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Abstract—Ashenhurst–Curtis decomposition (ACD) is a
decomposition technique used, in particular, to map com-
binational logic into lookup tables (LUTs) structures when
synthesizing hardware designs. However, available implemen-
tations of ACD suffer from excessive complexity, search-space
restrictions, and slow run time, which limit their applicability
and scalability. This article presents a novel fast and versatile
technique of ACD suitable for delay optimization. We use
this new formulation to compute two-level decompositions into
a variable number of LUTs and enhance delay-driven LUT
mapping by performing ACD on the fly. Compared to state-of-
the-art technology mapping, experiments on heavily optimized
benchmarks demonstrate an average delay improvement of
12.39% and area reduction of 2.20% with affordable run time.
Additionally, our method improves 4 of the best delay results in
the EPFL synthesis competition without employing design-space
exploration techniques. Moreover, we use the new formulation to
compute exact decompositions into fixed LUT cascade structures
of two LUTs, which have efficient implementations in the
architecture of AMD field-programmable gate arrays. Compared
to the state-of-the-art method, this new formulation leads to an
average reduction of 6.22% in delay, 3.82% in area, and 3.09%
in the edge count for better run time.

Index Terms—Boolean decomposition, field-programmable
gate array (FPGA), logic synthesis, technology mapping.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) are inte-
grated circuits with configurable logic blocks (CLBs)

and programmable interconnects. Unlike application-specific
integrated circuits (ASICs), which are designed for a specific
application and have a fixed configuration, FPGAs can be
programmed many times, which comes at the cost of lower
power-performance-area (PPA). FPGAs are widely used for
rapid prototyping, in low-volume applications, and for hard-
ware acceleration of specific tasks.
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Logic synthesis for hardware designs intended to run on
FPGAs shares similarities with those for ASICs, but the
target primitive is a k-input look-up-table (k-LUTs), capa-
ble of implementing any Boolean function up to k inputs.
Specifically, this article focuses on mapping technology-
independent combinational logic into networks composed of
k-LUTs.

State-of-the-art technology mapping into lookup tables
(LUTs) is performed through local substitutions applied to
an initial graph representation, called the subject graph. The
drawback of this approach is that the technology-independent
optimization step and the technology mapping step are sepa-
rated. Consequently, the impact of optimization on the quality
of the final LUT network is hard to predict before mapping.
Delay-optimal mapping for a fixed subject graph is feasible
in polynomial time [1]. Area-optimal mapping is NP-hard [2].
Specifically, the structure of the subject graph highly influ-
ences the mapping quality. This is known as structural bias.
To mitigate structural bias, the known methods compute
structural choices for the subject graph and use them during
mapping [3], [4], or collapse and decompose parts of the graph
during mapping [5], [6], [7]. However, exact area and delay
optimization during LUT mapping remain NP-hard [8], [9]. In
this work, we use Boolean decomposition to enhance delay-
driven LUT mapping.

On another note, the performance of modern FPGAs
is limited by programmable interconnect. Specifically, the
interconnect delay can be up to 5 times the intrinsic delay
of an LUT because wires are routed through multiple switch
boxes and routing channels. One solution adopted by FPGA
vendors is to supplement programmable interconnect with
nonroutable connections between LUTs, creating LUT struc-
tures, such as LUT cascades [10]. However, existing placement
algorithms struggle to effectively utilize these connections
because this requires introducing LUT structures after LUT
mapping. Alternatively, Boolean decomposition has emerged
as an efficient way of generating LUT structures during
mapping [11].

The Ashenhurst-Curtis decomposition (ACD) [12], [13],
also known as Roth–Karp decomposition [14], is a powerful
technique to decompose a Boolean function into a set of
subfunctions and a composition function with reduced support.
ACD finds applications in logic optimization and technology
mapping. The traditional formulation of ACD breaks the
input variables into two groups: 1) the bound set (BS) and
2) the free set (FS). Other approaches to ACD [15] allow
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Fig. 1. ACD of an eight-input Boolean function into three five-input LUTs
with a five-variable BS, an one-variable SS, and a two-variable FS.

for a shared set (SS) when some functions in terms of the
BS variables are buffers. The larger the SS size, the fewer
subfunctions are required. For instance, Fig. 1 shows an ACD
of a function with BS, FS, and SS, resulting in three five-
input LUTs. Conventional methods leverage binary decision
diagrams (BDDs) [16] to perform ACD [15], [17], [18]. More
recent approaches use truth tables for functions up to 11 or
16 inputs [11], [19].

This article has two main contributions. First, we revisit the
formulation of ACD with SS to enhance its computationally
efficiency in LUT mappers and post-mapping resynthesis
engines performing delay optimization. Our algorithm is truth-
table-based and flexible in the number of FS, BS, and SS
variables, and in the number of BS functions. Our ACD runs
up to 2× faster, compared to [11], and up to 80× faster,
compared to [19], when performing decompositions into the
LUT structure “66” composed of two six-LUTs. Furthermore,
the proposed method finds considerably more solutions, which
translates into better quality. Second, we use ACD for the
delay optimization of LUT networks. The idea is to compute
functional decompositions using timing-critical variables in
the FS and the rest of the variables in the BS and SS. This
method is more general than cofactoring w.r.t. late arriving
variables using Shannon expansion [20] and leads to improved
quality of results. We integrate our ACD into the state-of-the-
art LUT mapper for delay optimization. To our knowledge,
this is the first practical and scalable work that uses ACD
for delay-driven LUT mapping. Moreover, we utilize our new
ACD approach to optimally map logic into LUT structures
implementable using nonroutable connections.

We experimentally evaluate the use of ACD for LUT map-
ping by comparing the results with state-of-the-art methods as
follows.

1) We show that the proposed ACD method has a higher
decomposition success ratio, up to 32.58% more than
state-of-the-art with a competitive run time.

2) We demonstrate that mapping with ACD can efficiently
mitigate the structural bias and considerably reduce the
delay. We compare the traditional LUT mapper in ABC,
the LUT-structure mapper in ABC, and the proposed
mapper with integrated ACD. We show that mapping
with ACD notably outperforms the other mappers in
delay by 7.52% on average, also when using structural
choices [4]. Moreover, we show that an additional
mapping round using the network obtained by ACD

as a structural choice can further improve the delay,
compared to the baseline, by 12.39%, with a surprising
area reduction of 2.20%.

3) We present four new best results in the EPFL
competition. These results have been obtained using
delay-oriented mapping with ACD and without employ-
ing design-space exploration (DSE) methods. Hence, we
expect even better results by using LUT mapping with
ACD in a DSE tool.

4) We use this new ACD formulation to compute mappings
into LUT structures composed of two LUTs with a
nonroutable connection between them. Compared to the
state-of-the-art approach [11], our method reduces the
average delay, area, and the edge count by 6.22%,
3.82%, and 3.09%, respectively, with better run time. In
particular, this new formulation is exact, i.e., it always
guarantees a solution for functions decomposable into 2
LUTs.

This article is organized as follows. Section II provides
the necessary background on logic networks, Boolean decom-
position, and technology mapping. Section III introduces the
previous works on Boolean decomposition and LUT mapping.
Section IV presents our ACD approach and its properties.
Section V-B describes the integration of ACD into an LUT
mapper for performance improvement. Section VI discusses
the usage of our ACD formulation to leverage nonroutable
connections. Section VII presents experimental results and
their interpretation. Finally, Section VIII concludes this article.

II. PRELIMINARIES

This section introduces the basic notations and background
related to logic networks, decomposition, and LUT mapping.

