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Abstract—This work addresses the synthesis of efficient torus fully
homomorphic encryption (TFHE) circuits for private Boolean function
evaluation through encoding strategy management. Modern TFHE im-
plementations support multiple plaintext encoding spaces, each offering
distinct trade-offs between computational cost and the expressiveness
enabled by larger plaintext domains. Smartly switching between en-
coding strategies to maximize evaluation efficiency remains challenging
due to the lack of algorithmic support for determining when and
where such transitions should occur. To address this, we propose a
synthesis framework that enables encoding-switch-aware TFHE circuit
generation. Our approach leverages the structural properties of the
exclusive-or sum of products (ESOP) representation to partition Boolean
functions into encoding-aligned regions, enabling cost-effective evaluation
while minimizing switch overhead. Experimental results demonstrate
that our encoding-aware synthesis technique significantly accelerates
homomorphic Boolean function evaluation – achieving up to 53.46%
and 23.34% average evaluation time reduction on general-purpose
Boolean benchmarks – compared to advanced synthesis baselines lacking
explicit encoding-switch management. This work lays the groundwork
for systematic encoding strategy management in TFHE circuits and
highlights the role of logic-level design automation in advancing efficient
homomorphic evaluation.

Index Terms—Fully Homomorphic Encryption, Programmable Boot-
strapping, Boolean Function Evaluation, Logic Synthesis

I. INTRODUCTION

Fully homomorphic encryption (FHE) enables computation on
encrypted data without decryption, offering strong privacy for ap-
plications such as secure analytics, outsourced computation, and en-
crypted machine learning. Despite its compelling security guarantees,
FHE remains costly compared to plaintext processing, prompting
extensive research into improving its practicality through algorithmic
and compiler-level optimizations.

Modern FHE schemes fall into two broad categories: leveled
schemes, such as BFV [1] and BGV [2], and fast-bootstrapping
schemes, such as FHEW [3] and TFHE [4]. Leveled schemes support
SIMD-style data packing and benefit from optimizations that reduce
circuit depth and manage noise growth. In contrast, fast-bootstrapping
schemes lift depth constraints by enabling efficient noise-refreshing
through frequent programmable bootstrapping (PBS), which evalu-
ates look-up tables (LUTs) representing small functions. We note
that orthogonal to these are schemes like CKKS [5], which support
approximate arithmetic over real numbers and are designed for a
different class of applications.

In this work, we focus on TFHE as a representative fast-
bootstrapping scheme and target a core design question in TFHE
circuit synthesis: how to manage encoding strategies – i.e., the
choice of plaintext space – during homomorphic Boolean function
evaluation. When synthesizing TFHE circuits for a given Boolean
function, designers can choose among different plaintext encoding
spaces (e.g., B = {0, 1}, Z4 = {0, 1, 2, 3}, etc.), each offering
distinct trade-offs between bootstrapping cost and the ability to
evaluate more complex logic gates. Larger encoding spaces support
the evaluation of higher-fanin gates in a single PBS, reducing gate

count, but at the cost of more expensive bootstrapping operations.
Conventional approaches typically select a single encoding space
and retain it throughout the entire circuit evaluation. More recently,
researchers explored switching between encoding strategies within
a single circuit – using B to exploit free-XOR (i.e., homomorphic
XOR evaluation without invoking a PBS), and larger spaces to reduce
the number of gates required for non-linear logic [6]. While this
approach shows promise, its practical adoption remains limited by
the lack of algorithmic support for identifying when and where such
switches should occur. Moreover, each encoding switch must itself
be realized via an additional PBS operation, introducing a new trade-
off between switch overhead and evaluation efficiency. Without a cost
model or synthesis strategy to guide the placement of encoding-space
transitions and restructure the boundary between linear and non-linear
components, the potential benefits of this approach remain difficult
to realize in general-purpose circuits.

In this paper, we propose a synthesis framework for encoding-
switch-aware TFHE circuit generation, aimed at improving the effi-
ciency of general Boolean function evaluation. The key contributions
of this work are as follows:

• Cost model for TFHE circuit evaluation: We formalize a quan-
titative cost model that captures both compute and switch PBS
operations based on gate type and encoding transitions. This
model fills a critical gap in the literature by enabling systematic
trade-off analysis for encoding strategy management.

• Structural abstraction via ESOP representation: We leverage
the exclusive-or sum of products (ESOP) form as a structural
abstraction to expose clean partitions between linear (XOR) and
non-linear (AND) logic, aligning naturally with our target dual-
domain homomorphic evaluation model.

• Cost-guided synthesis algorithm: Building on the ESOP abstrac-
tion and cost model, we design a synthesis algorithm that de-
composes circuits into encoding-aligned regions and determines
optimal switching points to reduce evaluation cost.

• Comprehensive empirical validation: Experimental results on
25 general-purpose Boolean benchmarks demonstrate that our
synthesis approach outperforms both fixed-encoding and ad-
vanced multiplicative-complexity-reduction baselines without
explicit encoding-switch management. Our method achieves up
to 53.46% and an average of 23.34% reduction in homomorphic
evaluation time.

The remainder of this paper is organized as follows. Section II
introduces the necessary background, including an overview of
TFHE circuit synthesis, Boolean circuit notations, and a survey of
advanced techniques for efficient homomorphic evaluation of Boolean
functions. Section III analyzes when and why encoding transitions
are needed, focusing on two logic representations: XAG and ESOP.
Section IV presents our ESOP-guided synthesis framework, detailing
the high-level flow, cost modeling for ESOP evaluation, and the cut
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Fig. 1: Encoding the LUT of a two-input AND gate onto a polynomial ring. (a) Naı̈ve encoding using plaintext space Z8 and polynomial
degree N = 16. (b) Optimized encoding using plaintext space Z4 and N = 8. Dotted lines mark plaintext space boundaries. Colored
segments denote distinct LUT entries; each pair of freely encoded and negacyclically determined (negated) entries shares a color. Entries
never indexed by design are faded to reflect their irrelevance during evaluation.

selection methodology. Section V reports experimental results across
a wide range of benchmarks. Finally, Section VI concludes the paper
and outlines directions for future work.

