
On the Synthesis of High-performance Homomorphic Boolean
Circuits

Mingfei Yu

Integrated Systems Laboratory, EPFL

Lausanne, Switzerland

mingfei.yu@epfl.ch

Sergiu Carpov

Arcium

Zug, Switzerland

sergiu@arcium.com

Alessandro Tempia Calvino

Integrated Systems Laboratory, EPFL

Lausanne, Switzerland

alessandro.tempiacalvino@epfl.ch

Giovanni De Micheli

Integrated Systems Laboratory, EPFL

Lausanne, Switzerland

giovanni.demicheli@epfl.ch

Abstract
The rapid growth of cloud computing has intensified the need

for secure data outsourcing solutions. Fully homomorphic encryp-
tion (FHE) offers a promising approach by enabling computations

on encrypted data without exposing the plaintext. This paper ad-

vances the synthesis of homomorphic Boolean circuits, a pivotal

component in FHE, by addressing two major limitations of existing

methods: (1) effectively exploiting large-fan-in logic gates to achieve

more compact circuit designs, and (2) leveraging the multi-value
functional bootstrapping technique to further reduce computational

overhead in evaluating Boolean functions. The proposed homo-

morphic circuit synthesis flow effectively and efficiently improves

homomorphic evaluation efficiency. Experimental results show that,

compared to the state-of-the-art, our flow achieves 1.36× faster syn-
thesis time and reduces execution cost by an average of 29.94%,

with a maximum reduction of 76.02%.

CCS Concepts
• Theory of computation→ Circuit complexity; • Software
and its engineering→ Compilers.

Keywords
Homomorphic Encryption; Logic Synthesis; Technology Mapping

ACM Reference Format:
Mingfei Yu, Sergiu Carpov, Alessandro Tempia Calvino, and Giovanni

De Micheli. 2024. On the Synthesis of High-performance Homomorphic

Boolean Circuits. In Proceedings of the 12th Workshop on Encrypted Com-
puting & Applied Homomorphic Cryptography (WAHC ’24), October 14–
18, 2024, Salt Lake City, UT, USA.. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3689945.3694803

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1241-8/24/10

https://doi.org/10.1145/3689945.3694803

1 Introduction
The proliferation of sensitive data in the digital era necessitates

robust solutions for secure data processing and storage. Fully ho-
momorphic encryption (FHE) has emerged as a transformative tech-

nology, enabling computations on encrypted data while preserving

privacy. This capability is crucial for applications in cloud comput-

ing, where data confidentiality must be maintained even during

processing by untrusted third parties.

Modern FHE schemes use noisy ciphertexts, and since noise

accumulates with each homomorphic computation, an operation to

reduce this noise is necessary. This operation is widely known as

bootstrapping. While Craig Gentry proposed the first realization of

bootstrapping in 2009 [12], making FHE theoretically achievable, it

was initially too computationally intensive and impractical. After

decades of effort to improve practicality, fast bootstrapping FHE

schemes have emerged as an ideal solution for evaluating Boolean

functions homomorphically. As the name suggests, bootstrapping

in these schemes is highly efficient and can evaluate a function

while simultaneously reducing noise. For this reason, the bootstrap-

ping operation in fast bootstrapping schemes is specifically termed

functional bootstrapping (FBS). The most advanced scheme in this

line, torus FHE (TFHE), can perform an FBS operation in less than

10 milliseconds [8]. In contrast, each bootstrapping operation in

leveled homomorphic encryption (LHE) schemes, the other main

branch of modern FHE schemes, usually takes minutes. However,

each encrypted value in fast bootstrapping schemes is typically lim-

ited to a binary number or a small integer. This explains why fast

bootstrapping FHE schemes are ideal for the homomorphic evalu-

ation of Boolean functions. In this paper, the terms homomorphic
Boolean circuit and TFHE circuit are used interchangeably.

In recent years, we have witnessed many remarkable TFHE com-

pilers that translate Boolean functions, described in high-level pro-

grams such as hardware description language (HDL) as adopted

by Cingulata [6], Romeo [15], or C++ as adopted by Google’s

Transpiler [14], into homomorphic Boolean circuits, with each

gate bound to certain homomorphic computation implemented in

the TFHE1 library. These compilers enable non-experts to develop

secure and efficient FHE applications, significantly facilitating the

transition of recent developments in FHE schemes from theory to

1
To avoid confusion, we distinguish between the TFHE scheme and the TFHE library
using different fonts.

https://doi.org/10.1145/3689945.3694803
https://doi.org/10.1145/3689945.3694803

WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA. Yu, Carpov, Tempia Calvino, and De Micheli

practice. However, we observe that the exploration of circuit opti-

mization — an essential task in a compilation process that strongly

affects the resulting homomorphic evaluation efficiency — remains

insufficient in these compiler designs.

The execution of each homomorphic Boolean gate involves per-

forming an FBS operation, which remains the most computationally

intensive task in TFHE. Consequently, the efficiency of homomor-

phically evaluating a Boolean function is closely correlated with the

gate count of the circuit design. This correlation frames TFHE cir-

cuit synthesis as a general area-oriented Boolean circuit synthesis

problem. It motivates existing TFHE compilers to rely on off-the-

shelf electronic design automation (EDA) tools, originally developed

for hardware circuit synthesis, to achieve compact TFHE circuit

designs. For instance, Romeo leverages the open-source technology

mapper Yosys [25] to map HDL designs to two-input Boolean gates

and three-input multiplexers supported by the TFHE library [15]. A

similar methodology is also adopted by Transpiler [14]. However,
this method has two major limitations. First, it is constrained by the

gate set supported by the TFHE library. Existing literature indicates

that larger fan-in Boolean gates can also be exploited to deliver

more compact homomorphic Boolean circuit designs [2, 18], yet

effectively exploiting them remains an open problem. Second, the

TFHE circuit synthesis problem has unique features not shared by

hardware synthesis problems, necessitating the development of a

customized circuit synthesis approach to achieve high-performance

TFHE circuit designs. Specifically, themulti-value FBS technique [7]
suggests that, for multiple Boolean gates with the same supports

(i.e., inputs), their homomorphic evaluation can share a single FBS

operation. From a circuit synthesis perspective, this implies that

the cost of a multi-output Boolean gate can be close to that of a

single-output gate, presenting an opportunity to synthesize higher-

performance TFHE circuits. However, this opportunity has not been

thoroughly investigated.

This paper seeks to address these limitations. We approach the

synthesis problem as a technology mapping issue. The approach

is not limited to a subset of functions and applies to any Boolean

function. To that end, we first analyze the intrinsic properties of

large-fan-in Boolean gates to curate a suitable gate set for homo-

morphic Boolean circuit synthesis (Section 3). We then customize

a multi-value-FBS-aware and area-oriented mapping algorithm

to maximally enhance circuit quality and ultimately reduce the

computational overhead of homomorphic evaluation (Section 4).

The effectiveness and efficiency of our approach are evidenced by

comprehensive experimental evaluation (Section 5). Compared to

the state-of-the-art TFHE circuit synthesis approach, our method

achieved an average 26.27% reduction in circuit synthesis time and

an average 29.94%, up to 76.02%, improvement in homomorphic

evaluation efficiency. These contributions apply to other fast boot-

strapping schemes as well, such as FHEW [10].

2 Background
This section provides an overview of modern FHE schemes (Sec-

tion 2.1), the preliminaries on TFHE (Section 2.2) and Boolean

circuits (Section 2.3), and a summary of existing research on homo-

morphic Boolean circuit synthesis (Section 2.4).

2.1 Fully Homomorphic Encryption
FHE is a form of encryption that allows computations to be per-

formed on encrypted data without requiring access to the plaintext.

This capability is crucial for maintaining data privacy in various

applications, such as cloud computing. The concept of FHE was

first proposed by Rivest et al. in 1978 [21], but it was not until

Craig Gentry’s breakthrough in 2009 that the first FHE scheme was

introduced [12]. Gentry’s scheme employed lattice-based cryptog-
raphy, the security of which relies on the (ring) learning with er-
rors ((R)LWE) problem, where noise is exploited to provide security.

However, noise in ciphertexts accumulates with homomorphic oper-

ations, leading to failed decryption if it exceeds a certain threshold.

To handle the noise growth inherent in homomorphic operations,

Gentry introduced the concept of bootstrapping, an operation that

refreshes the noise level of ciphertexts. While bootstrapping makes

FHE theoretically achievable, it is computationally intensive and

impractical in its original form.

Modern FHE schemes diverge into two mainstream branches:

leveled homomorphic encryption (LHE) and fast bootstrapping. LHE
schemes, such as BGV [3] and BFV [11], support a predefined num-

ber of homomorphic operations on ciphertexts without invoking

bootstrapping. In contrast, the bootstrapping operation in fast boot-

strapping schemes is realized significantly differently, commonly

referred to as functional bootstrapping (FBS). An FBS operation not

only refreshes ciphertexts but also evaluates an operation simulta-

neously. The most recent advancement in the fast bootstrapping

branch is the torus FHE (TFHE) scheme [8], a successor of the GSW
scheme [13] and the FHEW scheme [10], which provides efficient

evaluation of Boolean functions.