A. Definitions

A Boolean function is a mapping from a k-dimensional
Boolean space into an one-dimensional one: {0, 1}k → {0, 1}.

A truth table representation of a k-input Boolean function
f : {0, 1}k → {0, 1} can be encoded as a bit string b =
bl−1 . . . b0, i.e., a sequence of bits, of length l = 2k. A bit
bi ∈ {0, 1} at position 0 ≤ i < l is equal to the value taken by
f under the input assignment �a = (a0, . . . , ak−1), where

2k−1 · ak−1 + · · · + 20 · a0 = i. (1)

The positive cofactor of a Boolean function f with respect
to a variable xi, represented as fxi , is the Boolean function
obtained by setting xi = 1. Similarly, the negative cofactor fx̄i

is the Boolean function obtained by setting xi = 0.
It is common to refer to the leftmost input column of a truth

table as the most significant variable (ak−1) and the rightmost
input column as the least significant variable (a0). A swap of
two variables alters the truth table by exchanging the location
of the corresponding two-variable cofactors.

Fig. 2 depicts two truth tables represented as bit strings,
one in binary and one in hexadecimal. Notably, the rightmost
truth table can be derived from the leftmost one by swapping
variables x0 and x2. Marked next to both truth tables are the
cofactors with respect to two most significant variables.
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Fig. 2. Truth table representations and their encoding, cofactor extraction
w.r.t. the two most significant variables, and variable swapping of x0 with x2.

A completely specified Boolean function f essentially
depends on a variable v if there exists an input combination,
such that the value of the function changes when the variable
is toggled ([∂f /∂v] = 1). The support of f is the set of all
variables on which the function f essentially depends. The
supports of two functions are disjoint if they do not have
shared variables. A set of functions is disjoint if their supports
are pair-wise disjoint.

A BDD [16] is a logic representation based on the
if-then-else operator. Each node in a BDD is associated
with a variable and implements a cofactoring step. The root
of a BDD is a node representing the given function, and
the leaves are constant functions true and false. Each node
is connected to two other nodes whose functions represent
cofactors of the given function. The term BDD typically refers
to reduced ordered BDD (ROBDD), which is a canonical
representation for a given variable order and a set of reduction
rules.

A Boolean network is modeled as a directed acyclic
graph (DAG) having nodes associated with Boolean functions.
The sources of the graph are the primary inputs (PIs), the sinks
are the primary outputs (POs). For any node n, the fanins of
n is a set of nodes driving n, i.e., nodes that have an outgoing
edge toward n. Similarly, the fanouts of n is a set of nodes
driven by node n, i.e., nodes that have an incoming edge
from n. A k-LUT network is a Boolean network composed of
k-LUTs, capable of realizing any k-input Boolean function.
An and-inverter graph (AIG) [21] is a Boolean network where
nodes are the two-input ANDs and edges may implement
inverters.

A cut C in a Boolean network is a pair (n, K), where n is
the node, called root, and K is a set of nodes, called leaves,
such that 1) every path from any PI to node n passes through
at least one leaf and 2) for each leaf v ∈ K, there is at least one
path from a PI to n going through v and not through another
leaf. The size of a cut is the number of its leaves. A cut is
k-feasible if its size does not exceed k.

B. Boolean Decomposition

Boolean decomposition refers to the process of breaking
down a Boolean function into simpler components. Boolean
decomposition produces a Boolean network with POs func-
tionally equivalent to the original function. The most generic
decomposition is the ACD [12], [13], [14]. The ACD of a

single-output Boolean function f can be expressed as follows:

f
(�xbs, �xss, �xfs

) = g
(�h(�xbs, �xss), �xss, �xfs

)
(2)

where �xbs is the BS, �xss is the SS, and �xfs is the FS. These sets
are disjoint variable subsets, which together form the support
of f . The function �h may be multiple output with the number of
outputs less than the BS size. The single-output functions in �h
are referred to as BS functions. The function g is referred to as
the composition function. When decomposing into k-LUTs, the
composition function is typically chosen to fit into one k-input
LUT. Fig. 1 shows an ACD of an eight-input function into
three five-input LUTs with a five-variable BS, an one-variable
SS, and a two-variable FS. The decomposition generates two
BS functions (L2 and L3), and a composition function (L1).

The disjoint-support decomposition (DSD) [22] is a decom-
position where the set of nodes have disjoint support. Hence,
the Boolean network generated from DSD is always a tree.
ACD generates a DSD decomposition when �xss = ∅ and BS
functions have disjoint support.

The Shannon decomposition is a Boolean decomposition
based on the Shannon expansion

f = xfx + x̄fx̄. (3)

The result of applying the Shannon decomposition to all
variables and merging identical cofactors, is a BDD.

C. FPGA Technology Mapping

LUT mapping is the process of expressing a Boolean
network in terms of k-LUTs. Before mapping, the network is
represented as a k-bounded Boolean network called the subject
graph, which contains nodes with a maximum fanin size of k.
The AIG is the most common subject graph representation.
The subject graph is transformed into a mapped network
by applying local substitutions to sections of the circuit
defined by cuts computed using cut enumeration [23]. An
LUT mapper computes a mapping solution, called cover, by
selecting a subset of the cuts that cover the subject graph while
minimizing a cost function. State-of-the-art LUT mappers
compute cuts and refine the cover in several mapping passes
using heuristics based on delay, area, and the edge count. For
further details on LUT mapping, refer to [24].

III. RELATED WORK

A. Boolean Decomposition

Traditionally, Boolean decomposition is implemented using
BDDs [15], [17], [18], [25], derived by applying the Shannon
decomposition to all variables in a given order and using
reduction rules. Typically, multiple variable orderings are
explored to find a partition of variables into BS and FS and per-
form a support-reducing ACD [18]. However, algorithms that
perform ACD suffer from slow run time and poor performance
on large functions. To enhance efficiency, conventional meth-
ods often restrict decomposition to a limited set of primitives,
such as two-input operators and multiplexers [26], [27], and
compute only disjoint support decompositions [22], [28].

Recent advancements have leveraged truth tables for ACD
up to 16 variables, either by replicating variable reordering
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and size minimization of BDDs without explicitly constructing
one or by computing a DSD that minimizes the required
number of LUTs. Specifically, in [11], the authors use DSD
and a heuristic variable reordering to find an ACD into a
structure of two or three LUTs with nonroutable connections.
This method limits the SS to at most one variable. In [19],
the authors use ACD in post-mapping resynthesis when logic
cones composed of several LUTs are collapsed into single-
output Boolean functions and re-expressed using fewer LUTs
by DSD and the Shannon expansion.

In this work, we address the limitations of previous ACDs.
Our method is based on truth tables and does not have
limitations on the number of LUTs and the size of SS. It
produces better quality of results and runs up to 2× faster
than other more constrained implementations in ABC [11].
Moreover, our ACD does not rely on BDD heuristics or DSD
with primitives but performs a more complete search.

B. LUT Mapping

State-of-the-art LUT mapping for FPGAs relies on cut
enumeration [23] followed by graph covering [1], [24]. Depth-
optimal mapping for a k-bounded network is solvable in
polynomial time [1], while area-optimal mapping is proven to
be NP-hard [2]. The structure of the subject graph influences
the structure of the mapped network to a large extent. This is
known as structural bias. Mitigating structural bias is essential
to improve the mapping quality.

Several methods derive an LUT network by applying fla-
vors of Boolean decomposition to the BDD of the original
function [7], [18], [29]. Despite having a lower structural bias,
these approaches are run-time intensive and limited to small
functions, for which BDDs can be constructed. In practice,
they rarely work for functions with more than 16 inputs.

