancy removal) Our Method (redundancy removal + resub)

Name NAND2 Lev FF NAND2 Lev FF Time (s) NAND2% NAND2 Lev FF Time (s) NAND2%

aes core 22026 32 530 21576 32 530 22.7 -2.04 21535 32 530 49.2 -2.23
des area 4611 37 64 4611 37 64 0.7 0.00 4611 37 64 1.7 0.00
des perf 77288 23 8808 76691 23 8808 302.7 -0.77 76534 23 8808 592.6 -0.98
ethernet 168 13 47 166 13 47 0 -1.19 166 13 47 0 -1.19
i2c 931 24 126 891 24 126 0.1 -4.30 891 24 126 0.3 -4.30
mem ctrl 7097 31 1050 7003 31 1050 1.9 -1.32 6998 31 1050 3.7 -1.39
pci bridge32 17656 32 3198 17403 32 3198 10.2 -1.43 17403 32 3198 20.9 -1.43
pci spoci ctrl 704 20 60 678 20 60 0.2 -3.69 674 20 60 0.5 -4.26
sasc 597 10 117 568 10 117 0.1 -4.86 568 10 117 0.1 -4.86
simple spi 779 12 131 772 12 131 0.1 -0.90 772 12 131 0.2 -0.90
spi 3621 31 229 3590 31 229 0.5 -0.86 3592 31 229 0.9 -0.80
ss pcm 464 9 87 399 9 87 0 -14.01 399 9 87 0 -14.01
steppermotordrive 138 17 25 125 17 25 0 -9.42 125 17 25 0 -9.42
systemcaes 11106 42 670 11105 42 670 4.3 -0.01 11105 42 670 8.2 -0.01
systemcdes 2696 36 190 2692 34 190 2 -0.15 2687 34 190 5.7 -0.33
tv80 7740 58 359 7553 58 359 2.5 -2.42 7527 58 359 6.2 -2.75
usb funct 13910 27 1722 13560 26 1721 8 -2.52 13557 26 1721 16.8 -2.54
usb phy 457 12 98 407 11 98 0 -10.94 407 11 98 0.1 -10.94
vga lcd 89555 27 17032 89392 27 17032 286.8 -0.18 89385 27 17032 477.3 -0.19
wb conmax 47026 32 770 42491 32 770 43.4 -9.64 40734 32 770 84.9 -13.38
wb dma 3283 19 521 3258 19 521 0.6 -0.76 3257 19 521 1.2 -0.79

Average -3.40 -3.65

1) Redundancy removal vs. redundancy removal + resub-
stitution: In Table I, we present the results obtained by run-
ning our method with only redundancy removals and with
both redundancy removals and resubstitutions. The columns
‘NAND2’, ‘Lev’, and ‘FF’ show the number of two-input
NAND-gates, combinational logic levels, and flip-flops, respec-
tively. The last two columns for each experimental setting
show the runtime of the experimental flow in seconds1 and the
percentage NAND2 reduction over the baseline. Here we used
1-step sequential induction with windowing, where the window
size is limited to 500 nodes with at most 16 levels in the
transitive fanout cone of a target node. For the resubstitution,
we limit the divisor count to 100 nodes. We set a tight control
on the level count to prevent increasing it during resubstitution.

As seen in Table I, the redundancy removals alone lead to
an average reduction of 3.40% in the number of NAND2 gates.
When resubstitutions are allowed on top of redundancies, the
average reduction increases to 3.65%.

As a final remark, note that all testcases have been verified
using sequential verification (dsec) in ABC [34] where the
verification time is below 13 seconds for all the benchmarks.

2) Single-step vs. multi-step induction: In Table II, we
present the results obtained by running our method with 1-step
and 2-step sequential induction. In both cases, we use the same
settings as in the previous experiment with both redundancy
removals and resubstitutions enabled, but with a window size
of 5000. Note that we use an increased window size to
support larger number of inductive steps. To effectively find
potential optimizations in the unrolled inductive-case network,
the window need to contain logic from all unrolled frames.
When 2-step induction is used, the average reduction in the

1Runtime statistics are not expected to be reproducible.

number of NAND2 gates increases to 3.97% from 3.65%. As
before, all testcases have been verified with ABC’s dsec, where
the maximum observed verification time is 74 seconds.

