
Back-end-aware Fault-tolerantQuantum Oracle Synthesis
Mingfei Yu

Integrated Systems Laboratory, EPFL
Lausanne, Switzerland

Alessandro Tempia Calvino
Integrated Systems Laboratory, EPFL

Lausanne, Switzerland

Mathias Soeken
Microsoft Quantum
Zurich, Switzerland

Giovanni De Micheli
Integrated Systems Laboratory, EPFL

Lausanne, Switzerland

Abstract
Quantum oracle synthesis involves compiling arbitrary Boolean
functions into quantum circuits using specific quantum gates sup-
ported by the target quantum computer. The Clifford+T gate li-
brary is particularly common in fault-tolerant quantum computing
systems. Utilizing XOR-AND-inverter graphs (XAGs) as the logic
representation for the target Boolean functions has received ex-
tensive attention due to the observed direct correlation between
the number of AND nodes in an XAG and the T count and the
helper qubit count of the quantum oracle optimally compiled from
it. However, to be deployed onto fault-tolerant quantum hardware,
quantum gates must be further re-expressed by logical quantum
error correction (QEC) code operations, a process known as back-end
compilation. This paper enhances the current XAG-based oracle syn-
thesis techniques by establishing a link between the properties of
XAGs and quality measures of back-end-compiled quantum oracles.
This link unlocks more optimization opportunities—experimental
results demonstrate average reductions of 4.49% in T count, 7.00%
in logical time steps, and 14.89% in helper qubit count, respectively,
on benchmarks optimized by the proposed back-end-aware XAG
optimization approaches.

ACM Reference Format:
Mingfei Yu, Alessandro Tempia Calvino, Mathias Soeken, and Giovanni De
Micheli. 2025. Back-end-aware Fault-tolerant Quantum Oracle Synthesis.
In 30th Asia and South Pacific Design Automation Conference (ASPDAC ’25),
January 20–23, 2025, Tokyo, Japan. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3658617.3697776

1 Introduction
The capabilities of quantum computers are now widely recognized.
In contrast to classical physics, where a system is typically in a
single well-defined state, in quantum mechanics, a system can exist
in multiple states simultaneously, i.e., a superposition, until it is
measured. In terms of a single qubit 𝜑 , its quantum state |𝜑⟩ is a
superposition of the two computational basis states, the classical
states of 0 and 1 (|0⟩ and |1⟩), described as |𝜑⟩ = 𝑎0 |0⟩+𝑎1 |1⟩. Here,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPDAC ’25, January 20–23, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697776

𝑎0 and 𝑎1 are complex amplitudes, and |𝑎0 |2 and |𝑎1 |2 indicate the
probabilities that 𝜑 is in the classical 0 and 1 states, respectively.

To run a quantum algorithm on a quantum computer, the pro-
gram has to be compiled into a quantum circuit through quan-
tum compilation. Specifically, a quantum circuit is also called a
quantum oracle when it implements a Boolean function. Given a
Boolean function 𝑓 (𝑥1, . . . , 𝑥𝑛) = (𝑦1, . . . , 𝑦𝑚) : B𝑛 → B𝑚, with
𝑥 = 𝑥1 . . . 𝑥𝑛 , 𝑦 = 𝑦1 . . . 𝑦𝑚 , and the bitwise XOR operation de-
noted as ‘⊕’, the corresponding quantum oracle can be described
as 𝑂 𝑓 : |𝑥⟩ |𝑦⟩ |0⟩𝑘 ↦→ |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩ |0⟩𝑘 . Besides 𝑛 qubits and
𝑚 qubits to respectively store the inputs and outputs, oracle 𝑂 𝑓

requires 𝑘 ancillary qubits to hold intermediate results, which shall
be uncomputed to the |0⟩ state at the end of the computation, so
as to guarantee an accurate computation, as temporary data on
the helper qubits compromise the measurement results. Quantum
oracles play an essential role in various quantum algorithms.

Quantum computers are inherently error-prone, which is a fun-
damental challenge to realizing practical quantum computation.
The Clifford+T gate library provides a solution to achieve scalable
and reliable quantum computation. It consists of two types of gates:
(i) Clifford gates, including controlled-NOT (CNOT), Hadamard (H),
𝜋 /2-phase rotation (S) and its inverse (S†); (ii) non-Clifford gates,
including 𝜋 /4-phase rotation (T) and its inverse (T†). Compared to
Clifford gates, the physical implementation of high-fidelity non-
Clifford gates is much more resource-intensive, but non-Clifford
gates are necessary to enable the gate set to be universal [8]. Thus,
when synthesizing quantum oracles over the Clifford+T gate library,
implementations that minimize the T-count are preferable.

Significant efforts have been dedicated to exploring quantum
oracle synthesis techniques based on various logic representations,
such as look-up table (LUT)-based methods [21] and XOR-AND-
inverter graph (XAG)-based methods [13]. Then, existing research
on low-resource-cost quantum oracle synthesis typically formu-
lates the compilation task as implementing the target logic function
into a reversible circuit, which consists of CNOT, NOT, and Toffoli
gates. Using reversible circuits as an intermediate representation
is advantageous because, when re-expressed using the Clifford+T
gate library, the Toffoli gate is the only gate type that requires
T gates for its implementation. Specifically, the computation and
uncomputation of a Toffoli gate necessitate at least 4 T gates [6].
Since a Toffoli gate can realize a logical AND operation, there is a
direct correlation between the number of AND nodes1 in an XOR-
AND-inverter graph (XAG) and the T count of its resulting quantum
oracle [12]. Additionally, the qubit count is also determined by the
number of AND nodes, which must be computed reversibly, while
1Unless otherwise specified, an AND node refers to a 2-input AND node in this paper.

https://doi.org/10.1145/3658617.3697776
https://doi.org/10.1145/3658617.3697776

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Mingfei Yu, Alessandro Tempia Calvino, Mathias Soeken, and Giovanni De Micheli

XOR operations can be computed in-place using CNOTs, requir-
ing no additional qubits. Thus, XAG-based synthesis techniques
are particularly effective for low-resource-cost oracle synthesis by
minimizing the number of AND nodes in the XAG implementation
of the target Boolean function [19].