2.2 Torus FHE
TFHE is a state-of-the-art FHE scheme optimized for fast and effi-

cient evaluation of Boolean functions. TFHE achieves this through

an innovative bootstrapping mechanism that maintains low noise

levels and high performance. Messages are encrypted as LWE sam-

ples or ciphertexts, one message per sample. With the plaintext

space size denoted as 𝑝 , the LWE encryption of message𝑚 ∈ Z𝑝 is a

tuple (a, 𝑏) such that 𝑏 − a · s ≈𝑚 1

𝑝 .

2.2.1 Functional bootstrapping. The FBS operation in fast boot-

strapping schemes (TFHE, FHEW, etc.) is a procedure which can

evaluate any function 𝐹 : Z𝑝 → Z𝑝 in addition to ciphertext noise

reduction. Input and output of FBS are LWE samples. FBS allows

to evaluate arithmetic circuits over encrypted data where each

operation output ciphertext is bootstrapped. The bootstrapping

procedure is implemented using a homomorphic accumulator (en-

coded in auxiliary GSW and RLWE LHE schemes) which evaluates the

linear part of the decryption function followed by the non-linear

part. For this line of schemes, the bootstrapping procedure follows

a common pattern and can be split into four steps:

(1) Input LWE sample (a, 𝑏) modulus is switched from the torus T to

Z𝑡 . The obtained LWE sample is an approximation of the input

one. A cyclic multiplicative group G, where Z𝑡 ≃ G, is used
for an equivalent representation of Z𝑡 elements. G contains

all the powers of 𝑋𝑘
mod Φ(𝑋) where Φ(𝑋) is the quotient

polynomial defining the RLWE scheme. Here 𝑡 is the smallest

On the Synthesis of High-performance Homomorphic Boolean Circuits WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA.

integer verifying 𝑋 𝑡
mod Φ(𝑋) = 1. Power-of-two cyclotomic

polynomials Φ(𝑋) is commonly adopted, such as in TFHE.

(2) The phase 𝜑 of the modulus-switched LWE ciphertext is trans-
formed to an encryption of 𝑋𝜑

in the auxiliary RLWE scheme.

The message 𝜑 ∈ Z𝑡 is obtained from (a, 𝑏) using linear trans-
formation 𝑏 − a · s ≈ 𝜑 (i.e., the linear part of the decryption
algorithm) given the GSW encryptions of 𝑋𝑠𝑖

, the bootstrapping

key, and the so-called blind rotations of RLWE ciphertexts. We

obtain the so-called accumulator ACC which contains an en-

cryption of 𝑋𝜑 ∈ G.
(3) A so-called test polynomial (or test vector) TV𝐹 is multiplied to

ACC. The test polynomial encodes output values of a function

𝐹 for each possible input message 𝜑 ∈ Z𝑡 . The phase 𝜑 encoded

in (a, 𝑏) is a noised version of the actual message𝑚. Function

𝐹 = 𝑓 ◦ 𝑟𝑝 encodes the composition of the rounding function

𝑟𝑝 : Z𝑡 → Z𝑝 and a “payload” function 𝑓 : Z𝑝 → Z𝑝 . The
rounding function 𝑟𝑝 corresponds to the final non-linear step

of LWE decryption.
(4) Finally, the output LWE encryption 𝑓 (𝑚) = 𝐹 (𝜑) is extracted

from the RLWE encryption TV𝐹 · ACC.
Fig. 1 illustrates the encoding of plaintext message space Z4 on

the torus and a test vector encoding of the bootstrapped function 𝐹 .

The message space extends beyond Z4, and in this case, the negated

function 𝐹 values are returned by the FBS. This behavior is due

to the negacyclic property of the cyclotomic quotient ring, which

is a power-of-two cyclotomic polynomial in TFHE. A function

𝐹 : Z2𝑝 → Z𝑝 is negacyclic if it satisfies 𝐹 (𝑥) ≡ −𝐹 (𝑥 + 𝑝) for any
𝑥 ∈ Z𝑝 . In summary, when parameterized with a message space

Z𝑝 , an FBS operation can evaluate any function 𝐹 : Z𝑝 → Z𝑝 or

any negacyclic function 𝐹 : Z2𝑝 → Z𝑝 .
When homomorphically evaluating an 𝑛-input single-output

Boolean gate that implements a Boolean function 𝑓 : B𝑛 → B, the𝑛
input ciphertexts are first linearly combined into a single ciphertext

before applying the FBS procedure described above. This linear com-
bination consists of homomorphic additions and scalar multiplica-

tions. These simple homomorphic arithmetic operations adjust the

scale and offset of the resulting ciphertext with a mildly increased

noise. The resulting ciphertext encodes a plaintext value which

distinguishes the entries of the Boolean gate’s truth table that have

different output values. Specifically, the FBS operations for evaluat-

ing a two-input one or a three-input multiplexer are termed gate
bootstrapping operations in the TFHE scheme. The implementation

of FBS operations leverages execution-speed-optimized modular

arithmetic and polynomial operations to achieve high performance

— a gate bootstrapping operation performs in 10 milliseconds [8].

2.2.2 Multi-value functional bootstrapping. Multi-value FBS is a

significant advancement in enhancing the efficiency of FBS opera-

tions [7]. This technique enables the evaluation of multiple func-

tions over the same encrypted input (i.e., a multi-output Boolean

gate) in a single bootstrapping operation, offering substantial im-

provements in computational efficiency.

Traditionally, evaluating different functions, even on the same en-

crypted data, requires multiple FBS operations, each corresponding

to a different function. Multi-value FBS consolidates these opera-

tions by sharing computational steps among different functions.

This is at the core of factoring the test polynomials that define the

F (0)

F (1)

F (2)

F (3)

−F (0)

−F (1)

−F (2)

−F (3)

0

1

2

3

4

5

6

7

Figure 1: Example of TFHE message space Z4 (separated
by dashed lines) and FBS function 𝐹 encoding (colored seg-
ments).

𝑎 𝑏 𝑐𝑖𝑛

𝑛3

∧
𝑛4

⊕

𝑛5

∧

𝑐𝑜𝑢𝑡

∧

𝑠

⊕

Figure 2: An XAG implementation of a 1-bit full adder.

evaluated functions into a common factor and specific parts that

correspond to different functions. This allows the heavy compu-

tation in a blind rotation to be shared among multiple functions.

Indeed, the blind rotation is applied once using the common factor

of the test polynomials. After that, the ciphertexts corresponding

to different functions are obtained by multiplying the blind-rotated

common accumulator with each specific part, which is computation-

ally cheaper as compared to performing multiple blind rotations.

By optimizing the steps involving polynomial multiplications

and using low-norm test polynomials, the technique effectively

manages the noise in the resulting ciphertexts, maintaining the

correctness of homomorphic evaluation. The benchmarks from [7]

report an execution time of 1.6 seconds for a 6-input 𝑚-output

Boolean gate. Notably, the execution time is almost independent

of the output count𝑚. The authors did not provide benchmarks

for Boolean gates with smaller fan-in sizes, but it is reasonable to

assume that the execution time would decrease super-linearly with

a decrease in fan-in size.

WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA. Yu, Carpov, Tempia Calvino, and De Micheli

2.3 Boolean Circuit
2.3.1 Basic concepts. A Boolean circuit, or a logic network, is a

directed acyclic graph (DAG)𝐺 = (𝑉 , 𝐸), where𝑉 is the set of nodes

and 𝐸 is the set of edges. Each edge in 𝐸 is directed and models a

wire from node 𝑛𝑖 to node 𝑛𝑜 , where 𝑛𝑖 , 𝑛𝑜 ∈ 𝑉 ; We term 𝑛𝑖 as a

fan-in of 𝑛𝑜 and 𝑛𝑜 as a fan-out of 𝑛𝑖 . The presence of an inverter

is recorded as an attribute of the edges. A Boolean circuit is further

characterized by its primary inputs (PIs) and primary outputs (POs),
denoted as set 𝐼 and set 𝑂 , respectively. Each node in 𝑉 is either a

PI or a logic gate, i.e., 𝐼 ⊆ 𝑉 . Each PO in 𝑂 can be either a PI or a

logic gate and conceptually models an outgoing wire, with potential

complementation, from this node. Fig. 2 showcases a logic network

that implements a one-bit full adder. More specifically, the network

can be termed as an XOR-AND-inverter graph (XAG), as the logic

primitives are constrained to two-input AND nodes (denoted as ‘∧’)
and two-input XOR nodes (denoted as ‘⊕’). A dotted edge indicates

an inversion. The XAG consists of eight nodes, where 𝐼 = {𝑎, 𝑏, 𝑐𝑖𝑛}
and 𝑂 = {𝑐𝑜𝑢𝑡 , 𝑠}.

2.3.2 Cuts. A cut is a commonly used concept to highlight a part

of a logic network. A valid cut 𝐶 features a root node 𝑟 and a set of

leaf nodes 𝐿, such that: (1) Any path from a PI to the root 𝑟 includes

at least one leaf node 𝑙 ∈ 𝐿; and (2) Each leaf 𝑙 is on at least one such

path. Intuitively, the part of the network highlighted by a cut, called

a logic cone, is the set of all nodes on any path from a leaf node to

the root node. We call a cut 𝑘-feasible if its number of leaf nodes

does not exceed 𝑘 . For instance, in the XAG in Fig. 2, there are three

non-trivial 3-feasible cuts rooted at node 𝑐𝑜𝑢𝑡 , denoted as 𝐶0 to 𝐶2,

with leaves {𝑛3, 𝑛5}, {𝑛3, 𝑛4, 𝑐𝑖𝑛}, and {𝑎, 𝑏, 𝑐𝑖𝑛}, respectively. The
process of finding the 𝑘-feasible cuts rooted at all non-PI nodes in

a logic network is known as cut enumeration [9].

