A New Perspective on Constructing
Resource-Efficient Data-Lookup Quantum Oracles

Mingfei Yu
Integrated Systems Laboratory, EPFL
Lausanne, Switzerland
mingfei.yu@epfl.ch

Abstract—Quantum oracles are essential components in quan-
tum algorithms, enabling the efficient evaluation of Boolean
functions. This paper presents a novel approach to constructing
resource-efficient data-lookup quantum oracles for fault-tolerant
quantum computing (FTQC) systems. By leveraging the algebraic
normal form (ANF) of Boolean functions, rather than the truth
tables used in existing approaches, we achieve a provable O(n)
reduction in the minimum Toffoli gate count — a key cost
metric in FTQC — for constructing an n-variable data-lookup
oracle. Additionally, exploiting ANF product terms allows for
the exploration of space-time trade-offs, enabling the design of
data-lookup oracles with distinct resource requirements that can
adapt to varying system constraints — flexibility that current
methods do not offer. Based on the target quantum system’s
requirements, our approach offers the ability to tailor oracle
designs to minimize either Toffoli count and depth, or ancillary
qubit usage.

Index Terms—Quantum oracle; Logic synthesis; Reversible
computing; Fault-tolerant quantum computing

I. INTRODUCTION

To run a quantum algorithm on a quantum computer, the
program has to be compiled into a quantum circuit, where each
gate is an operation native to the quantum hardware system.
Specifically, a quantum circuit is also referred to as a quantum
oracle when it implements a Boolean function.

Quantum oracles are a fundamental component in many
quantum algorithms. As an example, the Shor’s algorithm is a
well-known quantum algorithm where an oracle is utilized [1].
The algorithm is used for factoring large integers and comput-
ing discrete logarithms. A key to Shor’s algorithm is quantum
phase estimation that identifies the period of a function.
This step relies on a modular exponentiation function, in the
construction of which the oracle plays a crucial role. Quantum
oracles also find uses in various quantum machine learning
algorithms, such as quantum nearest neighbor algorithms [2].
In this scope, oracles can be used to encode datasets or
compute distance functions between data points. Due to the
uses of quantum oracles across various application scenarios,
their design and optimization are crucial for realizing the full
potential of quantum computing.

Intensive efforts have been put into exploring how to
compile a Boolean function into a quantum circuit. One line
of research focuses on using logic representations as inter-
mediate forms for constructing quantum oracles, like XOR-
AND-inverter graphs (XAG) [3]. The rationale behind this

Mathias Soeken
Microsoft
Zurich, Switzerland
mathias.soeken @microsoft.com

Giovanni De Micheli
Integrated Systems Laboratory, EPFL
Lausanne, Switzerland
giovanni.demicheli @epfl.ch

strategy lies in the relationship between the properties of these
intermediate logic representations and the resources required
for the resulting quantum oracles. For example, the number of
AND nodes in an XAG directly correlates with the T count
of the compiled oracle [4], a critical cost metric in fault-
tolerant quantum computing (FTQC) systems. By exploiting
these relationships, a resource-efficient oracle can be generated
by first optimally synthesizing the logic representation of the
target Boolean function and then deterministically compil-
ing this intermediate representation into a quantum circuit.
Consequently, the structures of quantum oracles of different
functions derived through this process can vary significantly.
In contrast, data-lookup oracles, also known as quantum
lookup tables [5]-[7], represent a distinctive approach to
quantum oracle construction. They are characterized by their
generic design that does not depend on the specific Boolean
function being targeted. Although this approach cannot lever-
age the properties of the target Boolean function to minimize
quantum resources, it is often preferred in practice for sev-
eral practical reasons. First, a generic construction ensures
a uniform layout, a crucial feature for practical quantum
applications. Second, data-lookup oracles are particularly well-
suited for application scenarios where target functions require
frequent reconfiguration. For example, many quantum arith-
metic algorithms are designed to accommodate different levels
of approximation [8]. Data-lookup oracles inherently provide
this flexibility, while alternative approaches would necessitate
a new oracle design for each specific parameter configuration.
In addition to the truth table, the algebraic normal form
(ANF) is another canonical representation of Boolean func-
tions. In this work, we propose a novel method for con-
structing data-lookup quantum oracles by utilizing the ANF of
Boolean functions. Unlike conventional approaches that rely
on iterating through truth table entries, our method focuses on
the product terms present in the ANF. This new perspective
reduces the minimum required Toffoli gates by O(n) and
enables a reduction in Toffoli depth, as many product terms
can be computed in parallel without data contention.
Additionally, we formulate the oracle construction problem
as a two-stage process, introducing a space-time trade-off that
provides flexibility in optimizing various quantum resource
constraints. Specifically, our approach decouples the construc-
tion into (1) synthesizing an AND forest to compute the

product terms, and (2) applying a modified reversible pebbling
game to optimize the resulting quantum circuit in terms of
Toffoli count and depth, and ancillary qubit usage.

The remainder of the paper is organized as follows: Sec-
tion II covers the necessary background. Section III outlines
our proposed oracle construction method, with a detailed
SAT formulation presented in Section IV. Section V presents
alternative constraints that improve the scalability of the SAT
formulation while maintaining a high-quality solution space.
Section VI contains a comprehensive evaluation of our ora-
cle constructions, and we conclude with future directions in
Section VII.