II. BACKGROUND AND MOTIVATION

A. TFHE Circuit Synthesis: Fundamental and Prior Work
a) TFHE circuits and programmable bootstrapping: We define

a TFHE circuit as a Boolean circuit composed of logic gates,
which serves as a blueprint for evaluating the corresponding Boolean
function over encrypted data using the TFHE scheme.

In a TFHE circuit, each logic gate is privately evaluated via a pro-
grammable bootstrapping (PBS) operation. Due to space constraints,
the substantial prerequisite knowledge for a formal exposition, and
the fact that this work introduces no new cryptographic primitives,
we offer an informal yet intuitive overview of this mechanism. For
clarity, we describe operations as if they were performed on plaintext
values, though all operands in homomorphic evaluation are encrypted
torus learning with error (TLWE) ciphertexts. We refer readers to the
original TFHE paper [4] and subsequent optimizations, such as [7],
[8], for a rigorous treatment.

Conceptually, a PBS operation realizes the homomorphic equiva-
lent of evaluating a Boolean gate by indexing into its truth table. This
process can be decomposed into two logical stages: (1) computing
the index corresponding to the current input pattern; and (2) using
that index to query the truth table and retrieve the expected output.

In the homomorphic setting, this mechanism operates over en-
crypted inputs (TLWE ciphertexts). Consider an n-input Boolean gate
implementing a function f : Bn 7→ B. Its truth table comprises 2n

entries, each representing the gate’s output for a specific input pattern.
To evaluate this gate homomorphically, we compute an index via a
projection function ϕ : Bn 7→ Zp that maps each input pattern to
an index in the plaintext space of size p. Accordingly, the encoded
look-up table (LUT) must implement a function F : Zp 7→ B, such
that the correctness condition

f(b1, . . . , bn) = F (ϕ(b1, . . . , bn))

holds for all input patterns. This relation ensures that querying the
encrypted LUT via the projected index yields the correct encrypted
output.

Once the projection index is computed, the next step is to query the
corresponding output from the gate’s truth table. To facilitate this, the

LUT is encoded onto a degree-N polynomial ring T[X]/(XN +1),
where T denotes the torus. The choice of the irreducible polynomial
XN + 1 implies that the polynomial ring is negacyclic, i.e., it
satisfies the constraint XN = −1. As a result, the ring provides
2N coefficient slots that can be used to hold LUT values, but only
N of them can be freely assigned – the remaining N are determined
by negacyclic symmetry. More formally, for any index φ > p

2
−1, the

LUT must satisfy F (φ) = −F (φ − p
2
) to ensure correctness under

negacyclic rotation. Each LUT entry F (φ) is typically replicated
across 2N

p
consecutive coefficients of the ring to ensure consistent

encoding and uniform noise distribution. This allows the use of
programmable bootstrapping to query the correct entry via the so-
called blind rotation process over encrypted inputs.

When no compression is applied, the LUT size is 2n for an n-input
logic gate, and the default projection function is the power-of-two
weighted sum:

ϕ(b1, . . . , bn) =

n∑
i=1

2i−1 · bi,

which guarantees a unique index for each input pattern.
Fig. 1a illustrates this naı̈ve LUT encoding for a two-input AND

gate, using ϕ(b1, b2) = b1 + 2b2 to map input patterns to indices
in Z8. The polynomial ring is instantiated with N = 16, so each
LUT entry is encoded using four coefficients, evenly spaced along
the ring. Because the highest index produced by ϕ is 3, all accessed
indices fall within the first half of the ring, where entries can be freely
assigned. The remaining indices are never queried during evaluation
and thus act as don’t-care values, meaning their contents have no
impact on the correctness of the result.

b) Advances in TFHE circuits synthesis: Two major techniques
have emerged to achieve compact TFHE circuit designs. The first line
of work observes that larger multi-input gates can be accommodated
through proper LUT compression techniques and parameter tuning,
i.e., adopting a larger plaintext space. As discussed earlier, a logic
gate with n inputs typically requires a LUT of size 2n to distinguish
all input patterns. However, when multiple patterns yield the same
output, the LUT can be compressed by merging entries without
affecting correctness.

Among the body of work exploring this direction [9]–[11], we
highlight the contribution of [11], which systematically analyzes the



Boolean properties – specifically, symmetry and negacyclicity – that
enable such compression. For a fixed plaintext space size p, this
method statically enumerates a gate library of all functions whose
LUTs can be compressed accordingly, along with their corresponding
projection functions ϕ. This static formulation enables large-gate ex-
ploitation to be expressed as a standard technology mapping problem,
avoiding the runtime overhead and local suboptimality of greedy gate-
merging approaches like [9] and [10]. The authors demonstrate the
utility of this method under plaintext space Z8

1.
Figure 1b illustrates this compression on a two-input AND gate.

AND gates are symmetric for any fan-in – their output depends solely
on the Hamming weight of the input. This allows for a uniform-
weight projection function,

ϕ(b1, . . . , bn) =

n∑
i=1

bi,

reducing the LUT size to n+1 entries, as all input patterns with the
same Hamming weight w (denoted HW (w)) map to the same entry
F (w). Furthermore, since F (n) = −F (0) for any AND gate, the
negacyclic symmetry enables further compression, allowing the LUT
to fit within a plaintext space of size p = 2n. In the example of n = 2,
shown in Fig.1b, this approach achieves the same error resilience
as the naı̈ve encoding (Fig.1a), where each LUT entry is backed
by four coefficients, while reducing the polynomial degree from
N = 16 to N = 8. This demonstrates why the PBS operation under
this optimized encoding is substantially less expensive than in the
uncompressed case. In other words, under the same plaintext space
size p, this approach enables the use of AND gates with fan-in up
to four for TFHE circuit synthesis – a notable improvement over the
naı̈ve encoding, which limits designs to two-input ANDs – thereby
allowing for potentially more compact circuit implementations.

