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Abstract—Approximate computing is an emerging paradigm
for designing error-resilient applications. It reduces circuit
area, power, and delay at the cost of introducing errors. This
paper proposes a powerful technique, termed Approximate
Resubstitution (AppResub), to approximately simplify the
circuit. AppResub replaces a node’s function with a simpler
approximate function on existing nodes in the circuit to reduce
the hardware cost. Leveraging AppResub, an efficient flow for
approximate logic synthesis (ALS) is developed by iteratively
applying a set of promising AppResubs for circuit simplifi-
cation. To evaluate errors caused by a set of AppResubs, a
novel error model capable of efficiently computing an error
upper bound is used to smartly apply AppResubs in the ALS
flow. The experimental results demonstrate that compared to
a state-of-the-art method, the proposed flow further reduces
20.9% area and 21.7% delay under the mean error distance
constraint, while being 400× faster. The code of our flow is
open-source.

Index Terms—approximate logic synthesis, approximate
computing, resubstitution

I. INTRODUCTION

As the power consumption of digital systems grows
rapidly, energy efficiency emerges as a pivotal concern [1].
Many prevalent applications, including image processing,
data mining, and machine learning, inherently tolerate some
degree of error, paving the way for a design paradigm called
approximate computing. This paradigm modifies functions
of computing systems by deliberately introducing some
errors. If errors are carefully introduced, the application-
level quality is almost unaffected, while the area, delay,
and power of the system can be reduced dramatically.

Approximate computing can be applied to various layers
of computing systems [2], including the circuit, architecture,
and software layers. This work focuses on approximate
computing at the circuit layer, aiming to design high-
quality approximate circuits that balance low hardware costs
against an acceptable error margin. The strategies to obtain
such circuits fall into two main categories: manual design
and approximate logic synthesis (ALS) [3]. Manual design
predominantly targets arithmetic circuits, like adders [4]–[7]
and multipliers [8]–[10]. Since arithmetic circuits have
well-known regular structures, they are amenable to manual
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approximation. ALS, however, is not restricted to arithmetic
circuits and is applicable to a wider range of circuits.
It takes as inputs an accurate circuit and specific error
constraints (e.g., maintaining an error rate below 1%). Then,
it automatically generates an approximate circuit satisfying
the constraints with minimized hardware costs, including
area, delay, and power. Our work studies ALS applied to
general combinational circuits, targeting minimizing circuit
area under a given error upper bound.

Most existing ALS methods simplify circuits by making
local structural modifications, known as local approximate
changes (LACs). However, existing LACs have drawbacks
in two aspects. On the one hand, some LACs may introduce
large errors. For example, a common yet simple LAC
replaces a circuit node by a constant zero or one [11]–[16].
While straightforward and widely used, they tend to intro-
duce large errors. On the other hand, the generation of cer-
tain LACs requires a substantial amount of computation. For
instance, a state-of-the-art LAC is based on Boolean matrix
factorization [17], [18], which approximately decomposes
a sub-circuit into a compressor unit and a decompressor
unit. This decomposition effectively simplifies the circuit.
However, Boolean matrix factorization is a complex process
demanding substantial computational effort, making it a
time-consuming approach to achieve approximation.

To address the above challenges, we introduce a novel
LAC called approximate resubstitution (AppResub). Ap-
pResub simplifies a node by approximately re-expressing
its function using a set of other nodes in the circuit.
Utilizing multiple nodes to express a new function makes
AppResub more expressive than traditional LACs, thereby
usually resulting in smaller errors. Moreover, we generate
AppResubs with logic simulation, which is efficient and
scalable for large circuits.

Our main contributions are as follows:

1) We propose a powerful LAC called AppResub, which
has stronger expressive ability and induces smaller
errors, compared to the traditional LACs. For efficient
AppResubs generation, we devise an approach based
on logic simulation. It quickly identifies AppResub
opportunities by analyzing simulation patterns, treats
unobserved patterns as don’t cares, and constructs truth
tables of approximate functions for resubstitution.