We define the global function of node 𝑛, 𝑓𝑛 , as the Boolean func-

tion implemented by 𝑛 in terms of the PIs, i.e., 𝑓𝑛 :B |𝐼 | → B. In
contrast, we define the Boolean function implemented by cut 𝐶 ,

whose root node is 𝑛 and leaf nodes are 𝐿, as a local function of

node 𝑛 in terms of 𝐶 , 𝑓𝐶𝑛 :B |𝐿 | → B. Reusing the example in Fig. 2,

we have

𝑓
𝐶0

𝑐𝑜𝑢𝑡 = ¬𝑛3 ∧ ¬𝑛5,

where ‘¬’ denotes negation. Since the leaf nodes of cut 𝐶2 are

exactly the PIs, we have

𝑓
𝐶2

𝑐𝑜𝑢𝑡 = 𝑓𝑐𝑜𝑢𝑡 = ⟨𝑎, 𝑏, 𝑐𝑖𝑛⟩,

where ‘⟨⟩’ denotes the Boolean majority operation.

2.3.3 Maximum fanout-free cone (MFFC). The MFFC of a node 𝑛

refers to the set of nodes in the fan-in cone of 𝑛 such that any path

from these nodes to any PO passes through 𝑛. For example, in Fig. 2,

the MFFC of node 𝑐𝑜𝑢𝑡 consists of node 𝑛3 and 𝑛5. Conversely, there

are no nodes in the MFFC of node 𝑠 , as its two fan-in nodes, node

𝑛4 and node 𝑐𝑖𝑛 , also contribute to node 𝑛5. Intuitively, the nodes in

𝑛’s MFFC exclusively contribute to 𝑛 and do not affect other parts

of the logic network. Therefore, measuring the size of the MFFC of

a node provides a local estimation of the area cost associated with

it — if this node is removed from the circuit, the nodes in its MFFC

can also be eliminated.

2.4 Related Works
We review relatedworks on the two open problems in homomorphic

Boolean circuit synthesis, to which this work contributes.

2.4.1 Large-fan-in Boolean gates. When homomorphically evaluat-

ing a Boolean function represented as a Boolean circuit, fewer gates

in the circuit result in fewer FBS operations involved in the homo-

morphic computation. Circuit area is an important quality measure

in digital circuit synthesis, also known as logic synthesis. Thus, the
task of homomorphic Boolean circuit synthesis can be viewed as a

special case of area-oriented logic synthesis, where each gate has

a unitary cost, and the optimization objective is specified as the

gate count. Due to this, TFHE compilers in the literature, such as

ROMEO [15] and Transpiler [14], tend to leverage existing logic

synthesis tools, such as Yosys [25], to convert the Boolean circuit

into a network consisting of gates from the gate set supported by

the TFHE library, a process known as technology mapping.
In the TFHE library, only the homomorphic evaluation of two-

input logic gates and three-input multiplexers is implemented. How-

ever, existing research reveals that certain gates with larger fan-in

sizes, such as full adders, can be homomorphically evaluated as

efficiently as the gates supported by the TFHE library [18]. This

presents an opportunity to achieve higher-performance homomor-

phic Boolean circuit designs. By utilizing the expressiveness of

large-fan-in gates, more compact circuits can be synthesized.

Despite this potential, there is a lack of exploration regarding the

question: “What kind of large-fan-in logic gates can be supported?”

Due to the limited study on this problem, existing efforts to exploit

large-fan-in gates for compact TFHE circuit designs have taken

two directions. The first direction involves considering a limitedly

extended gate set, with a significantly limited number of large-

fan-in-size gates added to the original TFHE gate set. For instance,
only full adders are considered in [20]. While this approach allows

formulating the TFHE circuit synthesis problem as a technology

mapping problem and benefits from the expressiveness of large-

fan-in gates, it suffers from the limited number of considered large

gates.

The second direction starts with a Boolean circuit consisting

of two-input gates and locally compounds concatenated two-input

gates into large fan-in ones, validating each compounded gate on

the fly. However, even though greedily compounding concatenated

two-input gates, as proposed in [16], maximizes the use of large-fan-

in gates, the lack of a global view means this does not necessarily

lead to compact circuit designs, as we will later report in our exper-

iments (Section 5). To address this limitation, [5] proposes keeping

several local compounding solutions and deciding which to commit

at the last moment to minimize the gate count. Nevertheless, the

greedy nature of compounding suggests that technology mapping

is more promising for unleashing the expressiveness of large-fan-in

gates and achieving compact TFHE circuit designs.

2.4.2 Multi-output Boolean gates. The multi-value FBS technique

adds an additional dimension to the TFHE circuit synthesis problem.

Specifically, it suggests that the cost of a multi-output gate, which

implements𝑚 single-output Boolean functions sharing the same 𝑛

inputs (i.e., an 𝑛-input𝑚-output Boolean function 𝑓 : B𝑛 → B𝑚), is

nearly equivalent to that of an 𝑛-input single-output gate, provided

On the Synthesis of High-performance Homomorphic Boolean Circuits WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA.

that the𝑚 functions are of the same type and share the same weight

assignment (Section 2.2.2).

While the multi-value FBS technique presents an opportunity

to achieve lower execution costs in homomorphic Boolean circuit

designs, support from the circuit synthesis side is unfortunately

very limited. To our knowledge, existing efforts to exploit this

technique are limited to performing a post-synthesis merging pro-

cess to combine qualified single-output gates into multi-output

ones [16, 20]. However, there is a lack of exploration on integrat-

ing this feature into the circuit synthesis process, i.e., developing
multi-value-FBS-aware circuit synthesis algorithms to unlock more

merging opportunities and fully utilize this technique.

Moreover, reusing existing hardware circuit synthesis algorithms

to address this issue can lead to sub-optimal designs, as the fea-

ture where a multi-output gate has a cost close to a single-output

gate rarely exists in the context of hardware circuits. The nearest

counterparts we have noticed are dual-output look-up tables (LUTs)
for field-programmable gate array (FPGA) designs [24] and multi-

output standard cells, such as half and full adders, for standard-cell-

based digital circuit designs [4]. Nevertheless, in these scenarios,

the considered multi-output gates typically have a limited output

count of no more than two.

In contrast, TFHE circuit synthesis benefits from the multi-value

FBS technique, which applies to logic gates with arbitrary output

counts. Specifically, the larger the output count, the more the execu-

tion cost is amortized. For instance, our experimental results show

that the output count of multi-output gates in our synthesized cir-

cuits can be as high as five. This gap indicates that reusing existing

logic synthesis algorithms may overlook significant optimization

opportunities in homomorphic Boolean circuit synthesis. This un-

derscores the necessity of developing innovative and customized

algorithms for this purpose.

3 Homomorphic Boolean Circuit Synthesis via
Technology Mapping

Logic gates that implement certain Boolean functions, even with a

fan-in size larger than two, can be utilized to synthesize homomor-

phic Boolean circuits while adhering to stringent security parame-

ters. Leveraging larger-fan-in logic gates allows for the execution

of more complex operations within a single gate, resulting in more

compact circuit designs. This approach enhances the efficiency of

homomorphic evaluation without compromising overall security.

In this section, we aim to achieve this goal by addressing two

major challenges: (1) Identifying the set of larger-fan-in logic gates

qualified for TFHE circuit synthesis. (2) Leveraging these larger-

fan-in logic gates to achieve optimal TFHE circuit design.

3.1 Homomorphic Gate Set
The truth table of a logic gate describes the output of the gate for

each potential input pattern. For an 𝑛-input gate, the truth table has

2
𝑛
entries, corresponding to the 2

𝑛
possible input combinations.

Symbolically, we denote each entry as 𝑓(𝑏𝑛−1 ...𝑏0)10 ∈ B, indicating
the output of the gate for the input combination 𝑥0 = 𝑏0, . . . ,

𝑥𝑛−1 = 𝑏𝑛−1, where (𝑏𝑛−1 . . . 𝑏0)10 represents the decimal value

of the bit string 𝑏𝑛−1 . . . 𝑏0, with the leftmost bit being the most

significant.

In the context of TFHE, the truth table of a logic gate is encoded

as the 𝑝 coefficient segments of a test vector. Recall that each seg-

ment encodes the same truth table value because of the rounding

functionality of the test vector. Once the security parameters are

set, the plaintext space size 𝑝 is fixed, determining the maximum

allowable truth table size. Therefore, the validity of a logic gate

depends on the ability to compress its truth table such that its size

does not exceed 𝑝 and can fit into a test vector.

Compression essentially involves using one entry to represent

multiple input patterns. In TFHE, this is achieved by leveraging two

key observations: (1) By devising the weight 𝑤 assigned to each

input variable, some entries with the same output are projected

to a single entry. (2) The negacyclic property of test vectors (Sec-

tion 2.2.1). We present a comprehensive analysis based on Boolean

properties to derive a complete set of gates that fit within the plain-

text space Z4. This step is crucial for effective technology mapping,

which will be discussed in the subsequent sub-section.