However, constraining the oracle synthesis problem to the re-
versible circuit level has its limitations. For successful quantum
application execution, quantum error correction (QEC) is indispens-
able for protecting logical qubits from errors. While critical for
scalable quantum computing, QEC increases the resource overhead
significantly, such as constructing logical qubits from raw physical
qubits, mapping logical qubits to 2D geometries, etc. These complex-
ities are not considered at the reversible circuit level. In contrast,
the quantum instruction set architecture (QISA) acts as an intermedi-
ary layer between reversible circuits and physical implementations,
providing an option for reliably estimating resources needed for
fault-tolerant quantum computing. QISA abstracts the QEC imple-
mentation at the physical level, retaining only fault-tolerant logical
operations within its instruction set. We categorize the compilation
of Boolean functions into reversible circuits and subsequently into
QISA executables into two distinct stages: front-end and back-end
compilation. Whereas existing works are limited to the front-end
compilation stage, this work expands the oracle synthesis problem
to include the back-end stage.

In this work, we employ the planar QISA based on the surface
code [2, 4], the most established QEC code. Utilizing the parallel
synthesis sequential Pauli computation (PSSPC) back-end compila-
tion scheme [3], we reveal that the logical time steps required by
the execution of a QISA executable of an oracle, a pivotal quality
measure in the QISA level, are determined by the multi-qubit mea-
surement operations necessary for remote Toffoli gate execution,
as detailed in Section 2.2. The number of logical time steps directly
corresponds to the execution runtime of the algorithm. Thus, for
the first time, a direct correlation is established between the AND
count of XAGs and the number of logical time steps involved in
QISA executables, and consequently, the runtime it requires to run
an algorithm on fault-tolerant quantum hardware.

Furthermore, inspired by recent advancements in Clifford+T
construction of 3-control Toffoli gates [7], we demonstrate that
utilizing this construction can reduce logical time steps and helper
qubits without increasing the T count. Therefore, our compilation
technique reduces the number of physical qubits and execution
runtime required to run quantum oracles on fault-tolerant quantum
computers compared to the state-of-the-art. We elaborate on the
link between an XAG and its QISA executable quality measures
in Section 3. Not only the AND count but also the connectivity of
AND nodes influence the number of logical time steps and the usage
of helper qubits in the compiled QISA executable: replacing two
cascaded 2-input AND (AND2) nodes with a single 3-input (AND3)
node reduces logical time steps from 8 to 7 and helper qubit count
from 2 to 1.

We incorporated this cost metric into the XAG synthesis and op-
timization process, empowering back-end-aware XAG-based quan-
tum oracle synthesis by developing logic synthesis and optimization
algorithms, as detailed in Sections 4 through 6. Experimental eval-
uations have confirmed the effectiveness of our approach, with

synthesized oracles achieving an average of 4.49% reduction in T
count, 7.00% in logical time steps, and 14.89% in helper qubit count.

2 Background
2.1 XAG Optimization
2.1.1 XOR-AND-inverter Graphs. Boolean functions are typically
abstracted as logic networks for compact representation. A logic
network is a directed acyclic graph (DAG), where each node repre-
sents a logic operation. A network is an XAG if all nodes have two
fan-ins and correspond to either an AND or XOR operation, with
complementation regarded as a property of edges.

2.1.2 Cuts. A cut highlights a cone within a logic network. It is
defined by the root (primary output, PO) and leaves (primary inputs,
PIs) of the partial network described by the cut. A set of leaves is
valid for a given root if: (a) each path from any PI to the root passes
through at least one leaf; and (b) for each leaf, there is at least one
path that passes exclusively through it.

2.1.3 Logic rewriting. Logic optimization techniques use cuts to
enhance scalability. Among these, logic rewriting optimizes a logic
network by replacing each part with its optimized implementation.
It is commonly employed to reduce the size [15, 22], depth [18], or
other metrics of logic networks. Existing research has used logic
rewriting to reduce the AND count of XAGs [23].

2.2 Back-end Compilation
In fault-tolerant quantum computing, QEC is crucial for forming
reliable logical qubits from noisy physical qubits. QISA serves as
logical QEC code, a logical abstraction of lower-level physical QEC
code. Previous research on quantum oracle synthesis has focused
on compiling Boolean functions, typically represented as XAGs,
into reversible circuits, with little consideration for the subsequent
step of compiling into QISA executables. We distinguish these two
stages as front-end and back-end compilation.

Implementing QEC is resource-intensive, necessitating the en-
hancement of oracle synthesis techniques to be back-end-aware.
Establishing a link between XAG properties and QISA executable
quality measures can unlock more optimization opportunities, as
it would allow XAGs to be synthesized in a way that results in
lower-resource-cost QISA executables.

We chose QISA executables, rather than physical QEC codes,
as the objective of back-end compilation. The physical resource to
implement a QISA executable depends on the required error rate
of each QISA operation to achieve the desired execution accuracy
of the target quantum algorithm, which varies significantly across
applications. For instance, quantum factoring algorithms can tol-
erate lower execution accuracy since verifying the correctness of
a solution is straightforward. Thus, targeting QISA executables
for back-end compilation offers a generic yet sufficiently precise
resource estimation for synthesized oracles.