II. BACKGROUND

A. Quantum Oracles

To run a quantum algorithm on a quantum computer, the
algorithm must be decomposed into a specific set of operations
supported by the target system. The Clifford+T gate library is
commonly used in studies of FTQC systems, with designs that
minimize T count and T depth being preferred, as T gates are
significantly more resource-intensive than Clifford gates [9].

In this work, we consider a gate library consisting of
{Toffoli (CCX), Controlled-NOT (CX), NOT (X)}. Our choice
is motivated by two factors when compiling this set into
the Clifford+T gate library: (i) the Toffoli gate is the only
gate in this set that requires T gates for its implementation,
and (ii) there is a well-established linear relationship between
Toffoli count/depth and T count/depth [10]. By adopting this
higher-level gate library, we simplify the analysis while still
providing an accurate cost estimation for the constructed
quantum oracles. This approach is consistent with the gate
library selection in other relevant research, such as [5].

When implementing a Boolean function, a quantum circuit
is specifically called a quantum oracle. Given a Boolean
function f(x1,...,2n) = (Y1,-.-,Ym) : B" — B™, with
T =T1...Tpn, Y = Y1.--Ym and bitwise XOR operations
denoted as ‘@’, the corresponding quantum oracle can be
described as O; : |z) |y) |0)" = |) |y & f(z))|0)". Besides
n qubits and m qubits to respectively store the inputs and
outputs, oracle Oy requires ! ancillary qubits to hold inter-
mediate results, which shall be uncomputed to the initial |0)
state at the end of the computation, to guarantee an accurate
measurement.

1) Data-lookup Quantum Oracles: Data-lookup quantum
oracles, sometimes referred to as quantum lookup tables [7],
are used to retrieve function values by querying pre-defined
entries based on a given input. Existing state-of-the-art con-
structions typically rely on iterating through all entries of a
truth table. In this work, we assume the target function f is
fully specified for n variables, meaning that for any n-bit input,
the function’s output is explicitly defined.

2) Existing Works: State-of-the-art data-lookup quantum
oracle constructions for an n-variable function are typically
based on iterating over the 2" entries in the truth table
representation of the target function. The index state controls
the state transformation, a concept commonly referred to as a
select network. This approach is illustrated in Fig. la, using
the three-input majority function, MAJ3, as an example. The
eight minterms are processed sequentially: If a minterm is in
the onset of the target function (i.e., the function evaluates to
true for the corresponding input pattern), it contributes to the
output qubit. Otherwise, it does not (faded in Fig. 1a).

Building on this idea, the sawrooth-circuit-based construc-
tion offers a T-count-optimized version of the naive ap-
proach [5], as shown in Fig. 1b. In this construction, the multi-
controlled NOT gates from the naive design are decomposed
into Toffoli gates, and a set of transformation rules is applied
to replace adjacent Toffoli gates with CNOT and NOT gates,
reducing the overall Toffoli count. The sawtooth-circuit-based
construction is deterministic and has a well-defined quantum
resource requirement: For an n-variable function, it results in a
Toffoli count and depth of 2" —2, using n—1 ancillary qubits.

Another widely recognized construction for data-lookup
quantum oracles is the select-swap network [6]. In addition
to the select network discussed earlier, a swap network is
employed to provide a flexible trade-off between Toffoli count
and ancillary qubit usage. Since the construction proposed in
this paper serves as an alternative to the select network and is
compatible with the swap network, our focus remains on the
select network.

Other efforts to optimize data-lookup oracle designs, such
as in [11], employ techniques like pre-decoding to reduce
reliance on multi-controlled Toffoli gates. However, these
approaches are generally tailored for noisy intermediate-scale
quantum (NISQ) systems and do not reduce the Toffoli count
— the key cost metric in FTQC systems, which is the focus
of this work. As such, these approaches are orthogonal to

I |71>

[z2)

]
T

— 10)

!
&

.
—

3)

1
&

S——

|1) 1) [0)
jo2)) jzs)

D= = — =~ |y & MaI3() "

l — |0)
&b |y1 & MAT3(x))

S
S

(@)

(b)

Fig. 1: Realization of MAJ3 using data-lookup quantum oracle constructions based on iterating the 23 entries of the truth table
representation of the target function: (a) The naive starting-point construction, where non-contributing minterms are faded. (b)
The sawtooth-circuit-based construction, with uncomputation indicated in

our contribution. To the best of our knowledge, the sawtooth-
circuit-based construction remains the state-of-the-art [12],
making it a suitable benchmark for comparison in this study.

B. Directed Acyclic Graph

A directed acyclic graph (DAG) G = (V, E) consists of a
set of nodes V' and a set of directed edges E. Each edge in
E represents a connection from node n; to node n,, where
n;, N, € V. We refer to n; as the fan-in of n, and n, as
the fan-out of n;. A DAG is also characterized by its primary
inputs (PIs) and primary outputs (POs). Each node in V is
either a PI or an internal node. Each PO can be either a PI
or an internal node. While this is not a strict requirement in
general, for clarity in this work, we consider nodes without a
fan-out as POs.

C. Reversible Pebbling Game

A reversible pebbling game is a computational model
that explores the space-time trade-off in quantum computa-
tion [13]. The game is typically played on a DAG representing
a computation. In this context, each node in the DAG cor-
responds to a computational step, and pebbles represent the
availability of computed results stored on qubits.