3.1.1 Symmetric gates. Based on the function of a logic gate, a

dedicated weight assignment for the input variables may allow

some entries with the same output to share the same weighted

summation

∑𝑛−1
𝑖=0 (𝑤𝑖 · 𝑏𝑖). This allows using one entry of a truth

table to express multiple entries in the baseline 2
𝑛
-entry truth,

realizing a compression. Indeed, in the baseline case, each input

variable is assigned a power-of-two weight value by default, such

that each input combination has a unique weighted summation

value that distinguishes it from others.

When compressing a truth table by finding an optimal weight

assignment for each input variable, logic gates that implement

symmetric functions benefit the most. The output of a symmetric

function is determined by the Hamming weight of the input pat-

tern, i.e., each input variable is equal when determining the output.

By assigning equal weight to all input variables, there are 𝑛 + 1
possible numeric values of the weighted summation for an 𝑛-input

gate, with the minimum achieved when all inputs are zero and the

maximumwhen all inputs are one. The magnitude of this maximum

determines the noisiness of the FBS operation, so selecting the unit

weights helps manage the noise level effectively.

From this perspective, all three-input symmetric gates are fea-

sible for synthesizing homomorphic Boolean circuits under the

plaintext space size configuration 𝑝 = 4.

3.1.2 Negacyclic gates. Due to the negacyclic property of the poly-

nomials in the TFHE scheme, where if

∃𝑘 ∈ [2𝑛−1 ..2𝑛), s.t. ∀𝑖 ∈ [𝑘..2𝑛) 𝑓𝑖 = ¬𝑓𝑖−𝑘 ,

only the first 𝑘 entries of the truth table need to be encoded into the

𝑁 coefficients of a test vector, to ensure correct functionality. Given

that the baseline truth table size of a three-input logic gate is 8 (2
3
),

a gate is valid only if there exists a 𝑘 that achieves its maximum

value of 4 (2
3−1

). In other words, for such a gate, half of its truth

table is the negation of the remaining half. We term Boolean gates

with such truth tables as negacyclic gates and the functions they

implement as negacyclic functions.
We have the following observations regarding negacyclic Boolean

functions.

WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA. Yu, Carpov, Tempia Calvino, and De Micheli

Theorem 3.1. An 𝑛-variable Boolean function 𝑓 is negacyclic if
and only if 𝑓 can be decomposed into

𝑥𝑛−1 ⊕ 𝑓 ′,

where ‘⊕’ denotes the Boolean XOR operation, 𝛼 ∈ [0..𝑛 − 1], and 𝑓 ′

is an (𝑛 − 1)-variable function independent of 𝑥𝛼 .

Proof. (⇒) By applying Shannon decomposition, 𝑓 can be de-

composed into

𝑥𝑛−1 · 𝑓 (𝑥𝑛−1, . . . , 𝑥0) |𝑥𝑛−1=1 + (¬𝑥𝑛−1) · 𝑓 (𝑥𝑛−1, . . . , 𝑥0) |𝑥𝑛−1=0,
where ‘·’ and ‘+’ indicate Boolean AND and OR operations, respec-

tively. Since the truth table of 𝑓 is negacyclic and 𝑥𝑛 is the most

significant variable, we have

𝑓 (𝑥𝑛−1, . . . , 𝑥0) |𝑥𝑛−1=1 = ¬𝑓 (𝑥𝑛−1, . . . , 𝑥0) |𝑥𝑛−1=0 .
By plugging this equation into the decomposed expression, we

obtain the following representation of 𝑓 :

𝑥𝑛−1 ⊕ 𝑓 (𝑥𝑛−1, . . . , 𝑥0) |𝑥𝑛−1=0,
i.e., 𝑥𝑛−1 is successfully disjointed from 𝑓 .

(⇐) It is straightforward to see that, as long as we regard the

disjoint variable, 𝑥𝛼 , as the most significant variable, i.e., assign 𝑥𝛼
the weight of 2

𝑛−1
, any resulting truth table would be negacyclic.

□

As Theorem 3.1 suggests, to encode the truth table of a three-

input negacyclic gate within the plaintext space size, the disjoint

input must be assigned the largest weight, ensuring that the result-

ing truth table is negacyclic.

Theorem 3.2. Negating the inputs and output of a negacyclic
function does not affect the negacyclicity of the resulting function.

Proof. Neither input negations nor output negations change

the property that the disjoint variable can be detached from the

function. Thus, the resulting functions remain negacyclic. □

Theorem 3.2 is applicable in the technologymapping and inverter

reduction stages, which will be introduced later.

Based on our demonstrations, we propose a homomorphic gate

set for plaintext space Z4, consisting of three-input symmetric gates,

three-input negacyclic gates, and all two-input gates.

3.2 Area-Oriented Technology Mapping
In the technology mapping stage, the target computation is first

represented as an initial multi-level logic network of simple gates,

called the subject graph. In our implementation, we choose XAG

as the logic representation for the subject graph. As introduced

in Section 2.3, each node in an XAG implements either a two-

input AND operation or a two-input XOR operation, with potential

negations recorded as an edge attribute.

We believe XAG is a suitable representation of the subject graph

for our problem. This is because, in a TFHE circuit, any two-input

Boolean gate is allowed. Thus, XAG can provide a compact represen-

tation for the subject graph, as any two-variable Boolean function

can be represented using one XAG node.

We then transform the XAG into a network consisting of gates

from the proposed homomorphic gate set (i.e., a TFHE circcuit).

This process involves two steps: (1) Matching: Enumerating dif-

ferent allowed gates that match the local functions of each node

in the subject graph. (2) Selection: Selecting the optimal subset of

matches to cover the subject graph, where the optimality is defined

as using the minimal number of matches. We will now detail our

implementation for these two steps.

3.2.1 Matching. The process begins with cut enumeration [9],

where 3-feasible cuts rooted at each node in the subject graph

are enumerated. Each cut highlights a portion of the subject graph

and represents a possible implementation of its root node. These

cuts are then matched against the proposed homomorphic gate

set to find suitable solutions for implementing the root node by

applying gates from the gate set to nodes at lower logical levels in

the subject graph.

The matching process leverages Boolean matching, which in-

volves comparing the local function of each cut to each gate candi-

date, eliminating those cuts that cannot be realized using a single

gate from the gate set. The objective is to accurately bind the cuts

to the available primitives, thereby enabling optimal mapping of

the subject graph to the target gate set.

To enhance matching opportunities, we extend the gate set to

include three-input symmetric gates with one input negation. This

approach reasonably increases the likelihood of successful matches.

When such amatch is detected and committed, the cut in the subject

graph is implemented using one symmetric gate and an inverter in

the resulting TFHE circuit. Notably, the homomorphic operation

corresponding to an inverter, which is a negation, does not require

any FBS operation. If input negations are not considered during

the matching step, the resulting mapped TFHE circuit is likely

sub-optimal, as some local mapping choices would be missed.

It is important to note that not all input or output negations

need to be explicitly considered, as they can be redundant. For

symmetric gates, due to the properties of symmetric functions, it

is unnecessary to consider output negation or input negations at

more than half of the inputs. This is because: (1) Output negation

does not affect the (a)symmetry of a Boolean function; and (2)

Negating 𝑛′ inputs of an 𝑛-input symmetric gate is equivalent to

negating the remaining (𝑛 −𝑛′) inputs and the output. Therefore, it
is unnecessary to consider three-input symmetric gates with more

than one input negation, nor is it necessary to explicitly consider

output negation, as these gates are already accounted for by the

current gate set, which includes symmetric gates with one input

negation.

For the same reason, during the matching step, we do not explic-

itly consider potential input and output negation for three-input

negacyclic gates (as pointed out by Theorem 3.2) or two-input gates

(as the proposed gate set already includes all two-input gates).

This approach ensures that all potential matching opportunities

are efficiently and effectively considered during the matching steps,

which is a crucial factor in ensuring the quality of the resulting

mapped homomorphic Boolean circuits.

3.2.2 Selection. For the selection step, our implementation is based

on the approach described in [19]. This step focuses on choosing

the best subset of matches identified during the matching step to

cover the entire subject graph efficiently. It requires evaluating the

On the Synthesis of High-performance Homomorphic Boolean Circuits WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Algorithm 1: Each iter. of selection in technology mapping.

Input: Subject graph𝐺 and cost estimation heuristic est_cost.
Output: Subject graph𝐺 , with one rep. cut selected for each node

1 foreach node 𝑛 ∈ 𝐺 in topological order do
2 𝑛.cost← +∞
3 foreach matched cut 𝑐 ∈ cuts rooted at node 𝑛 do
4 𝑐.cost← cost_est(𝐺 , 𝑐)

5 if 𝑐.cost < 𝑛.cost then
6 𝑛.cost← 𝑐.cost
7 𝑛.rep← 𝑐

8 return𝐺

cost of each matched cut and selecting the combination of matches

that optimizes the overall circuit design.

The selection algorithm, outlined in Algo. 1, adopts a dynamic

programming approach to iteratively update the representative cut

of each node, aiming to minimize the total gate count. This pro-

cess involves selecting cuts that minimize the overall circuit area

and updating the network to reflect these choices. However, accu-

rately measuring the area contribution of each cut poses challenges.

Consequently, the process (Algo. 1) is repeated across multiple iter-

ations, employing different heuristics for cost estimation (est_cost)
to refine the mapping and achieve the best possible design outcome.