To scalably reduce structural bias, previous work adopted
different techniques. In [3] and [4], structural bias is reduced
by accumulating structural choices for the subject graph and
using them during mapping. In [5], [6], and [11], decomposi-
tion into k-LUTs is performed during technology mapping. In
particular, the method in [11] integrates ACD into k-LUT map-
ping to map logic into nonroutable LUT structures composed
of two or three LUTs. The approach extracts combinational
logic cones with more than k inputs and decomposes them on
the fly.

In this work, we perform on-the-fly decomposition similar
to [11] but with two main differences. First, we utilize a more
flexible and expressive ACD formulation. Second, our method
can be customized for delay minimization.

IV. IMPROVEMENTS TO ACD

This section discusses a fast and versatile truth-table-based
implementation of ACD with SS for single-output functions.
We propose several enhancements that make ACD readily
applicable in LUT mappers and resynthesis methods. Fig. 3
illustrates the ACD computation. The BS, SS, FS, and the
number of BS functions used are flexible and determined
during the decomposition. The composition function (L1) is
implemented as a multiplexer controlled by the outputs of the

Fig. 3. Illustrating the AC decomposition of a Boolean function.

BS functions and the SS. The FS functions, FS (gi), drive the
data inputs of the multiplexer. These functions become part of
the composition function.

In this section, we first review the properties of the proposed
ACD, showing that it is as generic as the original definition
in [12], [13], and [14] (Section IV-A). Then, we show how
to efficiently check the existence of a feasible ACD and
divide variables into three sets: 1) FS; 2) BS; and 3) SS
(Section IV-B). Next, we show how to compute the decom-
position while minimizing the number of BS functions and
their support (Section IV-C). Finally, we discuss an alternative
method to maximize the number of variables in the SS
(Section IV-D).

A. Properties of ACD

First, we formalize the definition of ACD and discuss its
properties. Given the ACD shown in Fig. 3 and the disjoint
sets of variables �xbs, �xss, and �xfs, we name

�h(�xbs, �xss) = (h0(�xbs, �xss), . . . , hv−1(�xbs, �xss)) (4)

the set of BS functions of size |�h| = v. In Fig. 3, �h has size
v = 1 and is represented by L2. In Fig. 1, �h has size v = 2
and is represented by L2 and L3. An ACD can be expressed
by (2). In Fig. 3, L1 implements function g as a multiplexer
with M select lines connected to functions in �h and variables
in �xss, such that M = v + |�xss|. An input assignment to the
select lines of g selects a function gi(�xfs), where 0 ≤ i < 2M .

We demonstrate that our ACD decomposition is generic and
includes other formulations, such as the Shannon decomposi-
tion. Let us represent the function g as an ROBDD ordered
with variables �h and �xss located close to the root, while
variables �xfs are found close to the leaves. Let us draw a cut
line in the ROBDD, such that nodes are partitioned into two
disjoint sections: one dependent on �h ∪ �xss variables (denoted
by α) and one dependent on �xfs variables (denoted by β). In
our decomposition, α is implemented by the multiplexer of g,
and β is implemented by the FS functions gi. In particular,
the number of nodes in β at the interface of the cut is
equivalent to the number of unique gi functions. Notably, we
can extract β by drawing a cut in the ROBDD of f , with �xfs
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variables close to the leaves, separating �xfs from �xbs∪�xss (see,
e.g., [29] and [30]).

Since in our representation of ACD function g implements
a partitioned BDD, g is functionally complete, and ACD
can implement any decomposable function. Moreover, the
Shannon expansion (3), where x is a control input of the
multiplexer, can be represented by ACD as follows:

f = fxfx̄1+ fxf̄x̄x+ f̄xfx̄x̄+ f̄xf̄x̄0 (5)

where x is an FS variable, fx and fx̄ are the BS functions, and
FS functions gi are 1, x, x̄, and 0.

Definition 1: Variables in the SS that are not used by BS
functions are called independent SS variables (ISS variables).
Conversely, those that are used by BS functions are defined
as dependent SS variables (DSS variables).

According to the ACD definition in (2), independent shared-
set variable (ISS) variables would belong to the FS rather than
the SS, since they are not in the support of functions in �h.
However, in our decomposition, ISS variables serve as controls
for a multiplexer, while the FS variables provide support for
the FS functions, which feed into the data inputs for the
multiplexer. We demonstrate that our definition is equivalent
to the original one, i.e., if a decomposition with ISS variables
in the SS exists, it also exists with ISS variables in the FS.

Theorem 1: Let �xss = �xiss ∪ �xdss be an SS defined
as the union of two disjoint sets: one of independent
(�xiss) and one not independent (�xdss) SS variables. Then,
f (�xbs, �xss, �xfs) = g(�h(�xbs, �xdss), �xiss∪�xdss, �xfs) can be written as
g′(�h(�xbs, �xdss), �xdss, �xfs ∪ �xiss).

Proof: Let us suppose that �xiss contains a single variable a.
Function g is implemented as a multiplexer of M select lines
connected to �h, �xdss, and a, and 2M data inputs functions
{g0, . . . , g2M−1}. Then, each cofactor of g with respect to �h∪
�xdss variables is a function in the form ġ(a, �xfs) = a · gi(�xfs)+
ā · gj(�xfs) with 0 ≤ i < j ≤ 2M − 1. Since the number of ġ
cofactors cannot be larger than 2M−1, f can be decomposed
into the form f = g′(�h(�xbs, �xdss), �xdss, �xfs ∪ {a}) with variable
a in the FS. The generic case is proved by induction.

Finally, we state a theorem used in Section V to conduct
the search for a feasible decomposition.

Theorem 2: If a decomposition of function f into 2 levels
of k-LUTs with P variables in the FS does not exist, f cannot
be decomposed with P′ > P variables in the FS.

Proof: Let us suppose that a decomposition exists for P′ > P
and does not exist for P. The decomposition with P′ involves
at most k− P′ + 1 < k− P+ 1 LUTs. This is a contradiction
of the principles of information theory since a decomposition
using P′ has less information encoding than the one using P.

B. Finding Feasible Decomposition

After defining the properties of ACD, in this section we
present an efficient method to check the existence of a Boolean
decomposition and find an assignment of support variables
to the FS and the BS (and SS). In particular, we focus on
decomposition into a two-level k-input LUT structure. For
simplicity, in this section, we include the SS variables in
the BS.

The first step to derive a decomposition is to partition
variables into FS and BS. Given a truth table, our approach
enumerates different FSs. Let N be the number of variables
in the support of the function to decompose. Let P be the
number of variables to consider in the FS. The remaining N -
P variables are considered in the BS. The number of different
FSs is

(N
P

)
. Regarding the choice of value P when searching

for a feasible two-level decomposition, for an N-input function
and k-input LUTs, it is convenient to consider (N−k) variables
in the FS, so that at most k variables are considered in the BS.
For instance, when N = 8 and k = 6, we can choose P = 2
and evaluate 8 · 7/2 = 28 different two-variable FSs.