The second technique we highlight is multi-value PBS [12], a
notable advancement for improving the efficiency of PBS. This
method enables the simultaneous evaluation of multiple gates over
the same encrypted input within a single PBS operation. Instead of
performing separate PBS calls per gate, it shares the LUT query
step by factoring the polynomial rings into a common component
and function-specific components. The shared query is applied once,
and individual outputs are recovered through lightweight polynomial
multiplications. For full technical details, we refer readers to the
original paper. From a synthesis standpoint, this technique facilitates
the use of multi-output gates to reduce the total PBS count. Reference
[11] incorporates this optimization during technology mapping by
dynamically favoring mapping choices that enable shared-input multi-
output gate structures, resulting in more compact TFHE circuits.

B. Multi-Encoding-Space Homomorphic Evaluation

All previously discussed synthesis techniques operate under the
implicit assumption that each logic gate must be evaluated via a
PBS operation. A promising alternative direction aims to reduce
PBS usage by leveraging leveled operations – i.e., performing ho-
momorphic computations using efficient TLWE ciphertext operations
such as ciphertext addition and scalar multiplication, thereby avoiding
expensive PBS invocations.

An early exploration of this idea appears in [13], which observes
that, under the plaintext space B, homomorphic XOR can be realized
via ciphertext addition, and homomorphic AND via ciphertext mul-
tiplication. While the XOR realization is ideal – offering low latency

1The authors refer to the space as Z4 to emphasize the “free encoding”
region unaffected by ring negacyclicity. However, since the projected indices
span Z8, we refer to it as Z8 (implicitly negacyclic) for consistency with the
rest of the discussion.
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Fig. 2: An XAG implements function f = ((x1 ∧ x2)⊕ x3) ∧ x4.

and linearly increasing noise, effectively enabling “free-XOR” – the
AND realization via ciphertext multiplication is both computationally
expensive and introduces a quadratic noise growth. As a result, a PBS
must still follow each AND to refresh the noise, raising concerns
about the practicality of this strategy.

To retain the efficiency of free-XOR while avoiding costly
multiplication-based AND, a natural solution is to evaluate non-linear
gates directly using PBS. However, encoding the LUT of a non-
linear gate into the limited plaintext space B – a requirement for
free-XOR compatibility – is currently infeasible. This motivates a
hybrid strategy: homomorphically evaluate linear gates using leveled
operations in B, and evaluate non-linear gates via PBS in a larger
plaintext space, noted as Zp.

Such multi-encoding-space evaluation has been shown to be techni-
cally viable. Specifically, reference [6] demonstrates that a PBS oper-
ation can simultaneously refresh a ciphertext and switch its plaintext
space, by encoding the target ciphertext directly in the desired space
within the queried polynomial coefficients. This flexibility introduces
new challenges for TFHE circuit synthesis: When should an encoding
switch occur? and How can circuit structure be reshaped to minimize
unnecessary switches? We refer to the systematic handling of these
questions as encoding strategy management. This aspect has been
largely overlooked in prior work, despite its critical importance:
unnecessary encoding transitions introduce additional PBS operations
that can easily negate the performance benefits gained from free-
XOR. This paper is the first to formulate and address TFHE cir-
cuit synthesis under multi-encoding-space evaluation as a dedicated
optimization problem, which we term encoding-switch-aware TFHE
circuit synthesis.

C. Boolean Circuit Notations

We model a Boolean circuit as a directed acyclic graph (DAG)
G = (V,E), where each node v ∈ V represents either a logic gate
or a primary input (PI), and each directed edge (u, v) ∈ E denotes a
signal wire from node u to node v. For any node v ∈ V , we define
its transitive fan-in as the set of all nodes from which there exists a
directed path to v. The set of primary inputs is denoted by I ⊆ V . A
subset of nodes – potentially annotated with output negation – forms
the set of primary outputs (POs), denoted by O ⊆ V . The value of
each PO node is treated as an observable output of the circuit. The
entire circuit implements a Boolean function f : B|I| 7→ B|O|.

a) XOR-AND-inverter graphs: In this work, we focus on XOR-
AND-inverter graphs (XAGs), a restricted class of Boolean circuits in
which each non-PI node has exactly two fan-in edges and implements
either a two-input XOR or AND operation. Logic negations are
optionally represented as edge attributes on the incoming wires.
Fig. 2 illustrates an example XAG implementing a four-variable,
single-output Boolean function f = ((x1 ∧ x2) ⊕ x3) ∧ x4. It
consists of nodes V = {x1, x2, x3, x4, v5, v6, v7}, where the first
four elements form the PI set I , and the sole PO is O = {v7},
with no output negation applied. Each internal gate is annotated



with either ‘∧’ for AND or ‘⊕’ for XOR. XAGs are of particular
interest in this work because they cleanly separate non-linear logic
(AND gates) from linear logic (XOR gates), a structural property
that aligns naturally with the computational asymmetry leveraged
in multi-encoding TFHE evaluation – where XOR gates can be
evaluated freely in B and PBS is reserved for non-linear components.
This makes XAGs an ideal logic representation for our encoding-
aware synthesis framework.

b) Cuts: A cut C in a Boolean circuit is a pair (r, L) consisting
of a root node r ∈ V and a set of leaf nodes L ⊆ V , such that every
directed path from a PI to r passes through at least one node in
L. The subgraph induced between L and r defines a logic cone,
and the Boolean function computed at r expressed in terms of its
leaves is referred to as the cut function, denoted fC : B|L| 7→ B. For
example, in Fig. 2, consider the cut C = (n7, {n5, x3, x4}). This
cut isolates a logic cone rooted at n7 with leaf set L = {n5, x3, x4}.
The corresponding cut function is fC = (n5 ⊕ x3) ∧ x4, which is
a three-variable Boolean function. A cut is said to be k-feasible if
it contains at most k leaf nodes. Cuts are widely used to localize
subfunctions within circuits and serve as fundamental units in logic
synthesis and optimization flows.