Specifically, we utilize the area flow [17] and the exact area [19],

two well-recognized and complementary heuristics that estimate

the cost of a cut from global and local perspectives, respectively,

ensuring a comprehensive evaluation of the circuit design.

Area flow is designed to provide a global view of the network by

estimating the effective area of each node. For each cut of a node

that has passed the matching step, its area flow cost is calculated by

summing the gate count needed to implement the root node on top

of the leaves (fixed to one gate per cut in our case, as ensured during

the matching step) and the area flow costs of the leaves, divided

by the fan-out count of the root node. This heuristic is particularly

useful for understanding the shared logic among different logic

cones in the subject graph.

The exact area heuristic, on the other hand, focuses on a local

view by calculating the precise area contribution of a node to the

entire circuit. This heuristic provides an accurate assessment of the

local area’s impact on the overall area. It involves traversing towards

the fan-in side of the current node to determine the exact number

of gates required if the cut is selected, specifically measuring the

size of its MFFC. One can refer to the subsequent section, where

we propose the enhanced exact area, for a more detailed illustration

of this heuristic.

The selection algorithm (Algo. 1) is executed multiple times,

alternating between the two heuristics to iteratively update the

representative cuts of each node (𝑛.rep) and ensure both global and

local optimizations are achieved. The representative cut of each

node after the final execution of the algorithm is the cut selected

for implementation.

After the selection step, the mapped TFHE circuit is derived from

the selected cuts. This is realized by traversing the subject graph

in reverse-topological order, i.e., from the PO side to the PI side,

replacing each reached node with the corresponding cut chosen

during the selection process. Each node’s selected cut is used to

instantiate a gate from the homomorphic gate set. The resulting

network, representing the TFHE circuit, is thus an optimized im-

plementation of the subject graph, depicted with gates from the

proposed gate set, ensuring both efficiency and functionality.

4 Multi-value-FBS-aware Mapping
In this section, we elaborate on our proposals formaximizing the use

of the multi-value FBS technology [7]. Our support is devised from

two perspectives: (1) We integrate the feature that multi-output

gates are of the same cost as single-output gates into the technol-

ogy mapping process, enabling multi-value-FBS-aware technology
mapping; and (2) We dedicate a post-mapping inverter reduction

stage to further increase the chances of applying the multi-value

FBS technology.

4.1 Technology Mapping with Label Monitoring
To enhance the technology mapping process introduced in Sec-

tion 3.2 and unlock more opportunities for merging single-output

gates into multi-output ones, we propose and utilize a concept

called label.

4.1.1 Labels. Enabling multi-value-FBS-aware technology map-

ping presents a challenge: during the selection step in the tech-

nology mapping process, how can we efficiently identify which

cuts, once selected, can be instantiated as multi-output gates? Our

analysis indicates that this evaluation requires two pieces of in-

formation: the leaves and the local function of a cut. Therefore,

during the matching step, these two identities are jointly recorded

as the so-called label and associated with each cut for later use in

the selection step.

Here are the implementation details of each label. Given that the

cuts are 3-feasible, meaning each cut has at most three leaves, each

label consists of four data points: (a) Three data points indicate

the leaf nodes of a cut, canonicalized in topological order with

zero-padding if a cut has fewer than three leaves; and (b) One data

point indicates the gate type, either symmetric or negacyclic for

cuts with three leaves, or an arbitrary gate type for cuts with two

leaves. Note that cuts related to other gate types are directly ruled

out in the matching step.

Our design of labels incorporates additional detailed strategies

to prevent false detection of opportunities to apply the multi-value

FBS technique. For labels of cuts with three leaves that implement

negacyclic functions, we highlight the disjoint variable by ensur-

ing the corresponding leaf node is listed first and reordering the

remaining leaves in topological order. This is crucial because, as

revealed by Theorem 3.1, the disjoint variable must be assigned the

largest weight to encode the gate’s truth table into a test vector.

Consequently, even if two cuts have the same leaf nodes and both

implement negacyclic functions, they cannot be instantiated as a

two-output gate to apply the multi-value FBS technique if the leaf

node serving as the disjoint variable is not the same.

Another strategy addresses handling the label when a match

requires an input negation. Recall that we consider three-input

symmetric functions with one negated variable in the matching step

to maximize matching opportunities, as introduced in Section 3.2.1.

For the label of such a matched cut, a mark is placed on the data

point indicating the leaf node that requires a negation. This is

WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA. Yu, Carpov, Tempia Calvino, and De Micheli

Algorithm 2: Representative cut selection guided by the

enhanced exact area heuristic

Input: Node 𝑛, Subject graph𝐺 , and a label counter label_count.
Output: Subject graph𝐺 , with one rep. cut selected for node 𝑛

1 𝑛.cost← +∞
2 foreach matched cut 𝑐 ∈ cuts rooted at node 𝑛 do
3 𝑐 .cost← ref_cut(𝐺 , 𝑐)

4 if 𝑐.cost < 𝑛.cost then
5 𝑛.cost← 𝑐.cost
6 𝑛.rep← 𝑐

7 deref_cut(𝐺 , 𝑐)

8 ref_cut(𝐺 , 𝑛.rep)
9 𝑛.ref ← 1

10 label_count[𝑛.rep.label]←label_count[𝑛.rep.label] +1
11 Function ref_cut(subject graph𝐺 , cut 𝑐) :
12 cost← 1

13 if label_count[𝑐 .label]≠ 0 then
14 cost← 0

15 foreach leaf 𝑙 of cut 𝑐 do
16 if 𝑙 is a PI then continue
17 𝑙 .ref ← 𝑙 .ref +1
18 if 𝑙 .ref = 1 then
19 cost← cost + ref_cut(𝐺 , 𝑙 .rep)
20 return cost
21 Function deref_cut(subject graph𝐺 , cut 𝑐) :
22 foreach leaf 𝑙 of cut 𝑐 do
23 if 𝑙 is a PI then continue
24 𝑙 .ref ← 𝑙 .ref −1
25 if 𝑙 .ref = 0 then
26 deref_cut(𝐺 , 𝑙 .rep)

because, it is necessary to distinguish such a match from one that

does not require an input negation, as an input negation necessitates

an opposite sign for the corresponding input’s weight.

These strategies ensure that the determination ofwhether several

cuts implementing different root nodes can be instantiated as a

multi-output gate is straightforward. This determination can be

made by checking if the labels of the cuts are identical — If the cuts

share the same label, it indicates that they can be implemented as

a multi-output gate, whose FBS can be realized by applying the

efficient multi-value FBS technique.

4.1.2 Enhanced Exact Area Heuristic. By exploiting labels, effi-

cient and effective multi-value-FBS-aware technology mapping

is achieved. During each iteration of the selection step, when the

exact area heuristic is used for cost estimation, a label counter is

maintained to dynamically monitor the labels of the representative

cuts determined so far. It is important to note that in the selec-

tion step, the representative cut of each node is determined in a

topological order (line 1 in Algo. 1). In our enhanced exact area

heuristic, the label counter is utilized to ensure that the labels of

the representative cuts of nodes determined earlier, which are at

a lower logical level, play a crucial role in the determination of

the representative cuts of nodes determined later. Algo. 2 depicts

how the representative cut of a node is determined following the

proposed enhanced exact area heuristic.

Given a cut candidate 𝑐 of node 𝑛 that has passed the evalua-

tion at the matching step, its cost is obtained by simulating the

implementation of node 𝑛 as indicated by cut 𝑐 and counting the

number of additional gates required for this implementation. This

is achieved by recursively incrementing the reference counters (ref)
of the nodes in the transitive fan-in cone of cut 𝑐 (line 3 in Algo. 2),

handled by the ref_cut function (lines 11-20). The process contin-

ues to the fan-ins of a node as long as the reference counter of

this node is zero before incrementation (lines 17-19), indicating

that implementing node 𝑛 following the way indicated by cut 𝑐

necessitates the implementation of the current node that is not yet

implemented.

It is important to note that the need to implement such a node

does not necessarily result in additional area costs, due to the pos-

sibility of jointly implementing this node and existing nodes as a

multi-output gate. To check this possibility, we refer to the label

counter (label_count) to see if the label of the representative cut of

the currently reached node matches the label of the representative

cut of any already implemented node. This is the most significant

difference between the proposed enhanced exact area heuristic and

the original one introduced in Section 3.2.2. If such a match is de-

tected, the implementation of the current node does not result in

an additional gate count (lines 13-14). This strategy guarantees a

precise measurement of the MFFC size of the current node.

When the currently reached node has a non-zero reference

counter or when it is a PI, both of which ensure that this node

is already implemented, the exploration towards the fan-ins of this

node stops (line 16). At the end of evaluating each cut candidate,

the deref_cut function is invoked (line 7). This function reverses the

incrementation in reference counters done by the ref_cut function,
enabling the subsequent evaluation of other cuts rooted at node

𝑛 (lines 21-26).

After evaluating all candidate cuts, based on the cost calculated

following the enhanced exact area heuristic, the cut correspond-

ing to the lowest-cost implementation of node 𝑛 is selected as its

representative cut (lines 2-7). The reference counters and the label

counter are updated correspondingly, as required for the represen-

tative cut selection of subsequent nodes (lines 8-10).