Initially, no node is pebbled, and the goal is to pebble
the POs while minimizing the number of pebbles used or
computational steps taken. The rules of the game dictate that
a pebble can be placed on or removed from a node only if all
its fan-in nodes are already pebbled. Moreover, a pebble can
only be removed from a node if all its fan-ins remain pebbled.
This adds complexity to managing intermediate computational
results since it mirrors the challenge of uncomputing tempo-
rary data in quantum computations without excessive usage of
ancillary qubits.

Solving a reversible pebbling game reveals key trade-offs
between the ancillary qubit count (pebbles) and the depth
(steps) of the computation, commonly known as the space-
time trade-off. Different pebble strategies applied to a DAG
correspond to quantum algorithm implementations that require
varying amounts of quantum resources. Existing research has
introduced a Boolean satisfiability (SAT) encoding for solving
reversible pebbling games on a given DAG efficiently [14].

D. Algebraic Normal Form

The algebraic normal form (ANF) is an alternative canon-
ical representation of Boolean functions. It expresses the
function as an exclusive sum of product terms involving the
variables, where each product term corresponds to a conjunc-
tion of Boolean literals. Formulas written in ANF are also
known as positive-polarity Reed-Miiller expressions (PPRM),
as any negation on input variables is not allowed. Specifically,
the ANF of an n-variable singular-output Boolean function
f(z) : B™ — B is given by:

f(x) =ao ® a121 D agwa @ -+ D agn 12122 ... Ty, (1)

where ag, . .., asn_; are binary coefficients and x4, . .., x, are
Boolean variables, with ‘@’ denoting the Boolean XOR oper-
ation. Each coefficient determines whether the corresponding

product term appears in the function. For clarity, we refer
to the terms that contain more than one input variable as
the product terms. The ANF of an n-variable functions has
> o(")=2"—n— 1 product terms.

Any Boolean function can be uniquely represented in ANF
using only Boolean AND and XOR operations. Following the

Davio expansion, a Boolean function can be decomposed as

f(.’L‘) = fg;i:O(I) ® xi(fmiZO(x) D fazizl(m))7 2

where f,,—o(z) and f;,—1(z) denote the (n — 1)-variable
Boolean functions obtained by assigning the i-th variable of
function f to 0 and 1, respectively. These are referred to as
the negative and positive co-factors of f concerning z;. By
recursively applying Eq. (2) to the truth table representation
of a Boolean function, its ANF representation can be derived
deterministically and efficiently.

ITI. CONSTRUCTING BETTER DATA-LOOKUP ORACLES

In this section, we present an overview of our approach
to constructing better data-lookup oracles and highlight the
technical challenges to address, to facilitate this idea.

A. An O(n) Toffoli Count Reduction via ANF

Our approach to constructing an optimized n-variable data-
lookup oracle involves enumerating the product terms in the
ANF of an n-variable Boolean function. As can be learned
from Eq. (1), in the ANF of a function, there are 2" —n — 1
potential terms that contain more than one input variable, the
computation of each of which relies on applying Boolean AND
operation to some product terms containing fewer variables.

Theorem 1. Computing all 2™ — n — 1 product terms of
an n-variable Boolean function requires 2" —n—1 two-input
Boolean AND operations.

Proof. The lower bound is straightforward: each AND oper-
ation computes only one product term, so at least 2" —n—1
operations are required.

For the upper bound, assume the computation proceeds
level-by-level. Specifically, product terms involving d variables
(2 £ d < n) are computed only after all terms involving d — 1
variables are computed. Each such product term is obtained
by applying one AND operation between an (d—1)-variable
product term and an additional variable. Thus, every product
term requires exactly one AND operation, resulting in a total
of 2" —n—1 two-input AND operations. A similar upper bound
analysis is provided in [15].]

This approach fundamentally differs from enumerating the
2" minterms used in the truth table representation, as seen
in the state-of-the-art construction [5]. Since each two-input
AND operation can be implemented with a single Toffoli
gate, our novel method for constructing data-lookup oracles
deterministically reduces the number of Toffoli gates by n,
leading to an O(n) reduction in Toffoli count.

In Fig. 2, we demonstrate the data-lookup oracle constructed
following the proposed idea, for the specific case where the

[

|71) =g — |z1)
1 1
|z2) 9= E e ——— |z2)
|25) T 4T |3)
1) ! I I 1 1 1
T T v
10) AP A AT [0
1) ! I R 1 1
y1) DD ly1 @ MAT3(z))

Fig. 2: Realization of MAJ3 using the proposed data-lookup
quantum oracle construction. Product terms contributing to the
target function are highlighted in red, while non-contributing
terms are marked in blue, with the corresponding computed
term listed below each. Uncomputation of product terms is
indicated in

target function is also MAJ3, as a comparison to the sawtooth-
based construction in Fig. 1b. The ANF of MAJ3 is given by:

MAJ3(z) = z122 @ x123 B ToT3. 3)

While all four product terms are computed (marked either
in red or blue in Fig. 2), only the three terms in Eq. (3)
contribute to the output via CNOT gates (highlighted in red).
It is important to note that the uncomputation of each Toffoli
gate (marked in gray) does not require any T gates [10]. The
resource requirement of the construction in Fig. 2 is four
Toffoli gates, which are highlighted, with a depth of four
since they are executed sequentially, and two ancillary qubits.
Compared to the SoTA design in Fig. 1b, our construction
reduces the Toffoli count and depth by one-third (4 vs. 6) with
the same amount of ancillary qubits, making it a significantly
more resource-efficient solution.