2.2.1 Planar quantum instruction set architecture. QISA, serving
as the logical QEC code, closely aligns with the physical system
architecture, including geometric constraints. We adopted the pla-
nar QISA [3], which is based on the logic operations of the surface
code, the most well-established physical QEC code. Thus, the planar

Back-end-aware Fault-tolerant Quantum Oracle Synthesis ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

|𝑥1⟩ 𝑍 |𝑥1⟩

|𝑥2⟩ 𝑍 |𝑥2⟩

|𝑥3⟩ 𝐻 𝑍 𝐻 |𝑥3 ⊕ 𝑥1𝑥2⟩

|0⟩

|0⟩

|0⟩ 𝑍

remote execution of a 2-control Z gate

Figure 1: Remote execution of a Toffoli: The upper three
qubits are algorithm ones and the lowers are synthesis ones.

QISA includes an instruction set consisting of logical surface code
operations.

It supports the following Clifford operations: single-qubit initial-
ization, single-qubit measurement, and multi-qubit measurement, as
well as non-Clifford operations, whose realization requires T gates:
Toffoli gates and arbitrary angle rotations around the X, Y, or Z axis.
Since quantum oracle does not involve arbitrary angle rotations,
Toffoli gate is the only non-Clifford operation in our context.

The T gates required for non-Clifford operations are supplied
by T factories, which are prepared through a process known as
magic-state distillation [16]. The produced T states are injected
into the computation as T gates via magic-state teleportation in
combination with a multi-qubit measurement [9]. This explains
why non-Clifford operations are more resource-intensive, both in
terms of runtime and physical resources.

2.2.2 Parallel synthesis sequential Pauli computation. We adopt
the emerging PSSPC back-end compilation scheme proposed in [3],
which enhances the execution of quantum algorithms by leveraging
parallelism and optimizing the use of quantum resources. This
scheme has two key features.

First, the execution of non-Clifford operations is delegated from
the original qubits, called algorithm qubits, to remote qubits, called
synthesis qubits. Remote execution allows for the parallel execution of
non-Clifford operations, thereby improving runtime. It also ensures
easy access to the T gates required by non-Clifford operations, as T
factories are typically situated at layout boundaries [2].

Since Toffoli gates are the only non-Clifford operations for quan-
tum oracles at the QISA level, we illustrate the remote execution of
a Toffoli gate in Fig. 1. This process involves first entangling the
algorithm qubits with the synthesis qubits, followed by measuring
the synthesis qubits on the X basis. Each entanglement operation,
depicted in Fig. 1 as a CNOT for clarity, is actually achieved by
performing a 2-qubit Z measurement (refer to Fig. 14(a) in [10] for
a more detailed illustration). After remotely executing the 2-control

Z operation on the synthesis qubits, Z rotations are applied to the
algorithm qubits for necessary phase corrections based on the X
measurement results.

Second, after delegating the execution of non-Clifford opera-
tions to synthesis qubits, the remaining operations on the algo-
rithm qubits are all Clifford gates. These are further eliminated by
commuting them towards the output side of the circuit, a process
known as Clifford elimination, which significantly reduces layout
complexity. As a side effect, measurements and phase corrections,
become sequential multi-qubit operations. Notably, measurements
are significantly slower and thus dominate the runtime [3].

2.2.3 Resource cost of oracles from a back-end perspective. At the
QISA level, the resource cost extends beyond the T count and helper
qubit count considered at the reversible circuit level, to include
the number of logical time steps required to execute the QISA
executable of the oracle. It is a crucial quality measure, as more
steps to execute mean an increased failure probability of quantum
algorithms, requiring more physical qubits to lower the logical error
rate for successful computation.

Due to Clifford elimination, the 2-qubit measurements to entan-
gle the algorithm and synthesis qubits become multi-qubit measure-
ments. Consequently, executing each Toffoli gate requires three
logical time steps for the sequential multi-qubit measurements nec-
essary for entanglement. Additionally, one extra logical time step
is required for the T-free measurement-based uncomputation [6].
These logical time steps for the remote execution of Toffolis are
the primary contributors to the execution time of the QISA exe-
cutable of a quantum oracle [3]. This complements our resource
cost model for quantum oracles, highlighting the following three
key measures of interest: (a) T count, which impacts the number
of physical qubits needed, as it dictates the number of T factories
required to produce a sufficient number of T states; (b) logical time
steps, which directly affect the runtime; and (c) helper qubit count,
which primarily influences the total number of physical qubits.

Considering each AND node in an XAG translates into a Toffoli
gate, a quantitative relationship between the AND count of an XAG
and the resource cost measures of the resulting QISA executable
is established. Specifically, given an XAG implementing the target
Boolean function with #∧2 AND nodes, our observation, along with
existing research [12], suggests that the compiled QISA executable
would require 4·#∧2 T gates, #∧2 helper qubits, and 4·#∧2 logical
time steps for execution.

3 AND3 Operation via 3-control Toffoli Gates
In [7], a 6-T construction of 3-control Z gates was proposed (Fig. 2).
This suggests a 6-T construction of 3-control Toffoli gates, which

|𝑥1⟩

(−1)𝑥1𝑥2𝑥3𝑥4 |𝑥1𝑥2𝑥3𝑥4⟩
|𝑥2⟩ 𝑍

|𝑥3⟩
|𝑥4⟩ 𝑍

|0⟩ 𝐻 𝑇 𝑇 † 𝑇 𝑇 † 𝑇 𝑇 †
√
𝑋
†

Figure 2: A 6-T 3-control Z gate construction [7].

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Mingfei Yu, Alessandro Tempia Calvino, Mathias Soeken, and Giovanni De Micheli

|𝑥1⟩ |𝑥1⟩
|𝑥2⟩ |𝑥2⟩

|𝑥3⟩ 𝑍 |𝑥3⟩

|𝑥1𝑥2𝑥3⟩ 𝐻

Figure 3: Measurement-based uncomputation of AND3.

essentially realizes an AND3 operation. In this section, we analyze
this advanced construction and highlight its potential for producing
lower-resource-cost quantum oracles.