4.2 Inverter Reduction
As discussed in Section 3.2.1, the matching step of the technology

mapping process considers potential negations at one input for

three-input symmetric gates to ensure comprehensive inclusion of

all matching opportunities. While this strategy enhances compact

circuit design, it sometimes impedes the application of the multi-

value FBS technique. This issue is exemplified as follows.

Example:
Fig. 3a shows the least significant three bits of the 128-bit adder

design after technology mapping, where ‘∧’ indicates Boolean
AND operation, ‘⟨⟩’ and ‘⟨⟩’ indicate Boolean majority and mi-

nority operations, respectively, ‘⊕’ and ‘⊕’ indicate Boolean XOR
and XNOR operations, respectively. Inverters are denoted using

‘◦’ for visibility, rather than dotted arrows as in Fig. 2. Since

node 𝑐1 is a minority gate and inverts the logic of the second

carry-out signal, an inverter is necessary before its connection

On the Synthesis of High-performance Homomorphic Boolean Circuits WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA.

𝑎0 𝑏0 𝑎1 𝑏1 𝑎2 𝑏2

𝑠0

𝑐0

⊕ ∧

𝑠1

𝑐1

⊕ ⟨⟩

𝑠2

𝑐2

⊕ ⟨⟩

(a)

𝑎0 𝑏0 𝑎1 𝑏1 𝑎2 𝑏2

𝑠0

𝑐0

⊕ ∧

𝑠1

𝑐1

⊕ ⟨⟩

𝑠2

𝑐2

⊕ ⟨⟩

(b)

Figure 3: Least significant three bits of the mapped 128-bit
adder: (a) Before and (b) After post-mapping inverter reduc-
tion. FBS operations for gates highlighted in the same gray
box can be jointly conducted via amulti-value FBS operation.

to node 𝑐2 to generate the third carry-out signal. The presence of

this inverter prevents the FBS operations of 𝑠2 and 𝑐2 from being

realized through a single multi-value FBS operation. Among

the 127 pairs of sum and carry-out signals in the 128-bit adder,

this issue occurs once for every two pairs, except for the lowest

significance pair (𝑠0 and 𝑐0). Consequently, multi-value FBS is

applicable to only 64 pairs, requiring the separate execution of

FBS operations for the remaining 63 pairs. Hence, the execution

of the TFHE circuit in Fig. 3a involves 191 (64 + 63 + 63 + 1) FBS
operations. However, this inverter can be eliminated by negating

𝑐1 and 𝑠2’s gate functions. Because of the Boolean properties of

the gate functions of 𝑐1 and 𝑠2, this elimination does not intro-

duce additional inverters and results in the circuit design shown

in Fig. 3b. The TFHE circuit in Fig. 3b is preferable, involving

only 128 FBS operations.

Without considering the application of the multi-value FBS tech-

nique, both designs in Figs. 3a and 3b are optimal in terms of gate

count, as inverters are not counted (since their execution does not

require an FBS operation), and both consist of 255 single-output

gates. This demonstrates the effectiveness of considering poten-

tial input negations during the matching step to achieve compact

circuit designs. Further analysis reveals that the design in Fig. 3a,

rather than the one in Fig. 3b, results from mapping because the

node in the subject graph corresponding to 𝑐2 implements the logic

of the negation of the second carry signal. Thus, the circuit design

in Fig. 3a is an unavoidable intermediate stage to achieve the design

in Fig. 3b. These observations suggest that, rather than eliminating

the consideration of input negations during mapping, it is wiser to

address inverter reduction as a post-mapping stage.

Below, we introduce our post-mapping inverter reduction ap-

proach. After obtaining a mapped logic network, we enumerate the

nodes in the network in topological order. As analyzed above, only

three-input nodes with a symmetric gate function may result in

an inverter at one of their inputs. As noted in Section 3.2.1, output

negation does not alter the type of any of the three gate types in the

proposed homomorphic gate set. Therefore, when such a node 𝑛 is

encountered, whose negated input node is denoted as 𝑙 , the inverter

can always be absorbed into 𝑙 ’s gate function.

However, we shall check the fan-out size of 𝑙 to decide whether

to commit this absorption or not. If node 𝑙 has only one fan-out,

which is node 𝑛, the absorption is committed, as the inverter will be

reduced without necessitating inverter insertion elsewhere in the

network. If node 𝑙 has more than one fan-out, since the negated gate

function at node 𝑙 will result in inverter insertion when contributing

to other fan-outs, the absorption would not be committed until

it is confirmed that the newly inserted inverters can be further

absorbed into the other fan-outs of 𝑙 , so that no extra inverter would

be inserted into the resulting network. When such a fan-out of 𝑙 ,

denoted as node 𝑛′, has the gate function of either a three-variable

negacyclic function or any two-variable function, the confirmation

is quickly given, as it is pointed out in Section 3.2.1 that input

negation would not alternate the function type of these two. When

the gate function of node 𝑛′ is a three-variable symmetric one, the

inverter absorption at node 𝑙 shall not be committed only if either

(1) Node 𝑙 is also a negated fan-in of node 𝑛′, or (2) the gate function
of Node 𝑛′ is XOR or XNOR: In case (1), the two inverters on the

edge from node 𝑙 to node𝑛′ will cancel each other; In case (2), due to
the property of Boolean XOR and XNOR operations, the additional

inverter can be absorbed into node 𝑛′ by negating its gate function.

Indeed, the example in Fig. 3 belongs to case (2), where nodes 𝑐2,

𝑐1, and 𝑠2 play the roles of 𝑛, 𝑙 , and 𝑛′, respectively.

5 Experimental Evaluations
In this section, we introduce the experiments designed and con-

ducted to evaluate the proposed homomorphic Boolean circuit

synthesis approach. The experiments are divided into two stages.

The first stage focuses on the high-level performance aspects, in-

cluding the quality measures of the optimized Boolean circuits and

the runtime of the circuit synthesis process. The second stage es-

timates the homomorphic evaluation efficiency of the optimized

circuits, providing a precise measurement of the practical gains

achieved through our circuit synthesis technique. All experiments

are conducted on an Apple M1 Max chip with 32GB memory.

5.1 Profiling Synthesized Circuits
Three homomorphic Boolean circuit synthesis flows are involved

in our experimental evaluation:

(1) SOTA: Since the state-of-the-art approach we are comparing

to, AutoHoG, is not open-sourced, we implemented it following

the description in [16]. The implemented flow is depicted in

Fig. 4a. Initially, area-oriented technology mapping is applied

to the subject graph, with all two-input gates constituting the

WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA. Yu, Carpov, Tempia Calvino, and De Micheli

Subject

graph

Area flow

×2
Exact area

×2
Gate

compounding

Gate

merging

TFHE

circuit

target gate set:

all two-input gates

Area-oriented technology mapping

(a)

Subject

graph

Area flow

×2
Enhanced exact area

×2
Inverter

reduction

Gate

merging

TFHE

circuit

target gate set: our

homomorphic gate set

Multi-value-FBS-aware area-oriented technology mapping

(b)

Figure 4: Evaluated homomorphic Boolean circuit synthesis flows: (a) State-of-the-art and (b) Ours.

target gate set. Then, the utilization of the three-input gates in

the homomorphic gate set proposed in Section 3.1 is achieved

by locally checking if two concatenated two-input gates can

be compounded into a three-input one, known as the gate com-
pounding technique. Finally, in the gate merging stage, single-

output gates with the same support and the same type of gate

functions are merged into multi-output ones, to facilitate the

application of the multi-value FBS technique.

(2) TechMap: To solely evaluate the gain obtained by exploiting

larger-fan-in gates via technology mapping, rather than gate

compounding, this flow is derived by tuning SOTA to integrate

our proposal in Section 3. Specifically, the proposed homomor-

phic gate set, rather than only two-input gates, is adopted as

the target gate set for technology mapping. In this way, the gate

compounding stage in SOTA is not included in this flow.

(3) Enhanced TechMap: As depicted in Fig. 4b, this flow integrates

all our proposals and differs from SOTA in two main aspects: (i)

As in TechMap, the utilization of three-input gates is achieved by
exploiting the proposed homomorphic gate set as the target gate

set in the technology mapping stage. (ii) The area-oriented tech-

nology mapping is enhanced to be multi-value-FBS-aware by

replacing the exact area heuristic with the proposed enhanced

version (Section 4.1) and integrating the proposed post-mapping

inverter reduction technique (Section 4.2).

The flows are evaluated using the EPFL combinational bench-

mark suite [1], which consists of ten arithmetic benchmarks and

ten random/control benchmarks. As introduced in Section 3, we

chose to represent the subject graphs as XAGs for a compact rep-

resentation. Therefore, as a pre-processing step, the initial bench-

marks, provided in AND-inverter graph (AIG) representation, are

converted to XAGs using the mapper described in [23] before being

fed into the flows. All three circuit synthesis flows, as well as the

pre-processing, are implemented as part of the C++ logic synthesis

library mockturtle [22].
The evaluation results are presented in Table 1, which reports the

number of gates after merging in each synthesized homomorphic

Boolean circuit design (‘#Gates’), the merging rate (‘Merge’), and

the runtime of each circuit synthesis flow (‘Time’). The merging

rate is defined as the reduction in gate count achieved by merging

single-output gates into multi-output ones in the gate merging

step. Recall that the gate count of a homomorphic Boolean circuit

directly correlates with its execution time, as each Boolean gate

corresponds to an FBS operation.