B. Formulating the Oracle Construction Problem

While the use of ANF suggests a foundation for constructing
Toffoli-count-efficient data-lookup oracles, it does not, on its
own, yield a complete design. Nor is it guaranteed that the
minimum requirement on Toffoli gates can be consistently
achieved by any oracle construction based on ANF. To re-
alize a valid construction, two key decisions must be made
regarding the computation of the 2 —n — 1 product terms: (i)
Determining how each product term is computed. For instance,
the product term x; 2223 can be derived from ;23 and zo, as
shown in Fig. 2, or alternatively from z;z9 and z3, leading to
different circuit designs. (ii) Defining how this computation is
efficiently mapped onto a quantum circuit. In the remainder of
this section, we address these two challenges by formulating
them as design automation problems.

1) AND Forest: We introduce the concept of an AND
forest to formalize the structural and functional aspects of
computing product terms for an n-variable Boolean function.
PIs correspond to the input variables, and POs, or roots of
the forest, are nodes that do not have any fan-out. The task
is to synthesize an AND forest where each node computes
one of the 2" —n — 1 product terms required by the function.

Structurally, an AND forest is a DAG with n Pls, representing
the input variables of the Boolean function. The forest contains
2" —n — 1 internal nodes, each with an in-degree of two.
Functionally, each node in the forest performs a Boolean AND
operation, and collectively, the forest computes the 2" —n —1
product terms of the function’s ANF. Thus, a valid AND forest
satisfying these requirements ensures that the product terms
are computed. The first decision-making problem — how each
product term is computed — is resolved by synthesizing such
a forest.

2) Modified Reversible Pebbling Game: Compiling the
computation of the product terms onto a quantum circuit
can be viewed as applying a reversible pebbling game to an
AND forest. However, our formulation introduces two key
modifications compared to the traditional reversible pebbling
game on a DAG [14]. First, unlike the standard goal of
pebbling all POs in the DAG, in our modified game, all
product terms must eventually be uncomputed, as they serve
as intermediate results that potentially contribute to the final
result. Hence, the last step of a valid pebbling strategy requires
that no nodes in the AND forest remain pebbled. Second, to
prevent trivial strategies where nodes are never pebbled, we
impose the condition that each node in the AND forest must
be pebbled at least once during the process. This ensures that
all product terms are computed before being uncomputed.

In summary, constructing a data-lookup oracle based on
ANF can be divided into two sub-problems: (i) synthesiz-
ing an AND forest to compute the product terms, and (ii)
applying a modified reversible pebbling game to implement
this computation as a quantum circuit. While any solution
to these tasks yields a functional oracle, an optimal solution
minimizes resource metrics. Therefore, as will be discussed
in the following section, it is crucial to define optimality and
explore efficient methods for identifying such solutions.

A detailed analysis of the relationship between a reversible
pebbling strategy and the resulting Toffoli count is not in-
cluded, as a Toffoli-count-optimal oracle design — one that
achieves the theoretical minimum established in Section III-A
— can always be obtained by simply enforcing an additional
constraint in the reversible pebbling strategy: each required
product term is computed exactly once. Given this straight-
forward solution, our focus in the following sections shifts to
exploring how different structural properties of the synthesized
AND forest influence Toffoli depth and ancillary qubit count
— two critical metrics in fault-tolerant quantum computing
that demand more nuanced optimization.

IV. AND FOREST SYNTHESIS

As discussed in Section III-B1, building an oracle based
on this approach requires a method to compute these product
terms, which translates to synthesizing an AND forest. In
this section, we progressively address this challenge. First,
we introduce a SAT formulation of the synthesis problem,
where each solution corresponds to a valid AND forest that
satisfies the requirements. Next, we devise and apply ad-
ditional constraints to the baseline formulation, guiding the

synthesized AND forest to exhibit certain structural properties.
This ensures that the reversible pebbling strategy for the
synthesized forest will further minimize quantum resource
requirements, either by reducing the number of ancillary qubits
or optimizing Toffoli depth.

A. Baseline SAT Formulation

1) Variables: The proposed formulation relies on two types
of variables: function and connectivity variables. A function
variable f; ; (n < ¢ < 2" and 1 < j < n) determines if
input variable x; appears in the product term at node n;. A
connectivity variable ¢; ,, (1 < k < 1) describes if node ny, (or
PI zi, if kK < n) serves as a fan-in for node n;.

Only the connectivity variables serve as the variables of the
SAT instance. Once the values of the connectivity variables are
determined, the function variables are automatically assigned,
guided by the first type of constraints to be introduced later.

2) Constraints: Three types of constraints are introduced
to ensure that each solution of the SAT instance yields a valid
AND forest. We denote conjunction and disjunction as ‘A’ and
‘V’, respectively.

The first type of constraint ensures that the product term
realized by each node is consistent with its fan-in connections.
Specifically, since each node performs a Boolean AND oper-
ation, the product term at node n; contains the input variable
x; only if at least one of its fan-in nodes realizes a product
term that includes x;. This relationship can be expressed
symbolically as:

i—1
fig = \/ (cik A frj)- “)
k=1

The second type of constraint ensures that each node n; has
exactly two fan-in nodes, which is expressed as:

i—1
> cin=2.)
k=1

This constraint presents a Boolean cardinality problem that
has been extensively studied, with several encoding strategies
proposed in the literature. Given the small cardinality in
our case, we adopt binomial encoding [16] to represent this
constraint efficiently in our implementation.