For each FS, the truth table is transformed to have the FS
variables as the least significant ones. The variable reordering
is performed using a dedicated procedure, which swaps two
variables at a time. Note that, when enumerating all the FSs,
the first FS composed of the P least significant variables in
the support of the function does not need variable swapping,
since the original truth table already reflects this order. Then,
every consecutive FS can be derived from a previous FS by
swapping one variable in �xfs with one in �xbs. The complexity
to explore all the FS is of

(N
P

)
swap operations. Fig. 2 shows

how a variable swap affects the truth table.
Each input assignment to the BS variables selects one

P-input function in terms of the FS variables. Specifically,
each P-input function is a cofactor with respect to variables
in �xbs. Given a truth table with this variable ordering, FS
functions are easily computed by extracting groups of 2P bits
at i · 2P offsets with i ∈ [0, 2(N−P)). Informally, FS functions
are bit-strings positioned next to each other in the bit-string
of the truth tables. Fig. 2 graphically depicts the extraction of
cofactors with respect to the two most significant variables.

Example 1: Consider a six-variable function represented in
hexadecimal as the truth table f = 0x8804800184148111.
Assume that the FS variables are the two least significant
variables and the BS variables are the four most significant
ones. The functions in terms of FS variables have truth tables
with 2P = 4 bits. There are 2(N−P) = 16 of these functions,
corresponding to hexadecimal digits in the truth table (0×8,
0×8, 0×0, 0×4, etc).

The target function can be realized using M BS functions
if the number of unique FS functions, known as column
multiplicity μ, does not exceed 2M , hence M ≥ �log2(μ)�. If
P+M ≤ k, the composition function fits into one k-LUT.

Example 2: Continuing Example 1, there are 16 FS func-
tions, of which only four are unique. The FS functions are
0×8, 0×0, 0×4, and 0×1. Hence, the column multiplicity
μ = 4, which requires M = �log2(4)� = 2 or more BS
functions. Hence, this partition of variables into FS and BS
produces a feasible support-reducing decomposition into four-
input LUTs. Using Fig. 3, ACD assigns FS functions to gi.
Then, two BS functions of at most four inputs are necessary
to select the correct FS function.

We employ the enumeration of FSs while counting the
number of unique cofactors to check if a support-reducing
decomposition exists. In practice, a sufficient condition for
a two-level decomposition to exist, is to have M + P ≤ k
and N − P ≤ k, i.e., the composition function is k-feasible,
and the number of remaining variables in the BS does not
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exceed k. However, a decomposition could have N−P > k and
k-feasible BS functions, as shown in Fig. 1. In this case, it is
not sufficient to partition variables into FS and BS to guarantee
a 2-level decomposition (unless there are ISS variables that can
be moved to the FS, by Theorem 1, to make N−P ≤ k true).
Consequently, each potential decomposition with N − P > k
and P+M ≤ k, similar to the one in Fig. 1, must be checked
to be two-level decomposable by computing minimal-support
BS functions as shown in Section IV-C. Due to this additional
computation, the latter ACD is often too slow to be used in
mainstream LUT mappers or resynthesis engines.

After partitioning variables into FS and BS and computing
the corresponding unique FS functions, our method uses the
techniques in Section IV-C to produce a decomposition while
minimizing the number of BS functions and their support.

C. Functional Encoding and Support Minimization

Once a partition of variables into FS and BS with a feasible
decomposition is found, the BS functions are extracted by
assigning each FS function a code. Informally, an encoding
represents the assignment of FS functions to the data inputs of
the MUX of Fig. 3 (e.g., the encoding of g1 is 01). While any
encoding that distinguishes FS functions is a valid solution,
a good encoding also minimizes the number of BS functions
and their support. It is crucial to find an encoding that
minimizes the support for three reasons. First, if N − P > k,
by minimizing the support, each BS function may ideally fit
into a k-LUT, allowing for a two-level decomposition. Second,
minimizing the support maximizes the SS (an SS variable is a
BS function represented by a buffer), reducing the number of
required LUTs. Third, the number of edges is reduced, helping
routability. Finding a feasible encoding is similar to solving
constrained encoding problems [31], [32], [33].

An encoding assigns a code T = tM−1 . . . t0 of length M
to each of the FS function. A variable ti takes value 1, 0,
or −, indicating the ON-set, OFF-set, and don’t-care (DC)-
set, respectively. A minimum-length encoding is an encoding
of length M = �log2(μ)�. An encoding is strict if a unique
term T is assigned to each FS function, resulting in a Boolean
function. An encoding is nonstrict if multiple pair-wise disjoint
terms T can be assigned to each FS function, resulting in a
Boolean relation. For instance, given M = 2 and μ = 3, an
assignment “1−” to an FS function is strict, while “01∨10” is
nonstrict. In this work, we only utilize strict encodings since
nonstrict encodings are too many to be efficiently enumerated
in a fast ACD implementation. Moreover, experimental evalua-
tions on practical functions suggest that nonstrict encodings do
not improve much the quality of the decomposition. For further
details on the number of possible encodings, refer to [30].

Let i-sets be the set of μ Boolean functions in terms of the
BS variables encoding FS functions using one-hot encoding.
Specifically, an i-set represents one FS function and takes
value 1 when an input assignment to the BS variables selects
the corresponding FS function.

Example 3: Using Example 2, the i-set corresponding to
the FS function 0×8 is 1100100010001000 in binary format.
Note that, the truth table depends on N − P variables and has
value 1 when the original function is 0×8.

I-sets are used to derive a more compact encoding with a
two-step procedure. The first step enumerates candidate BS
functions. The second one solves an unate covering problem,
in which columns are candidate BS functions and rows are
pairs of FS functions to be distinguished.

Candidate BS functions are functions depending on BS
variables whose output can used as ti to encode FS functions.
They are enumerated by combining i-sets. To leverage all the
functional degrees of freedom of a strict encoding, i-sets in
a BS candidate can be either in the ON-set, OFF-set, or DC
set. Since candidate BS functions are used as control inputs
of a multiplexer, they can distinguish elements in the ON-set
(takes value 1) against elements in the OFF-set (takes value 0).
In encoding problems, BS functions are called dichotomies,
while pairs of functions to be distinguished can be interpreted
as seed dichotomies [33]. DCs are also important to minimize
the support, which translates into fewer LUT fanins.

Example 4: Continuing Example 3, let us consider the
candidate BS function h that has the i-sets {0×8, 0×1} in the
ON-set, the i-set {0×4} in the OFF-set, and the i-set {0×0}
in the DC-set. Its function in the binary format is h =11-
01--110101111, where “−” is a don’t care. When h = 1,
either 0×8 or 0×1 are selected. When h = 0, 0×4 is selected.
The corresponding dichotomy is {{0×8, 0×1},{0×4}}. In
this case, function h distinguishes 0×8 from 0×4 and 0×1
from 0×4, covering two seed dichotomies {{0×8},{0×4}} (or
{{0×4},{0×8}}) and {{0×1},{0×4}} (or {{0×4},{0×1}}).

A candidate BS function is generated by assigning each
i-set to the ON-set, OFF-set, or DC-set. Hence, the total
number of possible BS candidate functions is 3μ. Nonetheless,
some BS candidate functions are interchangeable, i.e., one
candidate can be obtained by swapping the ON-set and the
OFF-set of another candidate. Our enumeration removes these
symmetries. Moreover, in a minimum-length encoding, each
candidate must have at least r i-sets in the ON-set and r i-sets
in the OFF-set, where r is defined as

r(μ) = μ− 2�log2(μ−1)�. (6)

Candidates that do not satisfy this constraint are eliminated
as they cannot encode FS functions. For instance, if μ is a
power of 2, then r = μ/2, implying that each candidate must
distinguish half of the FS functions against the other half. The
number of possible BS candidate functions is given by the
following formula depending on μ:

E(μ) = 1

2
·
μ−2r(μ)∑

i=0

⎡

⎣
(

μ

i

)
·
μ−i−r(μ)∑

j=r(μ)

(
μ− i

j

)⎤

⎦. (7)

Note that, when μ is a power of 2 the number of possible BS
candidate functions reduces to

(
μ

μ/2

)
/2.