III. WHEN TO SWITCH: ANALYZING ENCODING STRATEGY
TRANSITIONS

This section aims to fill the gap in the systematic understanding of
encoding strategy management by analyzing when encoding switches
are beneficial or necessary. We focus on two circuit representations
of interest: XAGs and exclusive-or sum of products (ESOP). By
examining how structural and functional properties interact with
encoding choices, we derive guiding principles for identifying cost-
effective encoding transitions – insights that will inform the synthesis
algorithms developed in the next section.

In the context of multi-encoding-space homomorphic evaluation,
each PBS operation serves one of two distinct roles: it either evaluates
a logic gate (referred to as a compute PBS) or performs a plaintext
encoding space transition. With a slight abuse of terminology, we
refer to the latter as a switch PBS – a PBS operation whose sole
purpose is to convert a TLWE ciphertext from one encoding space
to another, without performing any logic computation. Although
compute PBSs may incidentally trigger an encoding switch, switch
PBSs exist solely to enable subsequent operations in a different space.
Since both types of PBS operations incur similar computational costs,
minimizing the number of switch PBSs is critical for improving the
efficiency of encoding-switch-aware TFHE circuit designs.

A. Encoding Strategy Behavior in XAG-Based Evaluation

In this subsection, we analyze how encoding strategy switches
arise in circuits represented as XAGs. Recall that XAGs consist of
two-input XOR and AND gates, with logic negations encoded as
edge attributes. Since XOR operations can be efficiently evaluated
in B using the free-XOR technique, while AND gates require PBS
operations, transitions between encoding spaces naturally occur at the
boundaries between these gate types.

1) AND Gates with Mixed Fanout: When an AND gate contributes
to XOR gates, its output must be in B to enable efficient downstream
evaluation via the free-XOR technique. As before, the need for
encoding transitions depends on whether the AND gate also feeds
into other AND gates.

a) XOR-Only Fanout: If the AND gate feeds only XOR gates,
it serves as the root of its corresponding AND tree. In this case, a
compute PBS is applied at the AND gate, producing a TLWE ciphertext
in B that can be consumed by XOR gates directly, without requiring
any additional space switching.

b) Mixed Fanout: When an AND gate feeds both XOR and
AND gates, encoding strategy management becomes more nuanced.
Although a compute PBS is still required to produce a ciphertext in
B for XOR evaluation, we have flexibility in how the surrounding
AND tree is structured. Two strategies arise: splitting the AND tree
or preserving the full AND tree. These approaches are illustrated in
Fig. 3: In Fig. 3a, a representative XAG subnetwork is presented
with input and output signals xi and yi, respectively; Fig. 3b and 3c
show the corresponding homomorphic evaluation flows. For clarity,
c(xi) and c(yi) denote the TLWE ciphertexts of xi and yi. Each
PBS operation is labeled as either a compute PBS (‘PBS(c)’) or a
switch PBS (‘PBS(s)’), and the encoding space of each ciphertext is
explicitly indicated on the edges.

In the split strategy (Fig. 3b), the lower, mixed-fanout AND gate is
treated as the root of a smaller subtree. The lower and upper subtrees
are each evaluated using a separate compute PBS. However, since the
output of the lower subtree is needed in both B (for XOR evaluation)
and Zp (to serve as an input to the upper AND tree), a switch PBS is
required to convert between encoding spaces. This results in a total
of three PBS operations: two compute PBSs and one switch PBS.

In the preserve strategy (Fig. 3c), we treat the entire structure as
a single AND tree rooted at the highest AND gate. This approach
avoids the need for a switch PBS by maintaining consistent encoding
throughout the tree, requiring only two compute PBS operations in
total. Although the encoding space must accommodate larger AND
trees, the required modulus grows linearly with arity. In practice, the
slight increase in compute PBS cost is typically outweighed by the
savings from eliminating the switch PBS. Given this trade-off, we
adopt the preserve strategy in our XAG evaluation framework.

2) Primary Inputs with Mixed Fanout: The encoding space as-
signed to each PI in an XAG depends on its fanout structure. If a
PI drives only XOR gates, it can be encrypted directly in B; If it
drives only AND gates, encryption in Zp suffices. However, when a
PI fans out to both gate types – particularly to multiple AND trees
with varying arities – multiple ciphertext variants may be required,
each tailored to a different encoding space.

This creates a need for repeated ciphertext conversions to match
the target encoding space of each consumer. By unifying the encoding
space for all non-linear gates to a single Zp, this overhead is
eliminated. Each PI then requires at most one switch PBS to convert
its ciphertext between B and Zp, avoiding redundant conversions and
simplifying the overall evaluation process.

3) XOR Gates with Mixed Fanout: When the output of an XOR
gate feeds into multiple AND gates, each consumer may belong to
a different AND tree with potentially distinct arities. In the general
case, this would require replicating the XOR output across multiple
encoding spaces to match the requirements of each AND tree, similar
to the dilemma introduced in Section III-A2. This concern can also
be addressed by homomorphically evaluating all AND trees in the
same plaintext space, whose size p is determined by the arity of the
largest AND tree. If so, a single switch PBS suffices to convert the
XOR output from B to Zp, regardless of downstream fanout.