The final type of constraint ensures that all 2" —n—1 desired
product terms are computed. Each product term is represented
as an n-bit binary string b = b; ... b,,, where each bit is set to
1 if the term contains the corresponding input variable, and 0
otherwise. To guarantee that each product term b is realized by
at least one of the 2’ —n — 1 internal nodes in the synthesized
AND forest, the following clause is introduced:

2" n
\V (A £ 6)
i=n4+1 j=1

where f; ;= f;;jif bj = 1 and f}; = = f;; if b; = 0, with
‘=" denoting negation. Ensuring that all desired product terms
are implemented by the AND forest also guarantees that no
internal nodes in the forest compute the same product term.

Any solution to a SAT instance incorporating the constraints
outlined above yields a valid AND forest, as defined in
Section III-B1. However, this alone does not fully determine
the oracle design or the critical resource metrics. If we ensure
that each node is pebbled exactly once during the pebbling
process, any valid AND forest will lead to an oracle design
that achieves the minimum Toffoli count, as the number of
Toffoli gates will match the number of nodes. In contrast, the
Toffoli depth and ancillary qubit usage — key components
of the space-time trade-off — are further influenced by the
specific reversible pebbling strategy applied to the synthesized
AND forest.

To better understand the space-time trade-off in the resulting
oracle design, we explore how the structure of the AND forest
influences these resource metrics. This analysis enables us to
introduce additional constraints to the baseline SAT formula-
tion, facilitating the construction of data-lookup oracles with
distinct quantum resource configurations.

B. Additional Constraints for Exploring Space-time Trade-off

This subsection addresses two key questions: “What struc-
tural features of an AND forest minimize the number of
pebbles required by a pebbling strategy?” and “What structural
features minimize the number of steps needed to pebble it?”
These questions are critical, as they directly correspond to
data-lookup oracle constructions that minimize ancillary qubit
usage and Toffoli depth, respectively.

To ensure the scalability of our SAT-based AND forest
synthesis approach, we introduce two additional sets of con-
straints based on the principle of computing product terms
incrementally, layer by layer. As outlined in Section III-A,
this approach ensures that product terms with d variables
(2 < d < n) are only computed once all (d— 1)-variable terms
have been determined and can serve as operands. Structuring
the synthesis in this way reduces the process of generating
an AND forest to solving n — 2 SAT instances, with each
instance determining the fan-ins for the nodes in the d-
th layer, which compute all d-variable product terms. This
narrowing of possible fan-ins effectively reduces the solution
space, enabling the construction of larger oracle designs while
preserving accurate product term computation.

1) Minimizing Ancillary Qubit Count: As introduced in
Section II-C, a pebble can only be placed on a node if both
of its non-PI fan-in nodes are already pebbled. More than one
pebble is required to pebble any valid AND forest. This is
because no AND forest exists where all fan-ins of every node
are always PIs — with two PIs as fan-ins, a node can only
compute a product term involving two input variables.

We recognize that a more ancillary qubit-efficient pebbling
strategy can be applied to an AND forest if every node has
at least one fan-in that is a PI. When pebbling such an AND
forest, the PI fan-in of each node can be omitted during the
pebbling process. Then, each node can be pebbled as soon as
its single non-PI fan-in is pebbled. This reduces the problem
to finding a pebbling strategy for a collection of line graphs,
where the longest line graph has a length of n—1, the one from

a PI to the node that computes the product term involving all
n input variables. Existing research has shown that the length
of the longest line graph determines the minimum number of
pebbles required to pebble it, specifically, [logy(n —2)]+1
for n > 4 [17], which is, therefore, also the minimum number
of pebbles required for such an AND forest.

Denote the set of indices of nodes in layer d as L4, for
i € Lg, clauses

\ cix (7

n
\/ ¢i, and
k=1 k€La—1

ensure each node in layer d has one fan-in that is a PI and the
other that is a node in layer d — 1.

Such AND forests always exist. As discussed in Sec-
tion III-A, any product term involving ¢ input variables (2 <
1 < n) can be computed by applying a Boolean AND operation
to a product term involving ¢ — 1 of those variables and the
remaining variable. Such a computing strategy guarantees that
every node in the DAG has at least one fan-in that is a PI,
ensuring the desired structure.

To ensure that the synthesized AND forest exhibits this
structural feature, we introduce the following clause as an
additional constraint to the baseline SAT formulation. For each
node n;, the constraint is defined as:

\/ Ci,j- (8)
j=1

This constraint guarantees that every node in the synthesized
AND forest has at least one PI as a fan-in, ensuring the
applicability of the pebbling strategy described above, leading
to ancillary-qubit-efficient data-lookup oracle designs.

2) Minimizing Toffoli Depth: 1t is empirically observed that
the reversible pebbling strategies for an AND forest tend to
involve fewer steps when the AND trees comprising the forest
have shallower depths. Based on this observation, we propose
the following intuitive argument: when minimizing pebbling
steps, an AND forest is preferable if it has more POs, i.e.,
nodes without fan-out. Thus, an AND forest with more POs
consists of more shallow AND trees, resulting in a pebbling
strategy that requires fewer steps.