3.1 A Six-T Construction of 3-control Toffolis
The 6-T construction of 3-control Z gates in Fig. 2 is based on the ob-
servation that a 3-control Z gate maps quantum state |𝑥1𝑥2𝑥3𝑥4⟩ to
(−1)𝑥1𝑥2𝑥3𝑥4 |𝑥1𝑥2𝑥3𝑥4⟩. The coefficient equals 𝑖𝑥1𝑥2⊕𝑥3𝑥4−𝑥1𝑥2−𝑥3𝑥4 ,
with 𝑖 representing the imaginary unit. The main idea is using two
overlapping Toffoli gates to implement 𝑖𝑥1𝑥2⊕𝑥3𝑥4 ; While building
each Toffoli requires at least 4 T gates, the overlapping cancels
two of them and cuts down the T count to 6. Notice that

√
𝑋
† is a

Clifford operation, as
√
𝑋
†
= (𝐻

√
𝑍𝐻)† = 𝐻𝑆†𝐻 .

Since 𝑋 = 𝐻𝑍𝐻 , a 6-T construction for 3-control X gates, i.e.,
3-control Tofolli gates, can be realized on top of Fig. 2 by adding
two more H gates to the target line to encase the 3-control Z gate.

3.2 Resource Requirement
A 3-control Toffoli operation realizes an AND3 operation. Its uncom-
putation is illustrated in Fig. 3. When the fourth qubit is measured
as 1 (with a probability of 50%), a 2-control Z gate must be applied
to the first three qubits for phase correction.

The costs of an AND3 operation using the 6-T 3-control Toffoli
gate construction are: (a) T count: 6 + 4 × 0.5 = 8; (b) Logical time
steps: 4 + 1 + (3 + 1) × 0.5 = 7; (c) One helper qubit. All logical time
steps are consumed by measurements. Four steps are needed for
entanglement during computation, one for uncomputation (Fig. 3),
and an additional four steps in half the cases due to the extra 2-
control Z gate required for phase correction.

Since an AND3 operation is equivalent to two concatenated
AND2 operations, using the proposed 6-T 3-control Toffoli gate-
based AND3 operation reduces resources compared to using two
4-T Toffoli gate-based AND2 operations: (a) T count remains the
same (4×2 versus 8); (b) Logical time steps are reduced from 8 (4×2)
to 7; (c) Helper qubits are reduced from 2 (1 × 2) to 1.

Incorporating this realization of AND3 operations, the resource
costs of an oracle, regarding the QISA level, are: Denoting the num-
bers of AND2 and AND3 operations as #∧2 and #∧3, respectively,
• T count: 4·#∧2 + 8·#∧3
• Logical time steps: 4·#∧2 + 7·#∧3
• Helper qubit count: #∧2 + #∧3

Conclusively, during the XAG synthesis stage, maximizing the
use of concatenated AND nodes, i.e., AND3 nodes, can result in
lower-cost oracles. This observation introduces an additional aspect
to the XAG-based quantum oracle synthesis problem. Not only
does the number of AND nodes in an XAG matter, but also their
connectivity, i.e., the topology of an XAG with respect to AND
nodes, is crucial to its quality measure.

4 Group and Split
Our method for maximizing the use of AND3s in XAG synthesis
involves two steps: (i) Maximally group concatenated AND nodes;
(ii) Split each group of ANDs into pairs and merging each pair into
an AND3 node. We refer to this strategy as group-split.

A similar approach can be found in solutions to the AND-inverter
graph (AIG) depth optimization problem,where researchers propose
covering AND nodes into groups to balance the logic network [14].
For the grouping step of our strategy, we adapted the AND-covering
algorithm from [14]. All AND nodes in the XAG are traversed in
reverse topological order, i.e., from the PO side to the PI side. An
AND group is identified when one of the following conditions is
met: (a) an AND node has multiple fanouts; or (b) an AND node’s
fanout is complemented.

Our strategy differs from existing methods in how the AND
groups collected in the first step are utilized. Specifically, in the
split step, while [14] focuses on splitting the AND groups for depth
optimization, our goal is to maximize the count of AND3 nodes.

Group-split provides a runtime-efficient solution to exploit AND3
nodes, as it maintains the network structure with linear time com-
plexity. Nonetheless, further exploration is warranted to restructure
XAGs to enhance the opportunities for utilizing AND3s.

5 Database of cost-minimum XAGs
In this section, we aim to find the cost-minimum XAG implementa-
tion for small-scale Boolean functions, which falls under the cate-
gory of exact synthesis. The optimum implementations are collected
in a database, which enables efficient logic rewriting subsequently.
In [17], a formulation is proposed for the exact synthesis of AND-
count-minimumXAGs.We extend this formulation to consider both
the AND count and the AND connectivity as the cost measures in
our context.

Our formulation leverages the concept of AND fence [24]. By
maximally grouping AND nodes in an XAG, as introduced in Sec-
tion 4, the AND fence is numerically defined as the size of each
group in topological order. Denoting the AND fence of an XAG as
F = {𝑐1, · · · , 𝑐𝛼 }, where each 𝑐𝑖 indicates there are 𝑐𝑖 AND2s in the
𝑖-th AND group, we can calculate the numbers of AND2 and AND3
nodes in the XAG after splitting the AND groups as #∧2 =

∑𝛼
𝑖=1 (𝑐𝑖

mod 2) and #∧3 =
∑𝛼
𝑖=1 ⌊𝑐𝑖/2⌋. These values jointly determine the

cost of the XAG, as discussed in Section 3.2.
We formulate the problem of finding the cost-minimum XAG

implementation for a given function as an incremental Boolean
satisfiability (SAT) problem. The inputs to each SAT instance are
(a) the target function and (b) the target AND fence. If an instance
is satisfiable, an XAG exists that simultaneously implements the
function and meets the given AND fence.