4) Strategic Evaluation Choices for XAGs: To summarize, the
previous analyses (from Section III-A1 to III-A3) highlight two
practical design choices that enable efficient TFHE circuit evaluation
under a multi-encoding model:

a) AND tree consolidation: We treat consecutive two-input
AND gates as a single logic unit – an (n+1)-input AND tree – which
can be evaluated using a single PBS in a suitably large encoding
space. This directly reduces the number of compute PBS operations
compared to evaluating each AND gate individually. For instance,
rather than evaluating n two-input ANDs using n PBS operations
(each in Z4, see Fig. 1b), we evaluate the entire AND tree in one PBS
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Fig. 3: Handling encoding transitions for an AND gate with mixed fanout. (a) A representative subnetwork in XAG form. The AND gate
with mixed fanout is marked in blue. (b) Evaluation with AND tree splitting: introduces one switch PBS and two compute PBS operations.
(c) Evaluation preserving the full AND tree: requires only two compute PBS operations, avoiding switch PBS.

using Z2(n+1), which is sufficient to encode the required truth table
(see Section II-A for details). This assumption improves evaluation
efficiency without altering circuit semantics.

b) Uniform encoding for non-linear gates: Although different
AND trees may have different arities and thus different ideal plaintext
spaces, we unify the encoding space for all non-linear gates across
the circuit. Specifically, we fix the encoding space to Zp, where p =
2kmax and kmax is the arity of the largest AND tree in the XAG. This
ensures that all AND trees, regardless of size, can be evaluated using
a single compute PBS in Zp. While this may slightly over-provision
smaller trees, it eliminates the need to duplicate ciphertexts across
multiple spaces, thereby reducing the total number of switch PBS
operations, as will be detailed later.

Together, these evaluation choices – motivated by the case studies
above – align encoding strategy management with the structural prop-
erties of XAGs, minimizing total PBS usage and enabling efficient
TFHE circuit evalation under the multi-encoding-space model.

B. Encoding Strategy Behavior in ESOP-Based Evaluation

The ESOP form of a Boolean function imposes a strict two-
level logic structure that maximally separates non-linear and linear
components. An ESOP can be interpreted as a constrained XAG,
where the first level comprises only AND trees and the second level
forms a single XOR tree that aggregates their outputs. This structural
regularity makes ESOPs especially well-suited for multi-encoding-
space TFHE evaluation, as it provides a clear boundary at which
encoding transitions may occur.

1) Exclusive-or Sum of Products (ESOP) Form: The ESOP form
expresses a Boolean function as the XOR of several product terms,
each being a conjunction of literals (variables or their negations) [14].
Formally, for a function f : Bn 7→ B, its ESOP form is given by:

f(x1, x2, . . . , xn) = P1 ⊕ P2 ⊕ · · · ⊕ Pm,

where each Pi is a product term (cube) composed of one or more
literals. For example, one valid ESOP form of the Boolean function
implemented by the circuit in Fig. 2 is f = x1x2 ⊕ x1x3x4. It
is important to note that the ESOP form of a Boolean function is
not canonical; multiple structurally distinct ESOPs may represent the
same function. ESOP minimization – finding a functionally equivalent
expression with the fewest number of product terms – is known to be
NP-hard, though many effective heuristic and exact synthesis methods
have been developed [15]–[17].

2) Implications for Encoding Strategy Management: The ESOP
structure enforces a clean separation between non-linear and linear
operations, naturally aligning with distinct encoding domains: (1)
All non-linear computation is confined to the first layer, where each
product term (i.e., AND tree) is evaluated via a compute PBS in
a suitable encoding space Zp. (2) The second layer aggregates the
cube outputs using XOR operations, which are purely linear and can
be evaluated in B via leveled operations (i.e., free-XOR) without
invoking additional PBS operations.

To enable seamless aggregation between the two layers, we con-
figure the output of each compute PBS (i.e., each product term) to
adopt the plaintext space B. This ensures that the XOR layer operates
entirely within B, avoiding the need for any switch PBS between the
two layers.

3) Cost Model for ESOP Evaluation: We now formulate a quan-
titative cost model for evaluating a Boolean function represented in
ESOP form. Let jpbs denote the number of product terms with arity
greater than one, each of which requires a compute PBS in the higher
encoding space Zp. Let npi be the total number of PIs, and let mclean

be the number of inputs that can be evaluated entirely in a single
encoding space – either because they appear only in higher-arity
cubes or exclusively as arity-1 cubes. The number of switch PBS
operations is then (npi − mclean). Finally, let kmax denote the arity
of the largest product term; the minimal required plaintext space is
p = 2kmax to encode its associated LUT.

To illustrate the use of this model, consider the ESOP repre-
sentation of the Boolean function from Fig. 2, given by f =
x1x2 ⊕ x1x3x4. Both product terms contain more than one literal
and thus require compute PBS operations. Therefore, jpbs = 2. The
largest cube has arity three, so the minimal required plaintext space is
Z6. As there are no arity-1 cubes, no switch PBS is required, yielding
a switch PBS count of zero. In comparison, evaluating the original
XAG implementation of the same function (also shown in Fig. 2)
requires three PBS operations: two compute PBSs for gates n5 and
n7, and one switch PBS to allow the output of gate n6 to contribute to
n7. This example highlights the structural advantage of ESOP forms
in minimizing encoding transitions and suggests their suitability for
efficient multi-encoding-space TFHE circuit evaluation.

IV. ESOP-GUIDED TFHE CIRCUIT SYNTHESIS VIA
COST-AWARE CUT REPLACEMENT

This section presents a synthesis methodology that transforms a
Boolean circuit into an optimized network of ESOP-based subcircuits



Algorithm 1: Cut-Aware ESOP Cost Estimation
Input: Cut C: root r, leaf set L, cut function fC
Output: Cost clocal

1 ESOP expression E ← exorcism(fC)
2 jpbs ← number of cubes in E with arity > 1
3 mclean ← 0 // # of switch-free leaves
4 foreach leaf l ∈ L do
5 if l appears only in one cube of arity 1 then
6 mclean ← mclean + 1
7 npi ← |L|
8 sswitch ← npi −mclean

9 clocal ← jpbs + sswitch

10 return clocal

for efficient TFHE evaluation. While Section III analyzed how to
optimally evaluate a given circuit representation (XAGs or ESOPs)
under the multi-encoding-space strategy, this section shifts attention
to circuit generation. In particular, we explore how to synthesize
improved implementations that unlock further efficiency gains, lever-
aging the structural and cost advantages of ESOP-based evaluation.
To this end, we propose a cut-based mapping framework that decom-
poses the circuit into overlapping subgraphs and selectively replaces
them with ESOP implementations. Each replacement is guided by a
cost model that captures the trade-off between compute and switch
PBS operations, enabling encoding-switch-aware optimization at fine
granularity.