To implement this constraint, we introduce an additional
type of helper variable into the SAT formulation. For each
node n;, we define a non-PO variable o; to indicate whether
the node has a fan-out (0; = 1) or not (0o; = 0). This value is
determined by:

o
o=\ cir ©)

i=k+1

When seeking an AND forest with d POs, where d is an
integer constant, meaning there are 2" — n — 1 — d non-
PO nodes, the following Boolean cardinality constraint is
introduced:

o
Z op,=2"—-—n—1-—d.
k=n+1

(10)

(b) Minimizing the Toffoli depth

Fig. 3: Synthesizing AND forests of different structures for
constructing 4-variable data-lookup oracles. The product term
computed at each node is marked in blue.

In our implementation, we use the sequential counter encoding
proposed in [18] to handle this constraint. By incrementally
targeting a larger d and solving the corresponding SAT in-
stances, the first satisfiable instance corresponds to the desired
AND forest.

In Fig. 3, we illustrate the AND forests synthesized for
the construction of 4-variable data-lookup oracles by solving
the corresponding SAT instances, encoded according to our
SAT formulation. Specifically, the SAT instance for the AND
forest in Fig. 3a incorporates the additional constraints in
Section IV-B1, aiming to find the AND forest corresponding to
the ancillary qubit-count-minimum design. The SAT instance
for the AND forest in Fig. 3b applies the second genre of
additional constraints, seeking to find the AND forest yielding
the Toffoli-depth-minimum oracle design without constraints
on the ancillary qubits. The resource requirements of the
resulting oracle designs are discussed in Section VI. By
applying the modified reversible pebbling game to these two
AND forests, we observe that while the first design results
in a data-lookup oracle that requires 12 Toffoli gates and is
with a Toffoli depth of 11, it uses only two ancillary qubits,
whereas the second design uses 11 Toffoli gates and achieves
a Toffoli depth of 4 but requires five ancillary qubits. These
results are consistent with expectations and demonstrate the
trade-offs between qubit count and Toffoli depth.

It is evident that constructing an ancillary qubit-efficient
data-lookup oracle typically comes at the cost of a higher
Toffoli count and depth, as many nodes in the AND forest
must be uncomputed and recomputed during the pebbling
process due to the limited availability of ancillary qubits.
On the other hand, a low-Toffoli-depth oracle construction
often corresponds to a relatively small Toffoli count. However,
this relationship is not deterministic, as the Toffoli depth
also depends on whether multiple Toffoli gates are operand-
independent and can be executed in parallel.

V. HEURISTIC CONSTRAINTS FOR AND FOREST
SYNTHESIS

This section introduces additional heuristic constraints for
the SAT formulation presented in Section IV-A. These con-
straints serve as alternatives to those proposed in Section IV-B,
providing more targeted guidance on the structural features
of the AND forest. While these heuristic constraints do not
precisely match the optimal solution space defined by the
exact constraints, they significantly reduce the solution space,
enhancing the scalability of our SAT-based data-lookup oracle
construction method.

The core idea, regardless of whether the focus is on
minimizing the ancillary qubit count or the Toffoli depth,
is to compute product terms level by level. As introduced
in Section III-A, this means that product terms containing @
variables (2 < ¢ < n) are only computed once all terms with
i—1 variables have been calculated and can serve as operands.

A. Minimizing Ancillary Qubit Count

As discussed in Section IV-B1, minimizing ancillary qubit
count requires computing each product term containing @
variables by applying a Boolean AND operation between
a term with ¢ — 1 variables and the remaining variable.
The design space lies in selecting which of the (:1) terms
should contribute to the computation of all ¢-variable terms, to
maximize the number of nodes without fan-out (i.e., the POs
of the AND forest). Maximizing the number of PO nodes is
important because, as explained in Section IV-B2, AND forests
with more PO nodes allow for reversible pebbling strategies
that involve fewer steps, thus reducing Toffoli depth.

By following this approach, the oracle construction is
decoupled into multiple sub-problems with a significantly
constrained solution space, as the selection of product terms
for each layer is independent of other layers. Each layer’s
decision-making problem can be formulated as a Boolean
cardinality problem and efficiently solved using a SAT solver.

B. Minimizing Toffoli Depth

Our strategy for minimizing the Toffoli depth of the result-
ing AND forest also focuses on the computation of product
terms layer by layer. For product terms involving an even
number d of variables, the operands are selected from terms
with % variables, i.e., nodes in layer %. For odd values of d,
the operands are selected from (d—1)-variable terms, similar
to the approach used for minimizing ancillary qubit count.
The rationale behind this approach is that once the depth of
nodes for even-d-variable terms is minimized ([log, d]), the
depth for the subsequent layer is automatically minimized to
[log, d] + 1. This ensures that the depth of the synthesized
AND forest is minimized, thereby reducing the Toffoli depth.
This constraint can be realized similarly to Eq. (7).