2) We present an error model to estimate the error upper
bound caused by a set of AppResubs. It has low
computational complexity and assists in selecting a
promising set of AppResubs. Using the model usually
ensures that after applying the selected AppResubs,
the resulting approximate circuit satisfies the specified
error constraint.
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3) We develop an efficient resubstitution-based ALS flow.
It works by iteratively applying a set of promising
AppResubs to the circuit. To select promising AppRe-
subs, we apply the above error model to convert the
selection process into a knapsack problem and propose
an efficient solution by solving its dual problem.

Our flow is applicable to any average error metric, in-
cluding error rate, mean error distance, mean Hamming dis-
tance, and mean square error. The experimental results re-
veal substantial improvements in the quality of approximate
circuits across various benchmarks and error metrics. For
instance, compared to a state-of-the-art method under the
mean error distance constraint, our flow achieves additional
savings of 20.9% in area and 21.7% in delay. Our source
code is available at https://github.com/changmg/ResubALS.

This paper expands a preliminary version previously
published in [19]. The additional technical contributions
lie in Contributions 2) and 3). Specifically, we propose
a novel model on error upper bound, and based on it,
we build an efficient ALS flow. Moreover, we conduct
extensive experiments to demonstrate the scalability and
broad applicability of our method.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background. Section III reviews the
related works. Section IV elaborates the proposed LAC, i.e.,
AppResub. Section V presents the resubstitution-based ALS
flow. The experimental results are presented in Section VI,
followed by conclusions in Section VII.

II. BACKGROUND

A. Logic Circuit Terminologies

Our study focuses on multi-level combinational logic
circuits, which can be modeled as directed acyclic graphs.
For simplicity, we use the term circuit to refer to a multi-
level combinational logic circuit.

In a circuit, the inputs and outputs of a node are called
its (direct) fanins and fanouts, respectively. A primary input
(PI) is a node without any fanin. A functional node is one
performing a logic operation. A primary output (PO) is a
dummy node driven by either a functional node or a PI;
it has a single fanin and no fanouts. A path is a series of
connected nodes in the circuit. If there exists a path from
node u to v, then u is a transitive fanin (TFI) of v, and v
is a transitive fanout (TFO) of u.

An AND-inverter graph (AIG) is a specific type of circuit,
where each functional node is a two-input AND gate. Edges
in an AIG can be complemented or non-complemented,
with a complemented edge denoting a signal negation.
Fig. 1 shows an AIG with 4 PIs a, b, c, d, 7 two-input
AND gates r, s, t, u, v, w, y, and 1 PO yo. Here, dashed lines
represent complemented edges, while solid lines stand for
non-complemented edges. For example, node v receives a
complemented edge from node r and a non-complemented
edge from node s, yielding the function v = r̄s (where r̄
denotes the negation of r).

B. Error Metrics

Error metrics are used to evaluate the accuracy of ap-
proximate circuits. This work focuses on an important
class of error metrics called average errors. Consider two
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Fig. 1: An example AIG. Each functional node represents a two-
input AND gate. The dashed lines indicate complemented edges,
and the solid lines indicate non-complemented edges.

multiple-output Boolean functions y : BI → BO for an
accurate circuit Cacc and ŷ : BI → BO for its approximate
counterpart C. Denote the numbers of PIs and POs of the
circuits by I and O, respectively. The average error of
circuit C, represented as Error(C), quantifies the average
deviation between y and ŷ over all PI patterns:

Error(C) =
∑
x∈BI

D(y(x), ŷ(x)) · p(x), (1)

where y(x) and ŷ(x) are binary vectors of length O,
denoting the PO values of the circuits Cacc and C under the
PI pattern x, respectively, p(x) is the occurrence probability
of the PI pattern x, and D represents a deviation function
that quantifies the deviation between y and ŷ.