3) Without assumptions vs. with assumptions: When as-
sumptions are allowed, we observed improvements in the
NAND2 reduction for specific benchmarks. Namely, when our
algorithm is used with 1-step sequential induction allowing
both redundancy removals and resubstitutions, reductions of
-4.94%, -2.98%, and -11.16% were observed, respectively, for
benchmarks ethernet, i2c, and usb_phy.

4) Redundancy removal + resubstitution with different win-
dow sizes: When using both redundancy removals and resub-
stitutions with 1-step sequential induction, we observed that
increasing the window size from 500 to 50 000 nodes produced
even better results as shown in Table III. The reduction in
the number of NAND2 gates increased from 3.65% to 4.10%
on average. In this case, the maximum observed sequential
verification time is 27 seconds.

B. Technology Mapped Results

In Table IV, we present the results obtained after area-
oriented technology mapping for the same OpenCores designs
we used in the previous experiments. In this experiment, the
baseline is an industrial synthesis flow that does not use any
sequential logic optimizations, and Flow1 uses two iterations
of sequential SAT-sweeping for mapped networks on top of the
baseline. Flow2 runs Flow1 followed by our proposed method,
with 1-step sequential induction, with both redundancies and
resubstitutions enabled, and with a window size of 50 000.

The table shows the average improvements over the baseline.
Our flow achieves an 18.3% area reduction, compared to
the baseline, and a 6.9% reduction, compared to Flow1 with

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

TABLE II
COMPARISON OF THE PROPOSED METHOD AGAINST THE BASELINE (k-STEP INDUCTION)

Baseline Our Method with 1-step induction Our Method with 2-step induction

Name NAND2 Lev FF NAND2 Lev FF Time (s) NAND2% NAND2 Lev FF Time (s) NAND2%

aes core 22026 32 530 21535 32 530 49.2 -2.23 21132 31 530 288.9 -4.06
des area 4611 37 64 4611 37 64 1.7 0.00 4604 37 64 37.7 -0.15
des perf 77288 23 8808 76534 23 8808 592.6 -0.98 76507 23 8808 1509 -1.01
ethernet 168 13 47 166 13 47 0 -1.19 166 13 47 0.1 -1.19
i2c 931 24 126 891 24 126 0.3 -4.30 891 24 126 0.9 -4.30
mem ctrl 7097 31 1050 6998 31 1050 3.7 -1.39 6976 31 1048 28.6 -1.70
pci bridge32 17656 32 3198 17403 32 3198 20.9 -1.43 17376 32 3197 153.1 -1.59
pci spoci ctrl 704 20 60 674 20 60 0.5 -4.26 670 20 60 1.5 -4.83
sasc 597 10 117 568 10 117 0.1 -4.86 568 10 117 0.2 -4.86
simple spi 779 12 131 772 12 131 0.2 -0.90 772 12 131 0.5 -0.90
spi 3621 31 229 3592 31 229 0.9 -0.80 3586 31 229 31.9 -0.97
ss pcm 464 9 87 399 9 87 0 -14.01 399 9 87 0.1 -14.01
steppermotordrive 138 17 25 125 17 25 0 -9.42 125 17 25 0.1 -9.42
systemcaes 11106 42 670 11105 42 670 8.2 -0.01 11087 42 670 41.7 -0.17
systemcdes 2696 36 190 2687 34 190 5.7 -0.33 2685 34 190 12.5 -0.41
tv80 7740 58 359 7527 58 359 6.2 -2.75 7419 58 359 37.6 -4.15
usb funct 13910 27 1722 13557 26 1721 16.8 -2.54 13541 26 1721 49.7 -2.65
usb phy 457 12 98 407 11 98 0.1 -10.94 403 11 98 0.2 -11.82
vga lcd 89555 27 17032 89385 27 17032 477.3 -0.19 89352 27 17032 1633.5 -0.23
wb conmax 47026 32 770 40734 32 770 84.9 -13.38 40375 32 770 344.3 -14.14
wb dma 3283 19 521 3257 19 521 1.2 -0.79 3257 19 521 3.2 -0.79

Average -3.65 -3.97

TABLE III
COMPARISON OF THE PROPOSED METHOD AGAINST THE BASELINE

(INCREASED WINDOW SIZE)

Baseline Our Method

Name NAND2 Lev FF NAND2 Lev FF Time
(s)