In our SAT formulation: (a) Given that 𝑐𝑖 concatenated AND2
nodes equal functionally a (𝑐𝑖 +1)-input AND node, each step of the
Boolean chain is a multi-fanin AND, with a fanin size corresponding
to the target AND fence. (b) The fanins of each step are parity
functions, whose operands can be either PIs or previous steps. (c)
The PO is also a parity function, with operands selected from PIs
and all steps in the Boolean chain. Thus, the task of the solver is
to find a valid configuration of the operands of all involved parity
functions. Fig. 4 showcases a certain trial of exploring if there exists

Back-end-aware Fault-tolerant Quantum Oracle Synthesis ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

∧

⊕ ⊕ ⊕

step 1 𝑥6

? ? ?

∧

⊕ ⊕ ⊕

step 2 𝑥7

? ? ?

⊕
?

𝑓 = 0𝑥𝑎𝑎808080

(a)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

∧

⊕ ⊕ ⊕

𝑥6

𝑥1 𝑥4 𝑥1, 𝑥4, 𝑥5

∧

⊕ ⊕ ⊕

𝑥7

𝑥2 𝑥3 𝑥1, 𝑥2, 𝑥3, 𝑥6

⊕
𝑥6, 𝑥7

𝑓 = 0𝑥𝑎𝑎808080

(b)

Figure 4: Synthesizing the cost-minimum XAG implemen-
tation of a Boolean function: (a) Visualizing a certain SAT
instance; (b) Solving the SAT instance to synthesize an XAG.

an XAG implementation for the function 𝑓 = 0𝑥𝑎𝑎808080 2 with
the AND fence F = {2, 2}.

Using this formulation, we can find the cost-minimum XAG
implementation of a function by enumerating AND fences in a cost-
increasing order. Specifically, we set the T count and the number of
logical time steps as the primary and secondary criteria, respectively.
Indeed, the XAG implementation synthesized in Fig. 4 is the cost-
minimum one for the illustrated function.

Exploiting the proposed exact synthesis methodology, we aim
to build a database that collects the cost-minimum XAG implemen-
tations for all 5-variable Boolean functions. While there exist 232
functions, applying Boolean classification techniques can signifi-
cantly reduce the number of unique cases, enabling the generation
of a functionally complete database. Affine equivalence classifica-
tion [5] is recognized to be a perfect fit, since affine operations are
AND fence-invariant and, therefore, cost-invariant in our context.
If two functions are affine-equivalent, their cost-minimum XAG
implementations share the same AND fence. All 5-variable Boolean
functions are classified into 48 affine-equivalent classes; For each
class, a representative is selected in accordance with the classifica-
tion algorithm, for which the cost-minimum XAG is synthesized.

6 XAG Optimization via Rewriting
With a database of optimum implementations for small-scale func-
tions, a common way to conduct scalable logic optimization is the
logic rewriting technique introduced in Section 2.1.3.

However, how to adapt logic rewriting to our cost optimization
problem is not obvious. Logic rewriting generally refers to a proce-
dure of replacing small regions of the logic network, identified by
cuts, with better implementations. In contrast to existing applica-
tions of logic rewriting, in our context, the cost of each AND node is
dynamically determined by its environment. This is because AND2
nodes at the boundaries of the cuts may be merged into AND3
nodes. This makes accurately evaluating the cost of a replacement
an intractable problem, as one move can change the connectivity

2We represent truth tables in hexadecimal as a bit-string, with the most significant bit
on the left-hand side.

(a) W/o a cut filter (b) With a cut filter

Figure 5: Role of an ideal cut filter in the rewriting procedure.

of those ANDs outside the logic cone highlighted by the cut. In
this section, we aim to devise effective and efficient heuristics to
address this problem.

6.1 Using AND Count as Cost Function
Since we adopt the T count as the primary criterion in resource
measure, the 48 cost-minimum XAGs in our database are guaran-
teed to be T-count-minimum. Our exploration starts by simplifying
the optimization problem as an AND count minimization problem,
like existing XAG-based quantum oracle synthesis techniques [12].

Fig. 5a schematically depicts how a logic rewriting flow explores
the design space. Each move indicates an operation of rewriting
a cut. In each step, a particular node in the network is regarded
as the root, and the cuts rooted on which are the candidates to be
rewritten. For clarity, in the figure, we fix the number of candidates
in each step to three. Among the three options, the AND-count-
minimal one (marked in red) can be distinguished (denoted using
dotted lines) and a rewriting is then committed.

Since rewriting a cut only ensures local optimality, a strategy
that greedily minimizes AND count may lead to an XAG design
approaching the AND-count-minimum one. Given the direct cor-
relation between the T count in an oracle and the AND count in
its corresponding XAG, such a design intuitively approaches the
resource-cost-minimum one within the design space. However, as
discussed in Section 3.2, the quality measures of a compiled quan-
tum oracle, such as logical time steps and helper qubit count, also
depend on the connectivity of AND nodes within its XAG. There-
fore, developing a method to guide the design process closer to the
resource-cost-minimum design is of significant interest.

6.2 Devising Cut Filters
As Fig. 5b illustrates, we suppose an elaborated cut filter to meet
the following requirements: (a) When in a design space far from the
global optimums, the filter should not prevent the flow from pro-
ceeding towards the direction that approaches the optimal solution
most efficiently; (b) When getting close enough to the optimums,
the filter should be able to effectively rule out those cuts that, once
rewritten, would likely direct the flow to sub-optimality w.r.t. re-
source cost.