The problem of maximizing the number of POs in the
AND forest can now be framed as a stepwise decision-making
process, with one step for each layer d. A slight distinction
arises depending on whether d is odd or even. When d is
odd, the objective is to maximize the number of POs among

the nodes in layer d—1. This can be achieved by setting the
number of POs among these nodes to a specific integer e using
the following constraint in the SAT formulation:

> a=(,") e

kelag_1

(1)

By incrementally increasing e and solving the corresponding
SAT instances, the first satisfiable instance provides the desired
fan-in configuration for the nodes in layer d, maximizing the
number of POs in layer d—1. When d is even, the goal remains
to maximize the number of POs among nodes in layer g.
However, some nodes in layer % may already be designated
as non-POs, as they contribute to the computation of (g+1)—
variable terms. Denoting the number of such nodes as ¢/,
this adjustment requires subtracting e’ from e in Eq. (11).
Despite this adjustment, the decision-making problem remains

a Boolean cardinality problem.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed data-lookup quan-
tum oracle construction method. As outlined in Section III-B,
for a given target function with n variables, we construct the
data-lookup oracle in two steps: First, we synthesize an AND
forest (Section III-B1) that guides the computation of each
product term. This is achieved by solving a SAT instance based
on the formulation presented in Section IV-A, augmented with
the additional constraints (Section IV-B, denoted as ‘(E)’) or
heuristic constraints (Section V, denoted as ‘(H)’). Second,
we compile the computation of these product terms into a
quantum circuit by applying the modified reversible pebbling
game (Section III-B2) to the synthesized AND forest. Our
implementation builds upon the open-source quantum oracle
synthesis library caterpillar and has been released as
open source'.

The experiments were conducted on a Qualcomm Snap-
dragon X Plus processor with 16 GB of memory.
MiniSat [19] is adopted as the SAT solver. The timeout for
each two-stage oracle construction task is set to two hours.

We evaluate the quantum resources required by different
data-lookup oracle constructions. Table I presents each oracle’s
construction method (‘Construction’), variable size (‘#Vars’),
Toffoli count (‘#Toffoli’), Toffoli depth (‘Depth’), ancillary
qubit count (‘#Qubits’), the number of CNF clauses accu-
mulated during SAT-based AND forest synthesis (‘#Clauses’),
and construction time in seconds (‘Time’). Construction times
less than 0.005s are rounded down to 0.00s in the table.

When using exact constraints, our SAT-based AND forest
synthesis approach struggles to scale and fails to synthe-
size a design within the runtime budget for more than four
variables. However, with heuristic constraints, the approach
successfully constructs oracles for up to seven variables —
practical for real-world applications, such as [8]. Although the
sample size is limited, it is noteworthy that for the 4-variable
case, the resource efficiency of the designs generated using

! Available at https://github.com/gmeuli/caterpillar

TABLE I: Quantum resources required by different construc-
tions of data-lookup oracles with various variable size.

Construction #Vars #Toffoli Depth #Qubits #Clauses Time [s]

Ancillary qubit (E) 4 12 11 2 9320 0.02
Toffoli depth (E) 4 11 4 5 4546 0.00
Ancillary qubit (H) 4 12 11 2 1763 0.00
Toffoli depth (H) 4 11 4 5 1785 0.00
Sawtooth circuit 4 14 14 2 N/A N/AT
Ancillary qubit (E) 5 N/A N/A N/A N/A T/O*
Toffoli depth (E) 5 N/A N/A N/A N/A T/O
Ancillary qubit (H) 5 31 20 3 15598 0.03
Toffoli depth (H) 5 27 8 9 29053 0.01
Sawtooth circuit 5 30 30 3 N/A N/A
Ancillary qubit (H) 6 70 51 3 119884 13.34
Toffoli depth (H) 6 58 11 26 282036 0.63
Sawtooth circuit 6 62 62 4 N/A N/A
Ancillary qubit (H) 7 192 113 4 806346 249.33
Toffoli depth (H) 7 125 8 42 2520720 6433.71
Sawtooth circuit 7 126 126 5 N/A N/A

T The number of CNF clauses and runtime does not apply to sawtooth
circuit-based constructions, as they are generated deterministically.
¥ Time out.

heuristic constraints matches that of designs generated using
exact constraints. This demonstrates that, while the heuristic
constraints significantly prune the solution space to improve
scalability, they still approximate the optimal solution space
closely, offering practical scalability.

The ancillary-qubit-count-oriented constructions (‘ancillary
qubit’) achieve the most efficient ancillary qubit usage across
all variable sizes. As discussed in Section IV-B1, our construc-
tions exhibit logarithmic growth in ancillary qubit count with
increasing variable size, compared to the linear growth seen
in the sawtooth-circuit-based designs. Hence, by exploiting the
introduced flexibility in the space-time trade-off, our approach
can effectively facilitate constructing oracles that are better
suited to quantum systems with limited qubit resources.

Our Toffoli-depth-oriented constructions (“Toffoli depth’)
also demonstrate superior performance. Optimizing for Toffoli
depth generally also leads to a reduction in Toffoli count. In all
evaluated cases, the Toffoli-depth-oriented constructions are
also the most Toffoli-efficient designs. This is because our
approach leverages ANF product terms, whereas the SoTA
design relies on enumerating minterms. Specifically: (1) Prod-
uct terms do not involve all variables, many to be computed
in parallel without data contention, whereas minterms include
all variables, requiring sequential computation in sawtooth-
circuit-based constructions. (2) Computing product terms re-
quires fewer Boolean AND operations — and thus fewer
Toffoli gates — than computing minterms.