NAND2
%

aes core 22026 32 530 21061 31 530 1404.9 -4.4
des area 4611 37 64 4594 37 64 71.6 -0.4
des perf 77288 23 8808 76053 23 8808 811.2 -1.6
ethernet 168 13 47 166 13 47 0 -1.2
i2c 931 24 126 889 24 126 1 -4.5
mem ctrl 7097 31 1050 6961 31 1048 27 -1.9
pci bridge32 17656 32 3198 17292 32 3198 151.8 -2.1
pci spoci ctrl 704 20 60 671 20 60 2.4 -4.7
sasc 597 10 117 568 10 117 0.2 -4.9
simple spi 779 12 131 772 12 131 0.6 -0.9
spi 3621 31 229 3583 31 229 86.4 -1.1
ss pcm 464 9 87 399 9 87 0.1 -14.0
steppermotor 138 17 25 125 17 25 0.1 -9.4
systemcaes 11106 42 670 11070 42 670 137.7 -0.3
systemcdes 2696 36 190 2685 34 190 22.7 -0.4
tv80 7740 58 359 7396 57 359 208.9 -4.4
usb funct 13910 27 1722 13506 26 1721 38.2 -2.9
usb phy 457 12 98 403 11 98 0.2 -11.8
vga lcd 89555 27 17032 89294 27 17032 1993.1 -0.3
wb conmax 47026 32 770 40184 32 770 391.8 -14.5
wb dma 3283 19 521 3257 19 521 4 -0.8

Average -4.1

sequential SAT-sweeping, at a cost of 20% increase in runtime.
The results confirm that the two methods, the sequential SAT-
sweeping and our proposed method, are orthogonal; our method
finds new optimization opportunities on top of state-of-the-
art sequential optimizations. All benchmarks were equivalence-
checked using existing sequential verification tools.

TABLE IV
RESULTS AFTER TECHNOLOGY MAPPING FOR OPENCORES DESIGNS

Flow Comb. Area Seq. Area # Cells Runtime

Baseline 1 1 1 -

Flow1 (SSW) -12.2% -4.8% -9.6% 1

Flow2 (SSW + new method) -18.3% -4.8% -14.9% +20%

TABLE V
RESULTS AFTER PLACE AND ROUTE FOR INDUSTRIAL DESIGNS

Comb. Area Seq. Area WNS TNS Tot. Power

Design 1 -6.11% 0.06% -1.34% -0.29% -2.09%
Design 2 -1.66% -2.79% -0.40% 2.02% -1.81%
Design 3 -2.59% -2.78% -4.13% -1.32% -5.22%
Design 4 -1.39% -0.31% 0.00% -0.06% -2.44%
Design 5 -1.19% -0.62% 0.00% 0.00% -1.04%
Design 6 -5.99% 0.10% -1.85% -1.59% -2.42%
Design 7 -2.31% -2.56% -1.70% -0.43% -2.13%

Average -3.16% -1.06% -1.29% -0.21% -2.50%

C. Post Place & Route Results on Industrial Designs

In Table V, we present the results obtained after place and
route for 7 industrial benchmarks, where the baseline does not
use any sequential logic optimizations and the experimental
flow combines our method and sequential SAT-sweeping.

Our flow achieves a 3.16% reduction in combinational area,
a 1.06% reduction in sequential area, a 1.29% improvement
in worst negative slack (WNS), a 0.21% improvement in total
negative slack (TNS), and a 2.5% reduction in total power.
These results confirm that our method provides significant
improvements in both area and timing metrics, even after place

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

and route. This further demonstrates that our method scales
well such that it can be effectively used on large industrial
benchmarks. We note that, on average, 42.26% (max: 69.2%,
min: 10.2%) of the total runtime is spent on the SAT solver.

All 7 designs have been verified with an industrial sequen-
tial verification tool which uses an state-of-the-art sequential
verification flow [24].

V. CONCLUSION

In this work, we introduced a scalable sequential opti-
mization method based on multi-step induction, extending
the concept of Observability Don’t Cares (ODCs) to the se-
quential domain through Sequential Observability Don’t Cares
(SODCs), which explicitly account for reachability constraints.
By simultaneously optimizing two derived combinational net-
works—representing the base and inductive cases—our ap-
proach effectively addresses the dependency issues inherent in
traditional ODC-based optimizations. Candidate optimizations
are verified using a SAT-based approach that encodes ODC
constraints, with a windowing technique employed to maintain
scalability. Leveraging SODCs, our method uncovers optimiza-
tion opportunities that prior approaches were unable to detect.

Experimental results demonstrate the scalability of our
method across large industrial designs, yielding significant area
improvements in both technology-mapped circuits and post
place-and-route designs.