Comparing the designs synthesized by SOTA and TechMap, since
the only difference between these two flows is the method of uti-

lizing large-fan-in gates, the observation that circuits synthesized

by TechMap consistently have fewer gates, if not the same num-

ber, as those generated by SOTA, strongly supports our argument

that the gate compounding technique in SOTA [16] suffers from

a lack of a global perspective and results in sub-optimal circuit

designs. Although not included in Table 1 due to space constraints,

it is noteworthy that circuits synthesized by SOTA consistently

involve more three-input gates, with an average of 1.92×more than

those synthesized by TechMap. This further illustrates that while
the gate compounding technique maximizes the use of large-fan-in

gates by greedily compounding concatenated two-input gates into

three-input ones, it does not fully exploit the expressiveness of

large-fan-in gates to produce more compact homomorphic Boolean

circuits and, ultimately, more efficient homomorphic evaluation. In

contrast, our solution of including large-fan-in gates into a dedi-

cated homomorphic gate set for technology mapping yields better

designs, as evidenced by the 27.08% average reduction in gate count.

Furthermore, the gate compounding technique relies on instanti-

ating a large-fan-in gate to replace concatenated two-input ones

whenever an opportunity arises, resulting in inferior runtime per-

formance compared to our technology-mapping-based approach.

In our approach, all decisions in the cut selection are made on the

subject graphs (Section 3.2.2) and the resulting TFHE circuits are

derived in a single pass, leading to an average 33.90% reduction in

circuit synthesis time.

Comparing Enhanced TechMap to TechMap, the additional label
monitoring strategy involved in the enhanced exact area heuristic

increases the runtime overhead by 1.15×, but it remains lower than

SOTA, with an average reduction of 26.27%. The introduction of

label monitoring contributes to a consistently higher merging rate

and, most importantly, more compact circuit designs. Enhanced
TechMap achieved an additional 4.20% reduction in gate count over

TechMap, resulting in a 30.15% gate count reduction compared to

On the Synthesis of High-performance Homomorphic Boolean Circuits WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Table 1: Evaluating the three homomorphic circuit synthesis flows.

Benchmark

SOTA TechMap Enhanced TechMap

#Gates Merge[%] Time[s] #Gates Merge[%] Time[s] #Gates Merge[%] Time[s]

adder 507 20.16 <0.01 191 25.39 <0.01 128 50.00 <0.01

barrel shifter 2 496 7.45 0.01 2 496 7.45 0.01 2 496 7.45 0.01

divider 28 773 0.10 0.08 13 116 0.31 0.06 13 076 0.82 0.06

hypotenus 121 325 3.72 0.55 83 194 8.82 0.36 78 076 14.56 0.40

log2 20 160 2.09 0.05 14 058 6.34 0.05 13 573 9.62 0.06

max 2 154 5.77 0.01 2 068 8.70 0.01 2 066 11.41 0.01

multiplier 14 530 3.74 0.04 10 442 8.60 0.03 9 957 12.85 0.04

sine 3 578 1.65 0.01 2 502 6.64 0.01 2 398 10.92 0.01

square-root 10 452 1.19 0.03 8 276 17.37 0.03 8 218 17.95 0.03

square 11 968 2.09 0.03 8 661 7.12 0.02 7 547 19.11 0.03

round-robin arbiter 11 434 0.00 0.06 11 605 0.00 0.07 11 605 0.00 0.08

coding-cavlc 554 9.62 <0.01 545 8.86 <0.01 542 11.15 <0.01

ALU control unit 97 11.82 <0.01 94 8.74 <0.01 94 10.48 <0.01

decoder 291 3.96 <0.01 292 2.34 <0.01 292 3.95 <0.01

i2c controller 1 109 2.89 <0.01 1 032 2.46 <0.01 1 029 3.38 <0.01

int to float converter 175 8.85 <0.01 171 8.56 <0.01 170 11.46 <0.01

memory controller 36 446 2.70 0.28 35 510 2.96 0.12 35 016 5.45 0.13

priority encoder 833 0.12 <0.01 818 0.12 <0.01 818 0.24 <0.01

look-ahead XY router 174 1.14 <0.01 134 4.96 <0.01 126 11.27 <0.01

voter 5 170 12.55 0.03 3 306 23.98 0.01 2 936 33.15 0.01

Average 13 611.30 5.08 0.059 9 925.55 7.99 0.039 9 508.15 12.26 0.435

Norm. 1 1 1 0.729 1.572 0.661 0.699 2.413 0.737

SOTA. Interestingly, although the corresponding data is not included
in Table 1 due to space constraints, we observed that before the gate

merging stage, the average gate count of circuits synthesized by

Enhanced TechMap is slightly higher (0.36%) than those generated by
TechMap. This suggests that focusing exclusively on the gate count

as the optimization objective during the circuit synthesis process

can lead to sub-optimal circuit designs after gate merging. This

underscores the importance of developing multi-value-FBS-aware

technology mapping techniques to fully utilize the multi-value FBS

technique and achieve high-performance homomorphic evaluation.

5.2 Estimating Execution Cost Reduction
The previous experiment provides a coarse-grained evaluation of

the speedup in homomorphic evaluation by simply measuring the

reduction in gate count achieved by the optimized TFHE circuit

designs. It assumes that each homomorphic gate has the same

execution cost across different circuit designs, which is not accurate.

While we configured the plaintext space as Z4, the execution cost

of each homomorphic gate further depends on the types of Boolean

gates used in a TFHE circuit. This, in turn, determines the parameter

selection for a sufficiently large noise budget, ultimately affecting

the cost of each FBS operation in this circuit.

For example, the 128-bit adder circuit design optimized by En-
hanced TechMap, as shown in Fig. 3b, consists of one half adder on

its least significant bit, which comprises one two-input AND gate

and one two-input XOR gate, and 127 one-bit full adders on the

remaining bits, each consisting of one three-input majority gate and

one three-input XOR gate. Since all these gates are symmetric, as-

signing a unit weight to every variable results in a plaintext space of

Z3 for the homomorphic evaluation of a half adder and Z4 for a full
adder. More importantly, after being compressed by exploiting sym-

metry, the 4-entry truth tables of a three-input majority gate and a

three-input XOR gate are 1100 and 1010, respectively, with the left-

most bit representing the output when the three inputs are all ones.

Notice that both truth tables feature the leftmost bit as the negation

of the rightmost bit, indicating the feasibility of exploiting the nega-

cyclic property to further reduce the required plaintext space to Z3.
Therefore, compared to other optimized benchmarks that require a

plaintext space of 4, the security parameter for homomorphically

evaluating the adder circuit is more relaxed, determining that each

FBS operation has a lower computational overhead. This fact is not

considered in the previous experiment.

This experiment aims to provide a more reliable measurement of

the achieved improvement in homomorphic evaluation efficiency.

We use the TFHE compiler Concrete [26] to estimate the execu-

tion cost per FBS operation in each synthesized circuit. The FBS

execution cost mainly depends on the plaintext space size and

the Euclidean norm of the linear combination. In the case of a

multi-value FBS operation, the Euclidean norm is scaled up with

a corresponding factor; Based on the resulting Euclidean norms,

Concrete selects the parameters to allocate an appropriate noise

budget, providing a reliable execution cost estimation of each FBS

operation. The estimated execution cost of each synthesized circuit
2

2
Our execution cost estimator is available on: https://github.com/ssmiler/tfhe_lbf_eval

https://github.com/ssmiler/tfhe_lbf_eval

WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA. Yu, Carpov, Tempia Calvino, and De Micheli

Table 2: Estimated execution cost of the synthesized homo-
morphic Boolean circuits.

Benchmark

SOTA TechMap
Enhanced
TechMap

Exec. cost Exec. cost Exec. cost

adder 20 280 7 258 4 864

barrel shifter 99 840 99 840 99 840

divider 1 150 920 524 640 523 040

hypotenus 4 853 000 3 327 760 3 123 040

log2 806 400 562 320 542 920

max 86 160 82 720 82 640

multiplier 581 200 417 680 398 280

sine 157 432 110 088 105 512

square-root 418 080 331 040 328 720

square 478 720 346 440 301 880

round-robin arbiter 457 360 464 200 464 200

coding-cavlc 22 160 21 800 21 680

ALU control unit 3 880 3 760 3 760

decoder 11 640 11 680 11 680

i2c controller 44 360 41 280 41 160

int to float converter 7 000 6 840 6 800

memory controller 1 603 624 1 562 440 1 540 704

priority encoder 33 320 32 720 32 720

look-ahead XY router 6 960 5 360 5 040

voter 227 480 145 464 117 440

Average 553 490.80 405 266.50 387 796.00

Norm. 1 0.732 0.701

is obtained by multiplying the execution cost per FBS operation by

the gate count of the circuit.

As reported in Table 2 as ‘Exec. cost,’ an average reduction of

29.94% in execution cost is achieved by circuits synthesized by En-
hanced TechMap compared to SOTA, with the maximum reduction

achieved for the adder benchmark (76.02%). This demonstrates the

effectiveness of the proposed homomorphic circuit synthesis flow

in improving the efficiency of homomorphic evaluation.

6 Discussion
In this section, we discuss key observations and insights from our

study, and explore potential future directions.