A limitation of this method is that the number of candidates
grows rapidly with increasing column multiplicity. However,
we may further reduce the number of BS candidate functions
when it is too large. In particular, for an ACD into six-LUTs
the maximum column multiplicity to support is 16 and (7) is
maximized for μ = 13 with 91 377 candidate BS functions.
To maintain a reasonable number of candidates to reduce run
time, our method does not use the DC-set for problems with
μ > 8, lowering the maximum number of candidates to 6435.
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Fig. 4. Covering table to solve the encoding problem.

This choice has a marginal effect in quality. This simplification
removes the leftmost sum and fixes i = 0 in (7).

Each BS candidate function is associated with a cost that
depends on the number of variables in its support. The
number of variables is computed using a special procedure that
considers don’t cares. Each variable is checked individually.
If the incompletely specified BS candidate function remains
equivalent when a variable is assigned both constant 0 and
constant 1, that variable is not in the functional support and
can be removed. Then, a covering table is constructed by
having all the pairs of FS functions to be distinguished (seed
dichotomies) as rows and the BS candidates as columns. A
row-column entry (i, j) is 1 if the BS candidate function
of column j distinguishes the seed dichotomy i. A support-
minimum solution is computed by solving a minimum-cost
covering problem [33]. The solution must cover all the rows
while minimizing the cost. We use greedy covering followed
by local search to compute a minimum-cost cover. A single
iteration of greedy covering extracts one column covering the
most noncovered rows while minimizing the cost. The process
is iterated until a solution is found. Then, the solution is
iteratively improved by replacing one column with another
column having a lower cost.

Example 5: Fig. 4 shows a covering table reflecting the
examples in this section. Each column is a candidate BS
function shown as a truth table in hexadecimal format on four
variables. Each BS candidate function has a cost based on the
number of variables on its support (showed above). Each row
is a seed dichotomy. An element (i, j) in the table is 1 if the
BSj distinguishes the seed dichotomy i. The best solution with
cost 6 takes the second and third columns and leads to two
BS functions depending on three variables.

Given a solution, an encoding of the FS functions is
obtained by assigning a code T = tM−1 . . . t0, in which each
signals ti corresponds to a selected BSi candidate.

Example 6: Continuing Example 5, a minimum cover
results in BS0 = 0×1177, by putting 0×4 and 0×1 in the
ON-set, and BS1 = 0×2727 by putting 0×0 and 0×1 in
the ON-set. Both BSs depend only on three variables. Given
the BS functions, the encoding of the FS functions assigns
the following codes to gi in Fig. 3: T0x8 = 00, T0x4 = 01,
T0x0 = 10, and T0x1 = 11. Finally, the composition function
is computed using the FS functions and the selected encod-
ing, resulting in function 0×1048, in hexadecimal format.
Consequently, the function has been successfully decomposed
using three four-LUTs. The final result of decomposition

Fig. 5. AC decomposition of the Boolean function 0×880480018414811.

is shown in Fig. 5, after minimizing the support of BS
functions.

D. Maximizing the Shared Set

The number of LUTs required to implement the BS func-
tions can be minimized using the SS. In Section IV-C, we
presented a generic method to find an encoding that minimizes
the LUT count and the support size. Alternatively, to check
whether a decomposition with L ∈ [0, M) single-variable
functions (or buffers) and M - L nonbuffer BS functions exists,
our method may enumerate subsets of L out of N - P variables,
with a total of

(N−P
L

)
subsets. For each subset, the method

checks if the number of unique FS functions in each cofactor
with respect to L variables does not exceed 2M−L. If this is
the case, a decomposition with L variables in the SS exists.

Example 7: Consider the truth table 0×ffff0880ffff0000
with P = 2 and unique FS functions 0×f, 0×0, and 0×8. Let
us check the existence for an SS when M = 2 using L = 1.
If the most significant variable is in the SS, the truth table
is divided into two cofactors 0×ffff0880 and 0×ffff0000. The
number of unique FS functions in the first cofactor exceeds
22−1 = 2. Hence, the most significant variable cannot be
shared. However, the second most significant variable, with
cofactors 0×ffffffff and 0×08800000, can be shared.

V. TECHNOLOGY MAPPING WITH ACD

In this section, we leverage the ACD methods described in
Section IV to improve the delay of LUT networks. ACD can be
used in two ways: 1) as part of LUT mapping or 2) as a post-
mapping resynthesis method to compact logic and decrease the
delay. In this work, we focus on the former usage since it has
more flexibility and offers good optimization opportunities.
While this work does not cover post-mapping resynthesis, its
implementation would involve extracting cuts consisting of a
few LUTs, computing the cut function as a truth table, and
finally performing ACD. If the new implementation is better,
it replaces the old one. For an example of how this resynthesis
engine could be implemented, we refer the reader to [34]. First,
this section discusses how to perform delay-oriented functional
decomposition for any number FS variables and BS functions.
Then, it describes the integration of ACD in a technology
mapper.
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Algorithm 1: ACD Evaluation
1 Input : Truth table tt, LUT size k, Late vars set S
2 Output: Propagation delay
3 reorder_variables(tt, S);
4 μbest ←∞;
5 �xfs ← ∅;
6 for Pi ← max(num_vars(tt)− k, |S|) to k − 1 do
7 {μ, �x′fs} ← compute_smallest_multiplicity(tt, Pi, |S|);
8 if μ ≤ 2k−Pi and μ < μbest then
9 μbest ← μ;

10 �xfs ← �x′fs;
11 continue;

12 break;

13 if μbest �= ∞ then
14 return compute_propagation_delay(tt, �xfs);

15 return infinite_propagation_delay();

A. Delay-Oriented ACD

Let us consider a node n in a k-LUT network and a cut C
rooted in n that contains leaves in the input subnetwork of n.
Among all the leaves, some are timing-critical and some are
not. Let D be the latest arrival time of a leaf in C. We use
ACD to find an implementation that realizes the function of
cut C with delay D+ 1, when |C| > k, assuming a unit-delay
model. Specifically, we put the timing-critical leaves of C into
the FS and other noncritical ones into the BS or SS. This
transformation, when applied on the critical path, may reduce
the worst delay of an LUT network.

The ACD-based transformation is performed in two steps.
First, our method verifies the existence of a delay-minimizing
decomposition. Second, if a decomposition exists, it solves the
encoding problem and returns a solution.

1) Checking the Existence of Decomposition: Algorithm 1
shows the procedure evaluate used to check the existence of
an ACD. The algorithm receives the function represented as
a truth table tt of a large cut of size N, where N > k. Set S
contains a list of timing-critical variables with delay D. First,
the truth table is transformed to have critical variables as the
least significant ones since they must be in the FS (at line 3).
The proposed approach limits N − P ≤ k targetting a two-
level decomposition without solving the encoding problem.
Hence, the number of variables in the FS must be at least P ≥
N−k, and P ≥ |S| to include all the delay-critical variables (in
line 6). For each FS of Pi variables, the column multiplicity
value is computed using the method described in Section IV-B,
and the smallest one is returned (at line 7). In this case,
since delay-critical variables are always part of the FS,

( N
Pi−|S|

)

different combinations are enumerated. If the configuration
with the smallest column multiplicity is implementable using
at most k− Pi BS functions, a delay-minimizing ACD exists.
In this case, variables in the FS have the delay increase of 1
while other variables have the delay increase of 2 (at line 14).
If, on the other hand, a decomposition with Pi does not exist,
the function is not decomposable.