While the method incurs non-negligible runtime, it proves
valuable as a high-effort sequential optimization, particularly
for area-critical applications. Our analysis shows that most of
the runtime is spent on SAT solving, and we anticipate substan-
tial speedups by reducing the number of equivalence-checking
SAT calls. Techniques such as randomized or counter-example-
guided simulation could efficiently filter out invalid optimiza-
tions early. Additionally, exploring heuristics for optimization
candidate ordering may expose further opportunities for im-
provement. As outlined in Section III, applying symmetry-
breaking logic transformations and more advanced reachability
assumptions could also reveal additional optimization potential.
These enhancements are left for future work.

Moreover, our method’s integration into a state-of-the-art in-
dustrial sequential optimization flow yielded promising results,
maintaining significant reductions in both combinational and
sequential areas, even after place-and-route. We hope that the
enhanced sequential optimization offered by this method will
inspire further research in the field, driving efforts to better
approximate reachable states and uncover more optimization
opportunities.

ACKNOWLEDGMENTS

This work was supported by the SNF Grant ”Supercool:
Design Methods and Tools for Superconducting Electronics”
(Grant 200021-1920981), the SRC Contract 3173.001 ”Stan-
dardizing Boolean transforms to improve quality and runtime
of CAD tools,” and Synopsys Inc..

APPENDIX

The proof of Lemma 1 is as follows:

Proof. Suppose that for all Boolean vectors x ∈ Bm and
y ∈ S, it holds that PO(N1, x, y) = PO(N2, x, y) and
RI(N1, x, y) = RI(N2, x, y). We show that, for any se-
quence {x}T0 , PO(N1, {x}T0 , y0) = PO(N2, {x}T0 , y0) and
RI(N1, {x}T0 , y0) = RI(N2, {x}T0 , y0) using mathematical in-
duction.

To this end, fix any sequence {x}T0 . We use the nota-
tion {x}t0 to denote the subsequence x0, x1, . . . , xt. Consid-
ering the initial clock cycle, we have PO(N1, {x}00, y0) =
PO(N1, x0, y0) = PO(N2, x0, y0) = PO(N2, {x}00, y0) and
RI(N1, {x}00, y0) = RI(N1, x0, y0) = RI(N2, x0, y0) =
RI(N2, {x}00, y0).

As the inductive hypothesis, assume that for
a positive integer t such that T ≥ t > 0,
RI(N1, {x}t−1

0 , y0) = RI(N2, {x}t−1
0 , y0). Note that

RI(N1, {x}t−1
0 , y0) is also in S. Then we have

PO(N1, {x}t0, y0) = PO
(
N1, xt,RI(N1, {x}t−1

0)
)

=
PO

(
N2, xt,RI(N2, {x}t−1

0)
)

= PO(N2, {x}t0, y0) and
RI(N1, {x}t0, y0) = RI

(
N1, xt,RI(N1, {x}t−1

0)
)

=
RI

(
N2, xt,RI(N2, {x}t−1

0)
)
= RI(N2, {x}t0, y0).

Thus, by induction, it follows that the claim holds for {x}T0 .

REFERENCES

[1] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and scalably-
verifiable sequential synthesis,” in ICCAD, 2008.

[2] “TSMC’s New 3nm Chip Wafers Priced at $20,000.[Online July 2023]
https://www.siliconexpert.com/blog/tsmc-3nm-wafer/.”

[3] E. M. S. K. J. Singh, L. L. C. M. R. Murgai, and R. K. B. A. Sangiovanni-
Vincentelli, “SIS: A System for Sequential Circuit Synthesis,” University
of California, Berkeley, vol. 94720, p. 4, 1992.

[4] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1-6, pp. 5–35, 1991.

[5] H. Savoj, A. Mishchenko, and R. Brayton, “m-Inductive Property of
Sequential Circuits,” IEEE TCAD, vol. 35, no. 6, pp. 919–930, 2015.

[6] M. Case, J. Baumgartner, H. Mony, and R. Kanzelman, “Optimal redun-
dancy removal without fixedpoint computation,” in FMCAD, 2011, pp.
101–108.

[7] M. L. Case, V. N. Kravets, A. Mishchenko, and R. K. Brayton, “Merging
nodes under sequential observability,” in DAC, 2008, pp. 540–545.

[8] R. K. Brayton and A. Mishchenko, “Sequential Rewriting and Synthesis,”
in IWLS, 2007.