6.1 Strategic Use of Incomplete Gate Sets
In this paper, we extend the original gate set of the TFHE library

by incorporating symmetric gates and nega-cyclic gates. While

the proposed homomorphic gate set is complete with the plaintext

space Z4, it is no longer complete when a larger plaintext space size

is configured. As pointed out in [16], adopting a larger plaintext

space size dramatically increases the number of valid gate types,

making the derivation of a complete gate set impractical. This is

why AutoHoG is designed to exploit large-fan-in gates by locally

compounding small-fan-in ones.

However, it is crucial to emphasize that the ultimate goal of

exploiting large-fan-in gates is to leverage their expressiveness to

obtain more compact homomorphic Boolean circuits. The objective

is not to maximize the number of large-fan-in gates in the resulting

circuits but to use them wisely to minimize the gate counts of the

resulting circuits. Due to the greedy nature of gate compounding,

the circuit designs delivered by AutoHoG tend to suffer from this

misunderstanding. As evidenced by our observation in Section 5.1,

circuits synthesized by AutoHoG utilized more three-input gates,

while circuits generated by our approach are more compact.

Therefore, we argue that being able to exploit large-fan-in gates

smartly, even if not all of them, is more important to the homo-

morphic Boolean circuit synthesis problem than being capable of

exploiting all valid types of large-fan-in gates. Our homomorphic

gate set serves as an effective solution, as it includes a sufficient

number of large-fan-in gates by considering the Boolean properties

of symmetry and negacyclicity. This facilitates technology mapping

to realize strategic exploitation of their expressiveness, leading to

more compact circuits and more efficient homomorphic evaluation.

6.2 Exploring a Unique Logic Synthesis Problem
As introduced in Section 2.4, while existing TFHE compiler designs

tend to adopt hardware circuit synthesis tools for TFHE circuit

synthesis, the unique feature that multi-output gates and single-

output gates can have similar costs distinguishes this problem as a

unique and self-contained logic synthesis challenge. This distinction

is technically interesting and warrants further study.

In ourmulti-value-FBS-aware area-oriented technologymapping

algorithm, only the exact area heuristic is enhanced to support the

multi-value FBS technique, while the area flow heuristic remains

unchanged (Fig. 4b). As introduced in Section 3.2.2, the role of

the area flow heuristic is to provide a global view when deciding

which matches to select to cover the subject graph, at an early stage

of selection. We attempted to modify the area flow heuristic as

well, but this did not yield better circuit designs. We believe this is

because, at an early stage of the selection step, it is challenging to

predict whichmatches will ultimately be selected, making it difficult

to effectively increase the gate merging opportunities. This explains

why our enhanced exact area heuristic is effective; it is invoked

after the area flow heuristic to locally refine match selection. Since

most decisions in cut selection are made at this stage, it becomes

straightforward to adjust some selections to increase gate merging

opportunities. This suggests that a well-designed enhancement of

the area flow heuristic could unlock further optimization, which

we aim to explore in future work.

7 Conclusion
In this paper, we present an approach to synthesizing homomor-

phic Boolean circuits by incorporating larger fan-in Boolean gates

and exploiting the multi-value functional bootstrapping technique.

Our proposed synthesis flow outperforms the state-of-the-art in

both synthesis speed and the quality of the synthesized circuits,

achieving significant improvements in homomorphic evaluation

efficiency. This work addresses the limitations of existing methods

and sets a new standard for future research in FHE.

Acknowledgment
This project is supported in part by Synopsys Inc. We are grateful

to the anonymous reviewers for their insightful comments.

On the Synthesis of High-performance Homomorphic Boolean Circuits WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA.

References
[1] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The

EPFL Combinational Benchmark Suite. In IWLS.
[2] Guillaume Bonnoron, Léo Ducas, and Max Fillinger. 2018. Large FHE Gates from

Tensored Homomorphic Accumulator. In AFRICACRYPT. 217–251.
[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) Fully

Homomorphic Encryption without Bootstrapping. In Innovations in Theoretical
Computer Science Conference. 309–325.

[4] Alessandro Tempia Calvino and Giovanni De Micheli. 2023. Technology Mapping

Using Multi-Output Library Cells. In ICCAD. 1–9.
[5] Sergiu Carpov. 2024. A Fast Heuristic for Mapping Boolean Circuits to Functional

Bootstrapping. Cryptology ePrint Archive, Paper 2024/1204.

[6] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. 2015. Armadillo: a compilation

chain for privacy preserving applications. In Proceedings of the 3rd International
Workshop on Security in Cloud Computing. 13–19.

[7] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. 2019. New Techniques

for Multi-value Input Homomorphic Evaluation and Applications. In CT-RSA.
106–126.

[8] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.

TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology
33 (2020), 34–91.

[9] Jason Cong, Chang Wu, and Yuzheng Ding. 1999. Cut Ranking and Pruning:

Enabling a General and Efficient FPGA Mapping Solution. In FPGA. 29–35.
[10] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic

Encryption in Less Than a Second. In EUROCRYPT. 617–640.
[11] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-

morphic Encryption. Cryptology ePrint Archive, Paper 2012/144.

[12] Craig Gentry. 2009. Fully Homomorphic Encryption using Ideal Lattices. In

Annual ACM Symposium on Theory of Computing. 169–178.
[13] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-

tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,

Attribute-Based. In CRYPTO. 75–92.
[14] Shruthi Gorantala, Rob Springer, Sean Purser-Haskell, William Lam, Royce Wil-

son, Asra Ali, Eric P. Astor, Itai Zukerman, Sam Ruth, Christoph Dibak, Phillipp

Schoppmann, Sasha Kulankhina, Alain Forget, David Marn, Cameron Tew, Rafael

Misoczki, Bernat Guillen, Xinyu Ye, Dennis Kraft, Damien Desfontaines, Aishe Kr-

ishnamurthy, Miguel Guevara, Irippuge Milinda Perera, Yurii Sushko, and Bryant

Gipson. 2021. A General Purpose Transpiler for Fully Homomorphic Encryption.
Technical Report. Google LLC.

[15] Charles Gouert and Nektarios Georgios Tsoutsos. 2020. Romeo: conversion and

evaluation of HDL designs in the encrypted domain. In DAC.
[16] Zhenyu Guan, Ran Mao, Qianyun Zhang, Zhou Zhang, Zian Zhao, and Song

Bian. 2024. AutoHoG: Automating Homomorphic Gate Design for Large-Scale

Logic Circuit Evaluation. IEEE TCAD 43, 7 (2024), 1971–1983.

[17] Valavan Manohararajah, Stephen D. Brown, and Zvonko G. Vranesic. 2006.

Heuristics for Area Minimization in LUT-Based FPGA Technology Mapping.

IEEE TCAD 25, 11 (2006), 2331–2340.

[18] Kotaro Matsuoka, Yusuke Hoshizuki, Takashi Sato, and Song Bian. 2021. Towards

Better Standard Cell Library: Optimizing Compound Logic Gates for TFHE. In

WAHC.
[19] Alan Mishchenko, Sungmin Cho, Satrajit Chatterjee, and Robert Brayton. 2007.

Combinational and Sequential Mapping with Priority Cuts. In ICCAD. 354–361.
[20] Johannes Mono, Kamil Kluczniak, and Tim Güneysu. 2023. Improved Circuit

Synthesis with Amortized Bootstrapping for FHEW-like Schemes. Cryptology

ePrint Archive, Paper 2023/1223.

[21] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. 1978. On Data Banks

and Privacy Homomorphisms. Foundations of Secure Computation 4, 11 (1978),

169–180.

[22] Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt,

Giulia Meuli, Fereshte Mozafari, Siang-Yun Lee, Alessandro Tempia Calvino,

Dewmini Sudara Marakkalage, and Giovanni De Micheli. 2022. The EPFL Logic

Synthesis Libraries. arXiv:1805.05121

[23] Alessandro Tempia Calvino, Heinz Riener, Shubham Rai, Akash Kumar, and

Giovanni De Micheli. 2022. A Versatile Mapping Approach for Technology

Mapping and Graph Optimization. In ASPDAC. 410–416.
[24] Feng Wang, Liren Zhu, Jiaxi Zhang, Lei Li, Yang Zhang, and Guojie Luo. 2020.

Dual-Output LUT Merging during FPGA Technology Mapping. In ICCAD. 1–9.
[25] Claire Wolf. [n. d.]. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.

[26] Zama. 2022. Concrete: TFHE Compiler that Converts Python Programs into FHE

Equivalent. https://github.com/zama-ai/concrete.

https://arxiv.org/abs/1805.05121
https://yosyshq.net/yosys/
https://github.com/zama-ai/concrete

	Abstract
	1 Introduction
	2 Background
	2.1 Fully Homomorphic Encryption
	2.2 Torus FHE
	2.3 Boolean Circuit
	2.4 Related Works

	3 Homomorphic Boolean Circuit Synthesis via Technology Mapping
	3.1 Homomorphic Gate Set
	3.2 Area-Oriented Technology Mapping

	4 Multi-value-FBS-aware Mapping
	4.1 Technology Mapping with Label Monitoring
	4.2 Inverter Reduction

	5 Experimental Evaluations
	5.1 Profiling Synthesized Circuits
	5.2 Estimating Execution Cost Reduction

	6 Discussion
	6.1 Strategic Use of Incomplete Gate Sets
	6.2 Exploring a Unique Logic Synthesis Problem

	7 Conclusion
	References