Typical average errors include error rate, mean error
distance, mean Hamming distance, and mean square error.
Error rate is the probability of a PI pattern yielding an
incorrect output in the approximate circuit. Its deviation
function is defined as:

DER(y, ŷ) =

{
0 if y = ŷ,

1 if y ̸= ŷ.
(2)

Mean error distance measures the average absolute differ-
ence between the numerical values encoded by the POs of
the accurate and approximate circuits. Its deviation function
is given by:

DMED(y, ŷ) = |int(y)− int(ŷ)| , (3)
where int(v) returns the integer encoded by the binary
vector v. For example, if y encodes an O-bit unsigned
integer, then int(y) =

∑O
k=1 2

k−1yk, where yk denotes the
k-th bit of the binary vector y.

Besides, mean Hamming distance is the average count
of bit-flips in ŷ compared to y. Its deviation function is
DMHD(y, ŷ) =

∑O
k=1 |yk − ŷk|. Mean square error mea-

sures the average of the squares of errors between y and ŷ.
Its deviation function is DMSE(y, ŷ) = [int(y)− int(ŷ)]2.

In practice, the average error of the approximate circuit
C is commonly evaluated with Monte Carlo simulation by
sampling M PI patterns x1,x2, . . . ,xM , as shown below:

Error(C) =
1

M

M∑
i=1

D(y(xi), ŷ(xi)). (4)

Additionally, the normalized mean error distance and
normalized mean Hamming distance are defined as follows:

norm. mean error distance =
mean error distance

2O − 1
,

norm. mean Hamming dist. =
mean Hamming dist.

O
.

C. Approximation Miter

An approximation miter is an auxiliary circuit used
to evaluate errors [20]. Illustrated in Fig. 2, the miter
implements the deviation function D(y, ŷ) in Eq. (1). It
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Accurate
circuit ℂ𝑎𝑐𝑐 Deviation 

function 𝐷(𝒚, ෝ𝒚)ෝ𝒚 = {ො𝑦1, … , ො𝑦𝑂}Approximate 
circuit ℂ𝒙={𝑥1, … , 𝑥𝐼}

𝒚 = {𝑦1, … , 𝑦𝑂} 𝑑1𝑑2𝑑𝐾…
Fig. 2: Approximation miter used for error evaluation [20].

takes the PIs x from both the accurate and approximate
circuits as inputs. It has K ≥ 1 outputs, i.e., d1, d2, . . . , dK ,
capturing the computed deviation function D. For instance,
an approximation miter for error rate has a single output
d1, representing the deviation DER defined in Eq. (2). On
the other hand, a miter for mean error distance has K = O
outputs, encoding the deviation DMED in Eq. (3).

Using the approximation miter, Eq. (4) can be reformu-
lated as:

Error(C) =
1

M

M∑
i=1

K∑
k=1

2k−1dk(x
i), (5)

where dk(xi) is the value of the k-th output of the approx-
imation miter under the PI pattern xi.

III. RELATED WORKS

In this section, we review existing works closely related
to our study. Since we propose an LAC called AppResub,
we introduce existing LACs and highlight their relevance to
AppResub in Section III-A. Moreover, because we propose
a novel error upper bound model for ALS, we also review
existing error estimation techniques in ALS.

A. Existing Local Approximate Changes (LACs) in ALS

Most ALS methods introduce approximation into circuits
by applying LACs. Among them, the simplest one is the
constant LAC. It substitutes a circuit node with a constant
0 or 1, effectively reducing the circuit area and poten-
tially the delay at the cost of introducing errors. Despite
its simplicity, the constant LAC is widely used in many
existing ALS methods. Shin and Gupta are the first to
propose the constant LAC [11]. They applied it within gate
netlists by substituting gates with constants. Schlachter et
al. also employed constant LACs on gate netlists [12]. They
proposed criteria to decide which gates to be substituted
by constants based on the gates’ significance and activity.
Chandrasekharan et al. explored constant substitution in
AIGs [13]. To simplify a node in an AIG, they selected
a cut of the node and rewrote the cut with a constant 0.
Scarabottolo et al. identified and removed the largest sub-
circuit replaceable by constants without violating the error
constraint [14]. Witschen et al. modeled the selection of
constant LACs through cutpoints, converting ALS into a
minimal unsatisfiable subset problem, aiming to apply the
maximum number of constant LACs to minimize the circuit
area [15]. Zhou et al. [21] and Lee et al. [16] utilized
constant LACs to reduce the delay of approximate circuits
and developed delay-driven ALS flows. In fact, the constant
LAC is a special case of our proposed LAC, AppResub,
which will be discussed in Section IV-B1.