A. High-Level Flow

Given a Boolean circuit represented as a general logic network
(e.g., an XAG), the synthesis proceeds as follows. For each node, we
first enumerate all k-feasible cuts rooted at that node, each defining
a subcircuit with at most k leaves and a self-contained Boolean
function. For each cut, we derive an optimal ESOP representation
using exorcism [16]. We then estimate the evaluation cost of
each ESOP using a refined version of the cost model introduced
in Section III-B3, which extends the original formulation to more
accurately capture both compute and switch PBS operations during
cut evaluation. Based on these costs, a heuristic selection algorithm
identifies a set of non-overlapping cuts that cover the entire XAG
and collectively minimize the total homomorphic evaluation cost.
The resulting structure is a network of ESOP subcircuits, optimized
for TFHE evaluation under an encoding-switch-aware strategy. This
synthesis flow enables fine-grained trade-offs between local structural
choices and global evaluation efficiency, producing modular circuits
well-suited for multi-encoding-space TFHE evaluation.

B. Cut-Aware ESOP Cost Modeling

When applying ESOP-based evaluation to subcircuits (i.e., cuts) of
a larger Boolean network, the cost model must be adapted to account
for interactions between local ESOPs and their surrounding context.
In particular, the inputs to a cut may originate from previously
evaluated ESOP subgraphs. As discussed earlier, such outputs are
encoded in the B plaintext space to enable free-XOR aggregation.
If these ciphertexts are reused in product terms of arity greater than
one (i.e., in the non-linear layer of a subsequent ESOP), they must
be converted to a higher encoding space Zp using a switch PBS.

To capture this scenario, we refine the cost model introduced in
Section III-B3. The revised model, shown in Algorithm 1, estimates
the total PBS cost of evaluating a given ESOP cut by accounting
for both compute PBS operations (used to evaluate non-linear cubes)
and switch PBS operations (used to align encoding spaces at the cut
boundary).

Algorithm 2: Per-Round Cut Selection Procedure
Input: XAG G, global cost estimates best_cost(·) from

previous round
Output: Updated representative cut rep(n) and cost

best_cost(n) for each node n ∈ G
1 foreach node n ∈ G in topological order do
2 foreach k-feasible cut C rooted at n do
3 clocal ← ESOP_cost(C) // Algorithm 1
4 cost← cost_est(C, clocal)
5 if cost < best_cost(n) then
6 best_cost(n)← cost
7 rep(n)← C
8 return rep(n) and best_cost(n) for all n

This refined model provides a localized yet context-aware estimate
of PBS cost, enabling accurate evaluation of cut replacements during
synthesis.

C. Cost-Aware Cut Selection

To assemble a globally optimized TFHE circuit from locally eval-
uated ESOP cuts, we adopt a dynamic programming-based selection
framework inspired by conventional technology mapping [18]. The
objective is to select, for each node in the input XAG, a single
representative cut whose ESOP-based implementation minimizes the
overall homomorphic evaluation cost – accounting for both compute
and switch PBS operations. This is achieved by iteratively refining
the cut selection at each node.

As shown in Algorithm 2, for each node, all k-feasible cuts
are evaluated using a modular cost estimator, cost_est, which
integrates two components: (1) a local cost (‘clocal’), computed using
the refined ESOP cost model from Algorithm 1, which accounts
for the number of compute and switch PBS operations required to
evaluate the cut; and (2) a global cost contribution (‘cost’), estimated
based on how the cut affects the total cost of the circuit.

Estimating this global contribution precisely is non-trivial. To
address this, the selection process proceeds over four iterations,
alternating between two complementary heuristics for implementing
cost_est: the first two rounds use the area flow heuristic [19]
to capture global logic sharing, while the last two rounds use the
exact area heuristic [20], which measures the size of a node’s
maximum fanout-free cone (MFFC) – defined as the largest subset
of its transitive fan-in such that removing both the node and this
subset does not affect the remaining circuit’s functionality.

A cut is committed to a node if it yields a lower cost than the
previously selected one. After the final iteration, the representative
cuts (‘rep(n)’) define the mapping: the synthesized TFHE circuit is
constructed by traversing the XAG in reverse topological order and
instantiating the ESOP implementation of each selected cut.

This cost-aware selection framework enables fine-grained
encoding-strategy optimization while preserving functional
correctness, guiding synthesis toward TFHE circuits with minimal
PBS overhead.

V. EXPERIMENTAL RESULTS

This section evaluates the effectiveness of the proposed ESOP-
guided synthesis technique for TFHE circuit generation on a suite of
general-purpose Boolean benchmarks, assessing performance from
two perspectives: (1) Evaluation time comparison, comparing homo-
morphic evaluation latency across synthesis approaches; and (2) PBS
type analysis, breaking down compute and switch PBS operations to
show the impact of encoding strategy management.



TABLE I: Comparison of TFHE circuit evaluation costs for general-purpose Boolean benchmarks.