One might wonder why our constructions do not always
achieve the theoretical minimum Toffoli count proposed in
Section III-A, i.e., 2" —n—1. For instance, in the 5-variable and
7-variable cases, the number of Toffoli gates slightly exceeds
the minimum (27 vs. 26 and 125 vs. 120, respectively). This
discrepancy arises because the minimum Toffoli count can

only be guaranteed by adding a constraint to the modified
reversible pebbling game, ensuring that each node in the AND
forest is pebbled exactly once. However, in our approach, we
allow each node to be computed at least once, which enables
a fuller exploration of the space-time trade-off. This flexibility
in node computation explains the minor differences in Toffoli
count.

Although the construction time for the proposed approach
may appear excessive, particularly for the 7-variable Toffoli-
depth-oriented design, it is important to note that the majority
of a data-lookup oracle corresponds to computing all possible
product terms over the input variables. This structure is
determined solely by the variable size and is reused across all
Boolean functions of the same size. The specific function only
determines which subset of these computed terms contributes
to the output. Thus, the oracle construction can be performed
once and reused for any function with the same input size,
amortizing the synthesis cost.

VII. CONCLUSION

In this paper, we proposed a novel approach to construct-
ing data-lookup quantum oracles by leveraging the algebraic
normal form (ANF) of Boolean functions. This approach
offers two key contributions: (1) Compared to traditional truth-
table-based constructions, it achieves an O(n) reduction in
the minimum number of Toffoli gates required for an n-
variable data-lookup oracle; (2) It formulates the data-lookup
oracle construction as a two-stage design automation problem,
introducing and exploiting a space-time trade-off to create or-
acles with varying quantum resource requirements, providing
flexible solutions based on the resource constraints of the target
quantum system. This flexibility in design is not supported by
the state-of-the-art sawtooth-circuit-based construction. These
advancements enable more resource-efficient quantum circuit
implementations, particularly in the context of fault-tolerant
quantum computing (FTQC) systems, where Toffoli count and
depth are critical metrics. Future work could explore extending
this approach to larger-scale oracle designs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive feedback and suggestions. This work was
partially supported by Synopsys Inc.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Journal on Computing,
vol. 26, no. 5, pp. 1484-1509, 1997.

[2] N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum algorithms for
nearest-neighbor methods for supervised and unsupervised learning,”
Quantum Information & Computation, vol. 15, no. 3—4, pp. 316-356,
2015.

[3] G. Meuli, M. Soeken, and G. De Micheli, “Xor-and-inverter graphs for
quantum compilation,” npj Quantum Information, vol. 8, no. 7, 2022.

[4] G. Meuli, M. Soeken, E. Campbell et al., “The role of multiplicative
complexity in compiling low T-count oracle circuits,” in IEEE/ACM
International Conference on Computer-Aided Design, 2019.

[5] R. Babbush, C. Gidney, D. W. Berry et al., “Encoding electronic spectra
in quantum circuits with linear T complexity,” Physical Review X, vol. 8,
no. 4, 2018.

[7

—

[8

—

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

G. H. Low, V. Kliuchnikov, and L. Schaeffer, “Trading T gates for dirty
qubits in state preparation and unitary synthesis,” Quantum, vol. 8, p.
1375, 2024.

T. Héner, V. Kliuchnikov, M. Roetteler et al., “Space-time optimized
table lookup,” 2022.

R. Krishnakumar, M. Soeken, M. Roetteler et al., “A Q# implementa-
tion of a quantum lookup table for quantum arithmetic functions,” in
IEEE/ACM International Workshop on Quantum Computing Software
(QCS), 2022.

D. Gottesman, “The Heisenberg representation of quantum computers,”
in International Colloquium on Group Theoretical Methods in Physics,
1998, pp. 32-43.

C. Gidney, “Halving the cost of quantum addition,” Quantum, vol. 2,
p. 74, 2018.

K. Phalak, M. Alam, A. Ash-Saki et al., “Optimization of quantum read-
only memory circuits,” in [EEE International Conference on Computer
Design, 2022, pp. 117-123.

S. Zhu, A. Sundaram, and G. H. Low, “Unified architecture for a
quantum lookup table,” 2024.

C. H. Bennett, “Time/space trade-offs for reversible computation,” SIAM
Journal on Computing, vol. 18, no. 4, pp. 766776, 1989.

G. Meuli, M. Soeken, M. Roetteler et al., “Reversible pebbling game
for quantum memory management,” in Design, Automation & Test in
Europe Conference & Exhibition, 2019, pp. 288-291.

J. Boyar, R. Peralta, and D. Pochuev, “On the multiplicative complexity
of Boolean functions over the basis (A,®,1),” Theoretical Computer
Science, vol. 235, no. 1, pp. 43-57, 2000.

A. M. Frisch and P. A. Giannaros, “SAT encodings of the at-most-k
constraint: Some old, some new, some fast, some slow,” in International
Workshop of Constraint Modelling and Reformulation, 2010.

E. Knill, “An analysis of Bennett’s pebble game,” arXiv preprint
math/9508218, 1995. [Online]. Available: https://arxiv.org/abs/math/
9508218

C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality
constraints,” in Principles and Practice of Constraint Programming,
2005, pp. 827-831.

N. Sorensson and N. Een, “MiniSat v1.13 - a SAT solver with conflict-
clause minimization,” in International Conference on Theory and Ap-
plications of Satisfiability Testing, 2005.