The loop in line 6 checks the existence of a decomposition
starting with a smaller value of P. Notably, if a decomposition

with P does not exist, neither does it exist with P + 1,
according to Theorem 2. Then, if a decomposition exists, the
loop attempts to identify ISSs to add to the FS, according to
Theorem 1. Specifically, maximizing the FS to include noncrit-
ical variables has multiple benefits. First, the decomposition
would have a reduced column multiplicity, which simplifies
the encoding problem. Additionally, including ISS in the FS
may reduce the required time of the associated noncritical
signals, facilitating area recovery during technology mapping.

2) Computing the Decomposition: After applying evaluate,
another procedure decompose computes the actual decompo-
sition, as described in Section IV-C.

B. LUT Mapping With ACD

The methods described in Section V-A have been integrated
into an LUT mapping algorithm. State-of-the-art technology
mapping typically performs delay minimization followed by
multiple iterations to recover area [24]. Each mapping iteration
computes k-feasible cuts rooted in nodes of the subject graphs
and selects one best cut for each node based on the cost
function and slack. Typically, enumerated cuts are k-feasible,
meaning they can be implemented using a k-input LUT. In
our implementation, cut enumeration computes large cuts up
to size k < l ≤ 11, where one is provided by the user.
During cut enumeration, the mapper computes cut functions as
truth tables. For the non-k-feasible computed cuts, the mapper
uses Algorithm 1 to check the existence of a delay-minimizing
decomposition into k-LUTs. If a decomposition does not
exist, the cut is discarded. If a decomposition exists, the cut
delay is computed using the propagation delay returned by
Algorithm 1. The area is estimated using column multiplicity.
Specifically, to have precise area information, i.e., the number
of required LUTs, ACD has to solve the encoding problem
and compute the decomposition. However, experimentally, not
running the decomposition on the fly reduces the run time
considerably with a negligible impact on the final area. The
area is estimated conservatively, neglecting the existence of an
SS, i.e., Area = �log2 μ� + 1.

The mapper uses l-feasible cuts with ACD in the delay
mapping pass, while it uses k-feasible cuts in the following
area recovery. Note that, area recovery aims at improving the
solution over noncritical paths and can reuse the best cuts from
the previous passes, while assuring that the required times
are met. After the last mapping pass, a cover is generated
consisting of k- and l-feasible cuts. At this stage, the mapper
decomposes non-k-feasible cuts into k-LUTs.

VI. MAPPING INTO IN-SLICE CASCADES

As mentioned in the introduction, the delay in the mod-
ern FPGAs is often dominated by that of programmable
interconnect. To reduce the need for signal routing, one
approach modifies the FPGA architecture to include non-
routable connections between LUTs. For instance, recent
FPGAs produced by AMD have CLBs divided into slices. A
slice contains eight LUTs that can be used independently, with
external routing or using internal cascade connections [10].
Specifically, a slice LUT LUTi, with 0 ≤ i < 8, may connect
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one of its 6 inputs to LUTi−1, forming a cascade structure. An
in-slice cascade connection is 10 to 40 × faster than standard
interconnect, which helps delay optimization.

Although in-slice nonroutable connections are available,
LUT networks generated by the traditional LUT mapping do
not use them efficiently. This is because a placement algorithm
may fully leverage nonroutable connections only for LUTs on
the critical path with one critical fanin. In practice, however,
LUTs on the critical path tend to have multiple critical fanins,
making it hard for the placement algorithm to utilize cascade
structures.

An efficient way to leverage cascade connections is to
generate mappings of LUTs into cascades during technology
mapping. LUT cascades can be generated by decomposing
large non-k-feasible functions. In the section, we use the ACD
method of Section IV to compute decompositions into specific
structures of two LUTs, called “kk” decomposition. Contrary
to previous approaches [11], our approach is not based on a
heuristic and may support more than one variable in the SS.
Specifically, it always finds a solution if it exists.

A. ACD Into Two LUTs

A decomposition into two LUTs is a special type of ACD
with a single BS function and possibly multiple SS variables.
Since BS functions are limited to one, the problem has a
lower complexity than the generic case. Here, we propose a
dedicated algorithm to solve this problem more efficiently.

For a truth table on N variables, a kk decomposition may
exist for N < 2 · k. According to Theorems 1 and 2, it is
sufficient to test the decomposition for P = N − k, when
allowing for multiple variables in the SS. Specifically, this is
the minimum number of variables to have a k-feasible BS
and a decomposition. Note that, a decomposition with P <

N − k (or N − P > k) may exist only if there are at least y
independent variables in the SS, such that P + y = N − k.
Since, by Theorem 1, ISS variables can always be moved into
the FS, and, by Theorem 2 a smaller FS has more solutions
than a larger one, P = N − k is the only necessary FS size to
check.

Algorithm 2 shows a sequence of steps to perform a
decomposition into two LUTs. The algorithm takes as inputs
a truth table tt, the number of its support variables N, and
the LUT size k. First, P and the permutation vector Perm are
initialized. Vector Perm is necessary to track the order of the
variables during the enumeration of combinations, compared
to the original one, and to compute the next combination.
A loop iterates on all the possible P combinations of N.
The method next_combination (at line 12) computes a new
combination from the previous one by swapping one variable
in the FS with one in the BS. The returned truth table reflects
the new variable order. The column multiplicity μ is computed
for the truth table tt (at line 6). If μ = 2, a decomposition
exists with one BS function. Since the structure is limited
to one BS function, for μ > 2 the method searches for SS
variables. First, Lmin is computed to minimize the number of
shared variables. Then, the algorithm searches for an SS of
L elements, employing the techniques of Section IV-D. The

Algorithm 2: ACD Into Two LUTs
1 Input : Truth table tt, number of variables N, LUT size k
2 Output: Decomposition if it exists
3 P← N − k;
4 Perm← {0, 1, 2, . . . , N − 1};
5 for

(N
P
)

iterations do
6 μ← compute_multiplicity(tt, P);
7 Lmin ← �log2 μ� − 1; � Required variables in SS
8 if P+ Lmin < k then
9 �xss ← compute_shared_set(tt, N, P, k, Lmin);

10 if P+ |�xss| < k then
11 return decompose(tt, N, P, k, Perm, �xss);

12 tt← next_combination( tt, N, P, Perm );

13 return not decomposable;

search for an SS is performed for Lmin ≤ L < k − P, which
also allows for nonminimum-length encodings. If an SS exists,
the corresponding decomposition is returned. Otherwise, if the
conditions in the for loop are not met, the function is not
decomposable into 2 LUTs.

In case of an implementation constraining the maximum
number of variables in the SS, Algorithm 2 is modified to
additionally explore different sizes P, similarly to Algorithm 1.
This is because Theorem 2 is not valid when limiting the
maximum number of BS functions and SS variables because it
constraints the maximum value of encoding M. Hence, when
�log2(μ)� > Mmax there might be ISS variables to include in
the FS to make �log2(μ

′)� ≤ Mmax.

B. Mapping Into LUT Structures

We follow the method proposed in [11] for mapping into
LUT structures. Specifically, the LUT mapper performs cut
enumeration using cuts up to size l with k < l ≤ 2× k,
derives their functions as truth tables, and checks if the
functions are decomposable into a kk structure. If a function
is decomposable, the area and delay are assigned based on a
given LUT library. If the function is not decomposable, the cut
is ignored. An LUT library specifies the area and delay of an
LUT based on its size. Similarly to Section V-B, the mapper
begins by minimizing delay, followed by several iterations of
area recovery. Contrarily to Section V-B, the mapper uses ACD
decomposition of lFor our experiments, 872 we l-feasible cuts
during all mapping iterations.