Benchmark AND Minimization [21] Z8-Based Synthesis [11] This Work

Max arity #PBS Syn. [s] Eval. [ms] #PBS Syn. [s] Eval. [ms] Max arity #PBS Syn. [s] Eval. [ms]

cardio 12 141 24.14 6 139 114 <0.01 4 560 8 120 5.98 4 392
dsort 5 789 564.00 29 316 663 <0.01 26 520 5 828 31.39 31 617
msort 5 690 50.37 23 715 645 <0.01 25 800 5 528 100.88 19 602
isort 5 690 50.17 23 715 645 <0.01 25 800 5 528 100.89 19 602
bsort 5 690 51.47 23 715 645 <0.01 25 800 5 528 100.64 19 602
osort 5 598 76.45 20 553 559 <0.01 22 360 5 460 83.38 17 058
hd01 32 64 0.43 5 096 54 <0.01 2 160 5 59 0.58 2 296
hd02 32 62 0.60 4 030 78 <0.01 3 120 5 81 1.33 2 791
hd03 4 51 0.44 1 679 29 <0.01 1 160 4 52 1.13 1 748
hd04 26 59 7.86 3 298 53 <0.01 2 120 7 65 2.28 2 500
hd05 17 191 20.70 9 173 113 <0.01 4 520 6 153 2.00 5 725
hd06 17 191 21.67 9 173 113 <0.01 4 520 6 153 2.02 5 725
hd07 4 15 0.05 555 16 <0.01 640 4 14 0.08 526
hd08 13 20 0.09 874 11 <0.01 440 8 12 0.17 508
hd09 33 69 1.02 4 521 76 <0.01 3 040 8 108 1.73 3 964
hd10 32 6 0.08 534 25 <0.01 1 000 8 16 0.27 624
hd11 48 168 8.37 23 397 310 <0.01 12 400 8 411 12.71 15 391
hd12 32 67 0.42 3 887 73 0.01 2 920 8 59 2.05 2 287
bar 3 1 980 25.37 61 887 2 437 <0.01 97 480 3 2 176 51.62 68 480
cavlc 30 365 19.12 22 300 518 <0.01 20 720 8 335 7.83 14 371
ctrl 10 61 1.85 2 605 84 <0.01 3 360 7 73 0.36 3 047
dec 8 280 25.37 12 280 292 <0.01 11 680 2 352 2.49 10 208
i2c 26 535 24.11 40 217 890 <0.01 35 600 8 703 10.07 29 171
int2float 14 127 5.91 6 665 162 <0.01 6 480 8 117 2.03 4 849
router 70 51 7.78 7 639 111 <0.01 4 440 8 95 1.51 3 555

GEOMEAN 141.32 7350.23 152.00 6 079.87 150.22 5 634.95
Norm. 1 0.8272 0.7666

A. Overview and Methodology

While prior work has demonstrated that hand-optimized crypto-
graphic circuits, which feature clear separations between linear and
non-linear components, can effectively leverage multi-encoding-space
evaluation [6], such structural regularity is rarely found in broader
application domains. As a result, the practicality of existing tech-
niques remains limited when targeting general-purpose homomorphic
evaluation of Boolean functions.

We therefore evaluate our synthesis framework using a diverse
suite of general-purpose logic benchmarks. Specifically, we consider
25 circuits curated by prior work [22], spanning application areas
such as medical diagnostics, sorting, bit-twiddling, random logic, and
control logic. These circuits reflect the types of Boolean computations
expected to arise in real-world FHE workloads. Unlike cryptographic
circuits, these designs typically exhibit heterogeneous structure and
do not feature deliberate separation between linear and non-linear
logic. This makes them a representative and challenging testbed for
evaluating synthesis strategies that aim to optimize homomorphic
evaluation through encoding strategy management.

We compare against state-of-the-art synthesis strategies, including:
(a) AND minimization [21], which aims to reduce the number of
compute PBS operations by minimizing the number of AND gates
in the circuit. This approach supports free XOR via dual-space
evaluation; specifically, the encoding-space management strategy
introduced in Section III-A for efficient evaluation. (b) Z8-based
synthesis [11], which targets a fixed, larger encoding space (Z8) to
reduce the number of PBS operations by enabling multi-output gates
(via the multi-value PBS technique introduced in Section II-A). Since
the encoding space remains constant, all PBS operations are of the
compute type.

We implemented the proposed synthesis framework atop the C++
logic synthesis library mockturtle 2 [23]. The homomorphic

2Available at https://github.com/lsils/mockturtle

evaluation latency was estimated using a TFHE cost estimator 3,
which integrates with the Concrete compiler [24] for accurate per-
PBS-operation timing. For approaches that support free-XOR, the
cost of the leveled operations used to realize XOR gates is omitted,
as it is negligible compared to the cost of PBS operations. The
experiment was conducted on a machine equipped with an Apple
M1 Max processor and 32GB of memory.

B. Performance Breakdown

We begin by comparing the total homomorphic evaluation latency
of circuits synthesized by three approaches. For each benchmark,
we report: the arity of the largest AND tree in the synthesized
circuit (‘max arity’), the total number of PBS operations required for
evaluation (‘#PBS’), including both compute and switch PBS where
applicable; the circuit synthesis time in seconds (‘Syn.’), and the total
homomorphic evaluation time in milliseconds (‘Eval.’).

a) Comparison of evaluation time: A key observation is that no
single approach dominates all 25 benchmarks. The best evaluation
time is achieved by AND minimization, Z8-based synthesis, and
ESOP-guided synthesis for 2, 9, and 14 benchmarks, respectively.
This indicates that the three approaches exhibit complementary
strengths and exploit different structural properties of the benchmarks.

Notably, Z8-based synthesis consistently outperforms others on
most benchmarks that perform bit-twiddling operations (i.e., hd-01
to hd-12). This aligns with its core design principle: leveraging
specialized large gates (e.g., symmetric or negacyclic functions)
that can be efficiently implemented in Z8 despite the constraints
imposed by the ring’s negacyclic structure. Additionally, its support
of multi-output gates facilitated by the multi-value PBS technique,
as introduced in Section II-A, further improves circuit compactness.