6.2.1 Rigid cut filter. The difficulty of developing a low-resource-
cost-oriented logic rewriting method lies in efficiently taking into

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Mingfei Yu, Alessandro Tempia Calvino, Mathias Soeken, and Giovanni De Micheli

Algorithm 1: Rigid cut filter for cost minimization.
Input: Cuts rooted on node 𝑛, cuts
Output: A set of cuts that pass the filter, cuts_valid

1 foreach cut 𝑐 ∈ cuts do
2 if same_AND_group_as_fanout(𝑛) then
3 return ∅
4 is_valid ← true
5 foreach leaf 𝑙 ∈ leaves of cut 𝑐 do
6 if same_AND_group_as_fanout(𝑙) then
7 is_valid ← false
8 break
9 if is_valid then add 𝑐 to cuts_valid

10 return cuts_valid

consideration the influence of rewriting a cut on the existing AND
groups in the network. A potential cut filter design can be: let the
filter check whether the root and its fanout node, or any leaf and
its fanout node, belong to the same AND group. If a cut passes such
a filter, it means rewriting this cut would not break any existing
AND group and is therefore a conservative decision.

In Algo. 1, to judge if a node and its fanout node belong to the
same AND group, the same criterion in the group-split strategy
in Section 4 is implemented as the “same_AND_group_as_fanout”
function (lines 2 and 6).

However, the inflexibility of the rigid cut filter is a concern.
Using the flow in Fig. 5b for illustration, the filter may make unwise
decisions and rule out the AND-count-minimal moves (the red
arrows) in early steps, leading the flow to sub-optimality. Hence,
a cut filter with more comprehensive decision logic is required to
achieve a steady performance.

6.2.2 Voter-driven cut filter. The voter-driven cut filter described
by Algo. 2 is with an improved decision-making mechanism: (a)
Instead of stopping at checking if the root and leaves of the current
cut belong to existing AND groups, it further analyzes the optimal
implementation that would replace this cut (lines 6-14); This enables
precise estimation of the number of AND groups that would be
broken if the current cut is rewritten (recorded as skip_score). (b)
Even rewriting a cut would cause the breaking of existing AND
groups, it would not be directly filtered out; Instead, the decision
depends on whether the number of AND groups to be broken
exceeds a pre-defined threshold (lines 15 and 16).

Observing that most of the cost reduction is achieved by rewrit-
ing 5-input cuts, we statistically configure the threshold to one-fifth.
This means a cut with five leaves would not be filtered out, as long
as rewriting this cut would not break more than one existing AND
group. In contrast, a cut with fewer than five leaves would be ruled
out if rewriting it would result in a violation of any existing AND
group, as the loss in cost reduction would likely outweigh the gain
of optimally implementing this cut. This setting facilitates a more
comprehensive evaluation of each rewriting choice.

7 Experimental Results
To evaluate the effectiveness of the proposed approach, experiments
are designed and conducted on the EPFL combinational benchmark

Algorithm 2: Voter-driven cut filter for cost minimization.
Input: Cuts rooted on node 𝑛, cuts, and the database, db
Output: A set of cuts that pass the filter, cuts_valid

1 foreach cut 𝑐 ∈ cuts do
2 f ← Boolean function of 𝑐
3 {f_repr, operations}← affine_canonicalize(f)
4 new_cut_impl← apply operations to db[f_repr]
5 skip_score← 0
6 if same_AND_group_as_fanout(𝑛) then
7 po← PO node of new_cut_impl
8 if same_AND_group_as_fanout(po) then
9 skip_score← skip_score + 1

10 foreach leaf 𝑙 ∈ leaves of cut 𝑐 do
11 if same_AND_group_as_fanout(𝑙) then
12 pi← PI of new_cut_impl akin to 𝑙
13 if same_AND_group_as_fanout(pi) then
14 skip_score← skip_score + 1
15 if skip_score / (#leaves(𝑐)+1) < threshold then
16 add 𝑐 to cuts_valid
17 return cuts_valid

suite [1]. Since previous work on XAG-based oracle synthesis fo-
cuses exclusively on reducing the AND count of logic networks, the
XAGs optimized using the state-of-the-art AND count reduction
technique [11] are adopted as the baseline for comparison.

All four proposed techniques are evaluated: (i) Group-split: the
group-split strategy proposed in Section 4 that maximally converts
concatenated AND nodes into AND3 nodes, without restructuring
the logic network; (ii) Rewrite: the AND-count-oriented logic rewrit-
ing flow introduced in Section 6.1, which exploits the database of
cost-minimum XAG implementations of 5-variable functions pro-
posed in Section 5; (iii) Filter-rigid: on top of Rewrite, the rigid cut
filter (Algo. 1) is applied to guide the rewriting flow; (iv) Filter-vote:
the voter-driven cut filter (Algo. 2) is applied to guide the rewriting
flow. Notice that (i) is applied to the XAGs optimized by either (ii),
(iii), or (iv) as a post-process to support the use of AND3 nodes.

All the proposals are implemented as part of the C++ logic syn-
thesis library mockturtle [20]3. The results reported below are
obtained on an Apple M1 Max chip with 32GB memory.

Given that the T count is adopted as the primary criterion in
resource measure, the latter three techniques that involve logic
rewriting are applied repetitively for each benchmark, until no
improvement in T count is observed. The runtime spent in total to
reach the saturation is denoted as “time” in Table 1. Exploiting the
numerical relations revealed in Section 3.2, using the AND2 and
AND3 counts of an XAG, the resource cost of the resulting oracle,
in terms of T count (“T”), number of logical time steps (“steps”),
and helper qubit count, can be estimated. Due to space limitations,
only the first two are reported in Table 1.

Without any effort on logic restructuring, applying the group-
split strategy already achieves a 2.81% logical time steps reduction
and a 7.47% helper qubit count reduction, with no increase in T
count. This observation demonstrates the advantage of exploiting

3Available at: https://github.com/lsils/mockturtle

Back-end-aware Fault-tolerant Quantum Oracle Synthesis ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Table 1: Evaluation of back-end-aware XAG-based quantum oracle synthesis techniques.