VII. EXPERIMENTS

This section presents an experimental evaluation of the
proposed LUT mapping with ACD. First, we evaluate the
ACD-based algorithms proposed in this article on practi-
cal functions extracted from open-sources hardware designs.
Then, we evaluate ACD in the context of delay-driven LUT
mapping. Finally, we present the results of mapping into LUT
cascade structures. While the experiments are reported for six-
input LUTs, similar improvements have been obtained also for
four-input LUTs.

The proposed methods have been implemented and are
available in the open-source logic synthesis framework
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TABLE I
DECOMPOSITION SUCCESS RATIO INTO TWO SIX-LUTS FOR PRACTICAL FUNCTIONS USING DIFFERENT ACD METHODS

ABC [35]. For our experiments, we use the EPFL
combinational benchmark suite [36] containing several
circuits provided as AIGs. The baseline has been obtained
using the following script “dfraig; resyn; resyn2;
resyn2rs; if -y -K 6; resyn2rs;” in ABC,
which perform a high-effort size and depth AIG optimization.
In particular, it combines SAT sweeping [37], scripts for
delay-oriented AIG optimization [21], and lazy man’s
logic synthesis [38], which is the most aggressive depth
minimization for AIGs in ABC. The experiments have been
conducted on an Intel i5 quad-core 2 GHz on MacOS. The
results have been verified using combinational equivalent
checkering in ABC.

We extended the LUT mapper if (and &if) in ABC to
perform ACD, as discussed in Sections V and VI. The
following commands are used in the experiments.

1) dch (-f): Computes structural choices used to miti-
gate the structural bias [4], where -f stands for “fast”.

2) if -K 6: Performs delay-oriented technology map-
ping with choices into six-LUTs using six-feasible cuts.

3) if -s -S 66 -K 8: Performs delay-oriented
technology mapping using eight-feasible cuts and
decomposes logic for minimal delay into two six-LUTs
using a SAT-based formulation.

4) if -Z 6 -K 8: Performs technology mapping into
six-LUTs using the proposed delay-oriented implemen-
tation of ACD described in Section V on eight-feasible
cuts.

5) if -S 66: Performs technology mapping based on
a given LUT library and packs logic into a structure
composed of two six-LUTs using the ACD method
from [11].

6) if -J 66: Performs technology mapping based on
a given LUT library and packs logic into a structure
composed of two six-LUTs using the ACD method
described in Section VI.

7) st: Derives an AIG from an LUT network.

A. Decomposition Success Rate

In this experiment, we evaluate the performance of ACD in
decomposing functions by comparing it against other imple-
mentations of Boolean decomposition in ABC. Specifically,
we test the number of functions that can be successfully
decomposed and the run time needed. We run this experiment
on practical functions, i.e., functions collected in hardware
designs and benchmarks, which include fully decompos-
able, partially decomposable, and nondecomposable functions.
Practical functions tend to be much less than all possible
functions since designs are never completely random. We

extract practical functions from the EPFL benchmarks [36] by
recording all the functions encountered during cut enumeration
in a technology mapper. Since the number of practical func-
tions can be large, we classify them into NPN -equivalence
classes employing the heuristic sifting algorithm [39].

Table I shows the percentage of decomposable functions
and the run time for different methods and support sizes. For
instance, the first column contains results for decomposing
practical seven-input functions, where (41 071) indicates the
number of unique functions collected after computing NPN
canonical forms. Each row of the table shows one ACD
method. The first row S66 presents the state-of-the-art method
in [11] to decompose into an LUT structure composed of two
six-LUTs. Note that, S66 supports no more than one variable
in the SS. The next approach lutpack [19]1 performs a heuristic
ACD using DSD and the Shannon expansion, supporting up
to 3 variables in the SS. Finally, we present two variants of
the decomposition method into LUT structures composed of
two six-LUTs described in Section VI, denoted J66. J66 1-SS
uses up to one variable in the SS to better compare against
S66. Meanwhile, J66 M-SS has no restrictions on the number
of SS variables.

Table I shows that the approaches described in this article
outperform state-of-the-art. In particular, J66 1-SS has a sig-
nificantly better success rate in all columns and better run time
up to nine-input functions, compared to S66. Notably, while
searching for a decomposition with the same characteristics,
J66 1-SS always finds a solution if it exists (under the 1-SS
limitation), while S66 does not always find it because it uses
heuristics. This leads to an improvement in success rate that
peaks at 25.7%. This table shows the potential of the methods
proposed in this work, which can outperform state-of-the-art in
quality and run time. J66 M-SS further improves the results for
functions between seven and nine inputs, with an improvement
that peaks at 32.58%, compared to S66.

Regarding the run time, while Table I shows that S66
is generally faster than J66, J66 is, on average, faster for
decomposable functions and considerably slower for nonde-
composable ones. In fact, J66 enumerates all the possible FSs
to find a solution if it exists, while S66 limits the exploration
to a smaller subspace.

B. Decomposition Success Rate for Delay Optimization

We extend the previous experiment to evaluate delay
minimization using the proposed ACD methods. This

1We modified lutpack in ABC to perform only the decomposition required
by the experiment without the overhead of the resynthesis engine.
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TABLE II
DECOMPOSITION SUCCESS RATIO INTO TWO LEVELS OF SIX-LUTS FOR

PRACTICAL FUNCTIONS GIVEN LATE ARRIVING VARIABLES

experiment tests the success rate of a delay-minimal decom-
position for practical functions given delay-critical variables
required to be in the FS. Informally, for delay-critical variables
with delay D, this experiment checks the existence of a
decomposition with delay D+ 1. The other variables are con-
sidered to have delay D− 1. We only consider J66 M-SS and
generic ACD since other known methods do not perform delay
minimization using input arrival times. We show lutpack [19]
only for the first row to perform a two-level decomposition,
without limiting the number of LUTs. For each function,
we randomly generate up to ten unique sets of delay-critical
variables and test the decomposition for each one of them.

Table II shows the success rate of decomposing practical
functions based on the number of delay-critical variables,
shown in column “N late.” Generic ACD has a high success
rate in most cases. Limitations occur when the number
of delay-critical variables exceeds three or the number of
variables in the support is ten or more. Generally, the decom-
position of 11-input functions is rare. However, many ten
input functions are still decomposable. Furthermore, the table
highlights the advantages of using multiple BS functions,
with a success rate difference between J66 and generic that
peaks at 55.57% for nine-input functions, given three delay-
critical variables. Thus, in this case, it is 55% more likely
to find a solution to a delay-driven decomposition problem
if we consider the most general two-level ACD formulation,
compared to the case when only J66 is used.

C. Delay-Driven LUT Mapping

Table III compares four technology mapping strategies for
delay minimization during mapping into 6-LUTs, assuming a
unit-delay model. Each strategy takes the baseline as an input
and computes structural choices before mapping. Structural
choices have not been used for the benchmark hyp due to a
known bug in ABC. The proposed method is compared against
standard LUT mapping and mapping into LUT structures. In
the rightmost column, command ACD denotes the sequence
“dch; if -Z 6 -K 8.” We do not compare against [11]
and [19] because those methods perform only area-oriented

ACD. Furthermore, we do not compare against the recent
mapper with gate decomposition based on bin-backing [40].
Nevertheless, the mapper in [40] can improve the delay of if
by only 0.31% on average.