[9] V. N. Kravets and A. Mishchenko, “Sequential logic synthesis using
symbolic bi-decomposition,” in DATE, 2009, pp. 1458–1463.

[10] G. De Micheli, “Synchronous logic synthesis: Algorithms for cycle-time
minimization,” IEEE TCAD, vol. 10, no. 1, pp. 63–73, 1991.

[11] A. P. Hurst, A. Mishchenko, and R. K. Brayton, “Fast minimum-register
retiming via binary maximum-flow,” in FMCAD, 2007, pp. 181–187.

[12] P. Bjesse and K. Claessen, “SAT-Based Verification without State Space
Traversal,” in FMCAD, 2000, p. 372–389.

[13] C. van Eijk, “Sequential equivalence checking based on structural simi-
larities,” IEEE TCAD, vol. 19, no. 7, pp. 814–819, 2000.

[14] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploiting
suspected redundancy without proving it,” in DAC, 2005, pp. 463–466.

[15] M. Damiani and G. De Micheli, “Observability don’t care sets and
boolean relations.” in ICCAD, vol. 90, 1990, pp. 502–505.

[16] A. Mishchenko, R. K. Brayton, J. R. Jiang, and S. Jang, “Scalable don’t-
care-based logic optimization and resynthesis,” ACM TRETS, vol. 4, no. 4,
pp. 34:1–34:23, 2011.

[17] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in IWLS, 2006, pp. 15–22.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

[18] Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli, “Sat
sweeping with local observability don’t-cares,” in DAC, 2006, pp. 229–
234.

[19] E. Testa, L. Amaru, M. Soeken, A. Mishchenko, P. Vuillod, P.-E.
Gaillardon, and G. De Micheli, “Extending Boolean Methods for Scalable
Logic Synthesis,” IEEE Access, vol. 8, 2020.

[20] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A Simulation-Guided Paradigm for Logic Synthesis and Verification,”
IEEE TCAD, vol. 41, no. 8, pp. 2573–2586, 2022.

[21] N. Saluja and S. P. Khatri, “A robust algorithm for approximate compat-
ible observability don’t care (CODC) computation,” in DAC, 2004, pp.
422–427.

[22] J. P. Marques-Silva and K. A. Sakallah, “Boolean satisfiability in elec-
tronic design automation,” in DAC, 2000, pp. 675–680.

[23] D. S. Marakkalage, E. Testa, W. L. Neto, A. Mishchenko, G. De Micheli,
and L. Amarù, “Scalable sequential optimization under observability
don’t cares,” in DATE, 2024, pp. 1–6.

[24] E. Testa, D. S. Marakkalage, M. Quayle, S. Kundu, A. Kumar, D. Ghosh,
G. Meuli, G. De Micheli, and L. Amaru, “Enabling scalable sequential
synthesis and formal verification in an industrial flow,” in IWLS, 2024.

[25] D. Brand, “Redundancy and don’t cares in logic synthesis,” IEEE
Transactions on Computers, vol. 100, no. 10, pp. 947–952, 1983.

[26] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R.
Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “Multi-
level logic minimization using implicit don’t cares,” IEEE TCAD, vol. 7,
no. 6, pp. 723–740, 1988.

[27] H. Riener, S.-Y. Lee, A. Mishchenko, and G. De Micheli, “Boolean
rewriting strikes back: Reconvergence-driven windowing meets resynthe-
sis,” in ASP-DAC. IEEE, 2022, pp. 395–402.

[28] A. T. Calvino and G. De Micheli, “Scalable logic rewriting using don’t
cares,” in DATE. IEEE, 2024, pp. 1–6.

[29] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-
Hill Higher Education, 1994.

[30] R. Brayton, “Compatible observability don’t cares revisited,” in ICCAD
IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281), 2001, pp.
618–623.

[31] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE TCAD, vol. 21, no. 12, pp. 1377–1394, 2002.

[32] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “FRAIGs: A
unifying representation for logic synthesis and verification,” UC Berkeley,
Tech. Rep., 2005.

[33] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in TACAS. Springer, 1999, pp. 193–207.

[34] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength
Verification Tool,” in Computer Aided Verification, 2010, pp. 24–40.

[35] G. S. Tseitin, On the Complexity of Derivation in Propositional Calculus.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 466–483.
[Online]. Available: https://doi.org/10.1007/978-3-642-81955-1 28

[36] “Opencores: https://opencores.org.”