Benchmark Baseline Group-split Rewrite Filter-rigid Filter-vote
T Steps T Steps Time[s] T Steps Time[s] T Steps Time[s] T Steps Time[s]

adder 512 512 512 512 <0.01 512 512 <0.01 512 512 <0.01 512 512 0.05
barrel shifter 3328 3328 3328 3328 <0.01 3328 3328 0.11 3328 3328 0.11 3328 3328 2.08
divider 20528 20528 20528 20338 <0.01 18884 18779 22.00 18988 18871 16.30 18992 18878 108.02
log2 35092 35092 35092 34812 <0.01 33136 32849 99.62 33284 32923 99.32 33088 32792 440.14
max 3488 3488 3488 3447 <0.01 3252 3240 1.16 3480 3438 0.16 3244 3230 9.73
multiplier 30340 30340 30340 30267 <0.01 30080 29970 43.93 30060 29939 40.31 30080 29968 352.44
sine 7836 7836 7836 7739 <0.01 7440 7272 48.93 7476 7279 35.35 7444 7271 179.20
square-root 20868 20868 20868 20739 <0.01 19300 19160 53.21 19408 19236 56.47 19272 19135 271.94
square 18384 18384 18384 18314 <0.01 18092 17992 19.01 18064 17940 19.29 18084 17985 119.02
round-robin arbiter 4696 4696 4696 4652 <0.01 4592 4255 12.62 4624 4238 9.11 4592 4255 87.58
coding-cavlc 1576 1576 1576 1510 <0.01 1472 1387 10.70 1520 1426 5.59 1492 1405 16.07
ALU control unit 180 180 180 176 <0.01 176 171 0.82 180 177 0.39 176 170 1.94
decoder 1312 1312 1312 1312 <0.01 1312 1312 0.29 1312 1312 0.29 1312 1312 5.15
i2c controller 2228 2228 2228 2173 <0.01 2092 2026 7.91 2084 2019 5.50 2092 2026 26.10
int to float converter 340 340 340 327 <0.01 316 303 1.98 324 309 1.11 316 303 4.34
memory controller 18780 18780 18780 18235 <0.01 17692 17052 39.53 17984 17275 29.86 17700 17052 392.59
priority encoder 1292 1292 1292 1265 <0.01 1268 1228 2.64 1064 1027 2.50 1156 1109 18.98
look-ahead XY router 372 372 372 342 <0.01 372 341 1.38 372 337 0.13 372 341 3.42
voter 17028 17028 17028 16695 <0.01 15440 14912 63.08 15652 15056 41.18 15372 14842 313.50
geometric mean (norm.) 1 1 1 0.982 0.959 0.935 0.960 0.934 0.955 0.930

the 3-control Toffoli construction introduced in Section 3 to realize
logical AND3 operation.

Based on a comparison among the estimated resource cost ob-
tained without and with logic restructuring, the effectiveness of the
rewriting flow and the generated database of the cost-minimum
XAG implementations for 5-variable Boolean functions, is proved:
the largest gap in cost minimization is achieved on priority encoder,
where the rewriting flow, under the guidance of the rigid cut fil-
ter, achieved a 17.65% reduction in T count, a 20.51% reduction in
logical time steps, and a 29.01% reduction in helper qubit count
over the SOTA. Without the endeavor in XAG optimization, the
gain obtained by applying the group-split strategy is trivial: a 2.09%
reduction in logical time steps and an 8.33% reduction in helper
qubit count, with an unchanged T count. This result sustains our
argument of bringing the connectivity of AND nodes into the scope
of the low-resource-cost oracle synthesis problem, i.e., enhancing
XAG-based oracle synthesis techniques to be back-end-aware.

Lastly, we compare the performance of the three implemented
logic rewriting flows. Applying the rigid cut filter outperforms
others for 4 benchmarks. But as we suspected, it also happens for
13 benchmarks that the resulting T count is rather higher than
without applying any filter, indicating that the inflexible decision-
making mechanism can lead the rewriting flow to sub-optimality.
By contrast, the voter-driven cut filter is qualified to guide the
flow to explore a design space closer to the cost-minimum XAGs.
Excluding the 4 tied benchmarks, the voter-driven cut filter guides
the rewriting flow to find a better XAG implementation in 12 out
of the 16 cases; Also, in the remaining 4 cases, the voter-driven
cut filter-enhanced rewriting flow hardly ends up with a design of
the highest T count, except for barrel shifter. These observations
evidence that, at the sacrifice of a reasonably higher runtime, the
voter-driven cut filter serves as a reliable cut filter.

8 Conclusion
XAGs have been identified as an ideal logic representation for quan-
tum oracle synthesis due to the direct correlation between the AND
count of an XAG and the T count and qubit count of its resulting
quantum oracle. To more precisely estimate the resources required
for implementing fault-tolerant quantum circuits, it is essential to
consider the re-expression of quantum circuits as logical QEC codes,
i.e., the back-end compilation process. We have established a link
between the properties of XAGs and the quality measures of back-
end-compiled quantum circuits. This connection indicates that both
the AND count and the connectivity of AND nodes in XAGs should
be considered. This insight unlocks additional optimization oppor-
tunities to reduce the resources required by quantum oracles and
enables more accurate resource estimation.

To support this observation, we have devised back-end-aware
XAG synthesis and optimization algorithms for low-resource-cost
quantum oracle synthesis. Experimental results have demonstrated
that our approach achieves average reductions of 4.49% in T count,
7.00% in logical time steps, and 14.89% in helper qubit count.

The feature that concatenated ANDs are preferable to separate
ones distinguishes the problem itself as a unique and self-contained
logic synthesis problem, which is technically interesting and merits
additional study. Our approach is not limited by the technical fact
that there is not yet T-count-efficient construction for Toffoli gates
with more than three control lines. Therefore, when more advanced
implementations of multiple-controlled Toffoli gates are discovered
in the future, the proposed algorithms can be easily adapted.