Mapping into LUT structures “66” composed of two six-
LUTs, which is based on a limited version of structural ACD,
reduces depth by 1.04% and the area by 2.57% on average,
at the cost of increasing the number of edges by 2.57%. The
proposed LUT mapping with ACD improves the depth of
the LUT network by 7.52% on average while increasing the
number of LUTs and edges by 8.13% and 7.87%, respectively.

Note that, most of the improvements are due to the first
ten benchmarks since others are already close to their optimal
depth. For four of them, the delay reduction exceeds 20%
and is up to 27.27%. Practically, part of the area increase
can be reduced by area recovery [19], [41], [42], using delay
relaxation, or by an additional mapping step applied after
ACD. The rightmost strategy performs the latter option. The
LUT count and edge count are reduced considerably, leading
to an area improvement of 2.20%, compared to traditional
technology mapping with choices. Also, the logical depth
further decreases up to 54.55%. To achieve this, the LUT
network after ACD is used as a structural choice to improve
the next round of mapping because choices extracted from
mapping with ACD are more structurally suited to delay-
oriented mapping, compared to the original AIG. Moreover,
structural choices help reduce the area on the noncritical
paths. Note that, a second mapping round does not give
practical benefits if applied after the default LUT mapper
(leftmost column) since the network after deriving the AIG is
structurally similar to the baseline. Furthermore, benchmark
hyp is noticeably improved by remapping both in area and
delay, although it does not use structural choices. Regarding
the run time, mapping with ACD is much faster than mapping
into LUT structures while being more general.

D. EPFL Synthesis Competition

In Table IV, weshows that ACD-based LUT mapping can
improve well optimized LUT networks, resulting in best
known results for four benchmarks in the ongoing EPFL
synthesis competition. The previous best results were obtained
using a portfolio of heavy logic optimization applied to
various representations, such as AIGs and LUT networks. In
recent years, results have been further improved using DSE
techniques that incrementally generate optimization scripts and
visit multiple points of the design space. Examples of these
methods are: Bayesian optimization [44], reinforcement learn-
ing [45], machine learning, and other heuristic approaches.

We compete in the best delay competition by using standard
delay-oriented scripts in ABC and LUT mapping with ACD.
We do not use DSE to show that the proposed method
outperforms or gets close to the best results in the competition.
We obtain the optimized AIGs by repeatedly running the
script used in the baseline of Table III along with additional
delay-oriented AIG commands in ABC. For the resulting
AIGs, we compare traditional LUT mapping with choices and
LUT mapping with ACD. Notably, results by the traditional
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TABLE III
COMPARISON OF DELAY-DRIVEN LUT MAPPING, LUT MAPPING TO 66 STRUCTURE, AND LUT MAPPING USING ACD

TABLE IV
LUT MAPPING IN THE EPFL SYNTHESIS COMPETITION

mapper are quite far from the best results. This observation
shows that our technology-independent optimization finds
worse AIGs than those used to obtain the best results,
as expected. However, LUT mapping with ACD matches
or improves the depth for almost all the benchmarks. The
improved benchmarks are hyp, log2, multiplier, and square.
Remarkably, our method reduces the depth of hyp by ten
levels, compared to state-of-the-art while also reducing area
by 15%. In the benchmark multiplier, our result matches the
depth but improves the number of LUTs. Benchmark sin is
the only one where there is a large gap compared to the best
result. It is likely that the best result for sin requires significant
logic duplication not performed in our synthesis flow.

Unlike many other methods used to produce the best results,
our results in Table IV are obtained directly by LUT mapping
without post-mapping optimization. For instance, if we use
LUT resubstitution, the area of multiplier is further reduced
to 6499 nodes. Even better results are expected by integrating
ACD-based LUT mapping into a DSE flow.

E. Mapping Into LUT Structures

In this experiment, we perform technology mapping into
LUT structures by leveraging nonroutable cascade connections

of LUTs in FPGA architectures. Specifically, motivated by the
high cost of routing, we assume that a six-LUT and a cascade
of two six-LUTs both have unit delay. A more precise model
would assign propagation delay of about 1.2 to the signals
in the BS of an LUT cascade and unit delay to the signals
connected to the composition function. However, the mapper
in [11] only supports a fixed delay assignment to all the
signals. Hence, we assume the delay of a cascade to be unitary
to not penalize the quality of mapping into LUT structures.
We run all the mappers with the same parameters to perform
minimal-delay mapping. Mappers running ACD use cuts up
to ten inputs.

Table V compares traditional LUT mapping with choices,
the LUT structure mapping [11], and the proposed method
described in Section VI supporting one (1-SS) or multiple
(M-SS) SS variables. S66 improves the traditional mapper by
30.74% in delay while increasing area and the number of
edges. For many benchmarks, the area increases due to logic
duplication to minimize delay. Notably, J66 1-SS considerably
improves all the metrics, compared to S66. The improvement
comes from the better success rate of the decomposition shown
in Table I. Moreover, J66 M-SS achieves further improvement,
compared to S66, reducing the average delay, area, and edge
count by 6.22%, 3.82%, and 3.09%, respectively, with a faster
run time. Remarkably, for designs with a similar delay to
the traditional mapper, J66 achieves a large reduction in the
number of LUTs and edges. This is because J66 successfully
mitigates structural bias. For instance, for benchmark int2float,
J66 M-SS reduces the number of LUTs by 27%. For the
same benchmark, S66 reduces the number of LUTs only by
1.92%. Similar improvements are also observed for all the
benchmarks when performing area-oriented mapping, instead
of delay-oriented mapping. Another interesting benchmark is
cavlc, where multiple SS variables significantly improve the
delay, area, and the edge count.

Finally, while S66 is generally faster than J66 for large
functions, the mapping time of J66 is better than S66. This
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TABLE V
COMPARISON OF DELAY-DRIVEN LUT MAPPING AND MULTIPLE ACD-BASED MAPPING INTO 66 CASCADE STRUCTURES

is because J66 is faster when applied to frequently appearing
decomposable functions and slower when applied to nonde-
composable functions. After all, it uses more effort to find a
solution. For instance, on the benchmark sqrt, which has a
considerable run time difference between S66 and J66, only
2.93% of all cuts are not decomposable by J66, against an
11.45% of S66. Moreover, only 10.35% of ten-input cuts
are not decomposable by J66 M-SS, while 39.48% are not
decomposable by S66. Finally, run time could be further
reduced by taking advantage of GPU-based LUT mapping
implementations [46].

VIII. CONCLUSION

This work proposes a novel formulation of ACD to enable
efficient technology mapping and post-mapping resynthesis.
The algorithm is truth-table-based and flexible in terms of the
sizes of the FS, BS, and SS, which makes it well-suited for
delay optimization. We have shown that our Boolean decom-
position improves state-of-the-art in decomposition quality
with a competitive run time. We have implemented and
integrated the proposed method into a delay-driven LUT
mapper. The experiments show that LUT mapping with ACD
can improve the average delay by 12.39%, compared to
traditional structural LUT mapping with choices. Furthermore,
the proposed approach has found four new best results in
the EPFL synthesis competition. Finally, we applied ACD to
perform mapping into LUT cascade structures, outperforming
state-of-the-art in all metrics.

The findings of this work have impact beyond technology
mapping. LUT mappers are key in DSE engines and in various
optimization flows, for example, in those used for standard
cells [47]. Hence, the methods proposed in this article may
significantly improve the quality of logic synthesis tools,
especially for delay optimization.
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