Dewmini Sudara Marakkalage is a Ph.D. student at
the Integrated Systems Laboratory, EPFL, Lausanne,
Switzerland. She received a B.Sc. in Engineering
from the Department of Electronic and Telecommu-
nication Engineering, University of Moratuwa, Sri
Lanka, in 2016 and a M.Sc. in Computer Science
from the School of Computer and Communication
Sciences, EPFL, Lausanne, Switzerland, in 2020. Her
research interests include logic synthesis and design
automation for emerging technologies.

Eleonora Testa (Member, IEEE) is a Manager, R&D
in the Design Technology Group of Synopsys Inc.,
Sunnyvale, CA, USA where she leads an international
team focusing on logic synthesis. Dr. Testa obtained
her Ph.D. degree in Computer Science from EPFL,
Lausanne, Switzerland, in 2020. She has received
the EDAA Outstanding Dissertation Award (2021).
She has been serving as a TPC member for several
conferences, including DAC, DATE, and ICCAD and
is an Associate Editor for IEEE Transactions on CAD.

Giulia Meuli received the Ph.D. degree in electrical
engineering from the Swiss Federal Institute of Tech-
nology Lausanne (EPFL), Lausanne, Switzerland, in
2020. She received the EPFL/EDEE best Doctoral
Thesis Award in Electrical Engineering and the IBM
Research Award 2023. She is currently R&D Staff
Engineer in the Design Group, Synopsys Inc., Agrate
Brianza, Lombardy, Italy. She is reviewer for several
conferences and journal, including TCAD. She served
as TPC member for conferences including DATE, and
in the Organizing Committee of IWLS. Her research

interests include logic synthesis, EDA for emerging technologies and quantum
computing.

Walter Lau Neto received the M.S. degree in Mi-
croelectronics from the Universidade Federal do Rio
Grande do Sul (UFRGS), Porto Alegre, Brazil, in
2018. In 2022, he received the Ph.D. degree in
Computer Engineering from the University of Utah,
Salt Lake City, UT, USA. Currently, he is a Senior
Staff R&D engineer at Synopsys Inc., Sunnyvale,
CA, USA, where he works on developing novel logic
synthesis techniques. His research interests include
logic synthesis, machine learning for logic synthesis,
and electronic design automation.

Alan Mishchenko received the M.S. degree from
the Moscow Institute of Physics and Technology,
Moscow, Russia, in 1993 and the Ph.D. degree from
the Glushkov Institute of Cybernetics, Kiev, Ukraine,
in 1997. In 2002, he joined the EECS Department,
University of California at Berkeley, Berkeley, CA,
USA, where he is currently a Full Researcher. His
current research interests include computationally ef-
ficient logic synthesis, formal verification, and ma-
chine learning.

Giovanni De Micheli is Professor and Director of
the EcoCloud center at EPFL Lausanne, Switzerland.
Prof. De Micheli is a Fellow of ACM, AAAS, and
IEEE, a member of the Academia Europaea, and
an International Honorary member of the American
Academy of Arts and Sciences. His current research
interests include several aspects of design technolo-
gies for integrated circuits and systems, such as
synthesis for emerging technologies. He is the author
of Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994, co-author and/or co-editor of ten

other books, and of over 1000 technical publications. His citation h-index is
above 100 according to Google Scholar. He is a member of the Scientific
Advisory Board of IMEC (Leuven, Belgium) and STMicroelectronics. Prof.
De Micheli is the recipient several awards, including the 2025 IEEE Kirch-
hoff Award, 2022 ESDA-IEEE/CEDA Phil Kaufman Award, and the 2019
ACM/SIGDA Pioneering Achievement Award.

Luca Amarú is an Executive Director, R&D in the
Design Technology Group of Synopsys Inc., Sunny-
vale, CA, USA, where he is responsible for designing
the next generation of logic synthesis technologies.
When not coding, Dr. Amaru leads an exceptional
team of R&D engineers focusing on logic synthesis.
Dr. Amaru received his PhD degree in Computer
Science from EPFL, Lausanne, Switzerland (2015).
He received the ACM/IEEE Design Automation Con-
ference Under-40 Innovator Award (2022), the IEEE
TCAD Donald O. Pederson Best Paper Award (2018),

the EDAA Outstanding Dissertation Award (2016) and other best paper awards
and nominations. Dr. Amaru is an Associate Editor for IEEE Transactions on
CAD. He is a Senior member of the IEEE.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3583206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