In contrast, the ESOP-guided synthesis generally achieves the
best performance on the remaining benchmarks, which span diverse
applications such as medical diagnostics and control logic. This

3Available at https://github.com/ssmiler/tfhe lbf eval



reinforces the broader applicability of our method in scenarios
where circuit structure is less regular or less conducive to domain-
specific optimization. It also suggests a promising direction for further
research on categorizing Boolean functions by their compatibility
with different TFHE circuits synthesis strategies.

b) Circuit synthesis time: Among all methods, Z8-based syn-
thesis achieves the fastest synthesis time due to its technology map-
ping approach. Both AND minimization and ESOP-guided synthesis
exhibit comparable runtimes, generally on the order of minutes.

The higher runtime of AND minimization arises from its itera-
tive application of multiple high-effort optimization passes, which
converge slowly on structurally complex circuits. Meanwhile, ESOP-
guided synthesis incurs runtime overhead from dynamic per-cut
ESOP synthesis, which dominates the runtime. This limitation could
be alleviated by precomputing a database of optimized ESOP repre-
sentations to avoid on-the-fly and potentially redundant synthesis.

It is important to emphasize that, in many use cases – especially
those where homomorphic evaluation is deployed as a secure cloud
service – the evaluation time, rather than synthesis time, is the
dominant concern. Circuit generation can be amortized and reused
across multiple runs, making offline synthesis effort more tolerable.

c) Relationship between PBS count and evaluation time: A
counterintuitive observation from Table I is that, although circuits
synthesized via AND minimization exhibit the lowest average PBS
count, they also result in the highest average evaluation latency.

This is explained by the ‘max arity’ column. We observe that AND
minimization often produces circuits containing large AND trees,
which increases the arity of the non-linear components. To evaluate
such trees via a single PBS, the corresponding LUT must be encoded
in a larger plaintext space Zp, resulting in higher per-PBS cost. In
contrast, ESOP-guided synthesis imposes more uniform boundaries
between linear and non-linear computation. By avoiding product
terms with excessive literal counts, it ensures that PBS operations
can be performed using moderate-sized encoding spaces, thereby
reducing overall evaluation cost despite slightly higher PBS counts.

This trade-off illustrates the effectiveness of the proposed ESOP-
based strategy: prioritizing manageable PBS complexity via structural
control leads to more efficient homomorphic evaluation in practice.

C. Analysis of PBS Types

To understand the cost implications of encoding management, we
analyze the number of switch PBS and compute PBS operations
involved in evaluating circuits synthesized by the AND minimization
flow and our proposed ESOP-guided synthesis method. Since Z8-
based synthesis does not support encoding switching, only compute
PBS operations are involved and thus excluded from this part of the
comparison.

By breaking down the total PBS count (‘#PBS’) reported in Table I
into switch PBS (‘#Switch’) and compute PBS (‘#Compute’) com-
ponents, as detailed in Table II, we observe that the proposed ESOP-
guided synthesis approach achieves an average 23.62% reduction in
switch PBS count compared to the AND minimization baseline. This
result highlights the advantage of our method in managing encoding
transitions, which is the central goal of this work.

This improvement comes at the cost of a 35.48% increase in
compute PBS count, which is expected given that AND minimization
directly targets reducing the number of AND gates in XAGs. Since
the homomorphic evaluation of AND gates corresponds to compute
PBS operations, aggressive AND reduction naturally lowers the
compute PBS count. However, as discussed in Section V-B, the lack
of encoding-aware synthesis in the AND minimization flow leads
not only to more switch PBS operations but also to the formation
of excessively large AND trees. This increases the required plaintext

TABLE II: Comparison of usage of PBS operations.

Benchmark AND Minimization [21] This Work

#Switch #Compute #Switch #Compute

cardio 91 50 63 57
dsort 294 495 243 585
msort 405 285 198 330
isort 405 285 198 330
bsort 405 285 198 330
osort 351 247 174 286
hd01 19 45 14 45
hd02 31 31 47 34
hd03 31 20 28 24
hd04 36 23 24 41
hd05 112 79 61 92
hd06 112 79 61 92
hd07 3 12 2 12
hd08 13 7 2 10
hd09 34 35 56 52
hd10 1 5 6 10
hd11 73 95 194 217
hd12 40 27 23 36
bar 491 1 489 384 1 792
cavlc 200 165 44 291
ctrl 23 38 11 62
dec 20 260 48 304
i2c 177 358 154 549
int2float 56 71 26 91
router 31 20 45 50

GEOMEAN 59.93 71.92 45.78 97.44
Norm. 1 1 0.7638 1.3548

space size and, consequently, the cost per compute PBS. In contrast,
the ESOP-guided synthesis approach inherently avoids this issue by
producing structurally uniform circuits with well-bounded AND tree
arities, enabling more efficient parameter selection and lower per-PBS
evaluation cost.

Consequently, while both the proposed ESOP-guided synthesis and
the AND minimization baseline support multi-encoding evaluation,
only the former achieves a systematic management of encoding
transitions through synthesis, resulting in better TFHE circuit designs.

VI. CONCLUSION

TFHE circuit synthesis aims to generate Boolean circuits for
homomorphic evaluation, where each gate is evaluated via a pro-
grammable bootstrapping (PBS) operation. Mainstream approaches
assume a fixed plaintext space for all gates, missing optimization
opportunities from dynamic encoding strategies. Recent advances
enable encoding space transitions via additional PBS operations,
allowing linear gates in B to be evaluated “for free” using the
free-XOR technique. Fully exploiting this capability requires explicit
encoding strategy management to avoid excessive or poorly placed
transitions. This work introduces the first systematic framework for
encoding-switch-aware TFHE circuit synthesis, combining structural
analysis with cost-aware ESOP-based mapping to manage encoding
transitions effectively. Across 25 general-purpose benchmarks, our
method reduces homomorphic evaluation time by up to 53.46%
and 23.34% on average over advanced synthesis baselines without
explicit encoding-switch management. Future work includes con-
straining AND tree arity to limit PBS complexity and combining
exact and heuristic ESOP synthesis to improve subcircuit quality
without excessive runtime.
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