Acknowledgments
This project is supported in part by Synopsys Inc. We are grateful
to the anonymous reviewers for their insightful comments.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Mingfei Yu, Alessandro Tempia Calvino, Mathias Soeken, and Giovanni De Micheli

References
[1] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The

EPFL Combinational Benchmark Suite. In International Workshop on Logic and
Synthesis.

[2] Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. 2022. Surface Code
Compilation via Edge-Disjoint Paths. PRX Quantum 3 (2022), 020342. Issue 2.

[3] Michael E. Beverland, Prakash Murali, Matthias Troyer, Krysta M. Svore, Torsten
Hoefler, Vadym Kliuchnikov, Guang Hao Low, Mathias Soeken, Aarthi Sundaram,
and Alexander Vaschillo. 2022. Assessing Requirements to Scale to Practical
Quantum Advantage. arXiv:2211.07629

[4] Sergey B. Bravyi and Alexei Yu. Kitaev. 1998. Quantum Codes on a Lattice with
Boundary. arXiv:9811052

[5] Colin R. Edwards. 1975. The Application of the Rademacher–Walsh Transform
to Boolean Function Classification and Threshold Logic Synthesis. IEEE Trans.
Comput. C-24, 1 (1975), 48–62.

[6] Craig Gidney. 2018. Halving the Cost of Quantum Addition. Quantum 2 (2018),
74.

[7] Craig Gidney and N. Cody Jones. 2021. A CCCZ Gate Performed with 6 T Gates.
arXiv:2106.11513

[8] Daniel Gottesman. 1998. The Heisenberg Representation of Quantum Computers.
In International Colloquium on Group Theoretical Methods in Physics. 32–43.

[9] Daniel Litinski. 2019. A Game of Surface Codes: Large-Scale QuantumComputing
with Lattice Surgery. Quantum 3 (2019), 128.

[10] Daniel Litinski and Naomi Nickerson. 2022. Active volume: An architecture for
efficient fault-tolerant quantum computers with limited non-local connections.
arXiv:2211.15465

[11] Hsiao-Lun Liu, Yi-Ting Li, Yung-Chih Chen, and Chun-Yao Wang. 2022. A
Don’t-care-based Approach to Reducing the Multiplicative Complexity in Logic
Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41, 11 (2022), 4821–4825.

[12] Giulia Meuli, Mathias Soeken, Earl Campbell, Martin Roetteler, and Giovanni
De Micheli. 2019. The Role of Multiplicative Complexity in Compiling Low
𝑇 -count Oracle Circuits. In International Conference on Computer-Aided Design.
1–8.

[13] Giulia Meuli, Mathias Soeken, and Giovanni De Micheli. 2022. Xor-And-Inverter
Graphs for Quantum Compilation. In npj Quantum Information, Vol. 8.

[14] Alan Mishchenko, Robert Brayton, Stephen Jang, and Victor Kravets. 2011. Delay
Optimization using SOP Balancing. In International Conference on Computer-Aided
Design. 375–382.

[15] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. 2006. DAG-aware AIG
Rewriting: A Fresh Look at Combinational Logic Synthesis. In Design Automation
Conference. 532–535.

[16] Joe O’Gorman and Earl T. Campbell. 2017. Quantum Computation with Realistic
Magic-state Factories. Physical Review A 95 (2017), 032338. Issue 3.

[17] Mathias Soeken. 2020. Determining the Multiplicative Complexity of Boolean
Functions using SAT. arXiv:2005.01778

[18] Mathias Soeken, Giovanni De Micheli, and Alan Mishchenko. 2017. Busy man’s
synthesis: Combinational delay optimization with SAT. In Design, Automation &
Test in Europe Conference & Exhibition. 830–835.

[19] Mathias Soeken and Mariia Mykhailova. 2022. Automatic Oracle Generation in
Microsoft’s Quantum Development Kit using QIR and LLVM passes. In Design
Automation Conference. 1363–1366.

[20] Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt,
Giulia Meuli, Fereshte Mozafari, Siang-Yun Lee, Alessandro Tempia Calvino,
Dewmini Sudara Marakkalage, and Giovanni De Micheli. 2022. The EPFL Logic
Synthesis Libraries. arXiv:1805.05121v3

[21] Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli.
2019. LUT-Based Hierarchical Reversible Logic Synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38, 9 (2019), 1675–1688.

[22] Alessandro Tempia Calvino and Giovanni De Micheli. 2024. Scalable Logic
Rewriting using Don’t Cares. In Design, Automation & Test in Europe Conference
& Exhibition. 1–6.

[23] Eleonora Testa, Mathias Soeken, Luca Amarú, and Giovanni De Micheli. 2019.
Reducing the Multiplicative Complexity in Logic Networks for Cryptography
and Security Applications. In Design Automation Conference. 1–6.

[24] Mingfei Yu and Giovanni De Micheli. 2023. Striving for Both Quality and Speed:
Logic Synthesis for Practical Garbled Circuits. In International Conference on
Computer-Aided Design. 1–9.

https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/9811052
https://arxiv.org/abs/2106.11513
https://arxiv.org/abs/2211.15465
https://arxiv.org/abs/2005.01778
https://arxiv.org/abs/1805.05121v3

	Abstract
	1 Introduction
	2 Background
	2.1 XAG Optimization
	2.2 Back-end Compilation

	3 AND3 Operation via 3-control Toffoli Gates
	3.1 A Six-T Construction of 3-control Toffolis
	3.2 Resource Requirement

	4 Group and Split
	5 Database of cost-minimum XAGs
	6 XAG Optimization via Rewriting
	6.1 Using AND Count as Cost Function
	6.2 Devising Cut Filters

	7 Experimental Results
	8 Conclusion
	Acknowledgments
	References