Beyond constant LACs, there are also many other
finer LACs. Venkataramani et al. proposed a LAC called
SASIMI, which substitutes a node u with another node
v or v’s negation [22]. If the function of u is similar to

that of v or v’s negation, such a substitution induces a
small error. After the substitution, the maximum fanout-
free cone (MFFC) of node u can be removed, thereby
reducing the area and possibly the delay. SASIMI can be
seen as a special case of AppResub. Wu and Qian proposed
a LAC called ANS, which deletes some literals from the
Boolean expression of a node in the circuit [20], [23]. It
can also be viewed as a special case of AppResub. Liu et
al. proposed a stochastic ALS flow including various LACs,
i.e., substituting a gate with a constant, flipping a gate’s
output, and adding a gate [24]. The constant substitution
of a gate is a special case of AppResub. Tam et al. [25]
proposed an ALS flow under the error rate constraint. It
applies two types of LACs, i.e., constant LAC and SASIMI,
and hence both LACs can be seen as a special case of
AppResub. Ma et al. [18] proposed an ALS flow called
BLASYS. Its LAC is based on Boolean matrix factorization,
which approximately decomposes a sub-circuit into two
units, i.e., a compressor unit and a decompressor unit.
The area and delay of the sub-circuit can be reduced after
decomposition. While the BLASYS LAC is not a special
case of AppResub, generating AppResub is more efficient
than generating the BLASYS LAC. Meng et al. [26]
proposed an efficient ALS flow under the maximum error
constraint. They applied the constant LAC and the SASIMI
LAC, and as discussed above, both LACs are special cases
of AppResub. Rezaalipour et al. [27] proposed a novel
ALS method called XPAT. Its LAC targets approximating a
multiple-input and multiple-output sub-circuit, and encodes
potential approximate sub-circuits into a parametrizable
template. Then, a satisfiability modulo theories solver is
called to identify approximate sub-circuits meeting the error
constraint. Since XPAT’s LAC approximates a sub-circuit
with multiple outputs, it is not a special case of AppResub,
which approximates a sub-circuit with a single output.

B. Existing Error Estimation Techniques in ALS

An essential component of ALS methods is estimating
the errors introduced by LACs. Researchers have developed
many methods to estimate the error caused by a single
LAC. To estimate the average error metrics, such as error
rate and mean error distance, Su et al. introduced the
concept of change propagation matrix (CPM) [28], [29].
The CPM evaluates whether a value change at an internal
node affects the circuit outputs or not. Utilizing the CPM
alongside the specific value change at the internal node, the
error caused by each LAC can be efficiently computed. To
estimate the maximum error distance caused by a single
LAC, Scarabottolo et al. proposed to partition a circuit into
sub-circuits and then analyze the error propagation of these
sub-circuits [30]. Furthermore, to estimate the bit error rate
caused by a single LAC, Echavarria et al. proposed an error
transition model that propagates the bit error rates through
cascaded sub-circuits [31].

Beyond single LAC analysis, researchers have also de-
veloped several approaches to estimate the cumulative error
caused by applying multiple LACs simultaneously. Our
work introduces an error upper bound model that falls
into this category. Wu and Qian proposed a linear model,
estimating the overall error rate caused by multiple LACs
as the sum of the local error rates calculated for each LAC
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applied in isolation [23]. This linear model is further applied
in subsequent works, such as [32] and [33], to estimate other
average error metrics like mean error distance.

IV. PROPOSED LAC: APPROXIMATE RESUBSTITUTION

In this section, we propose a LAC called AppResub
to approximately simplify a circuit. We first introduce
accurate resubstitution for traditional logic synthesis. Then,
we introduce AppResub for ALS.

A. Accurate Resubstitution

Accurate resubstitution [34]–[36] is a powerful circuit
simplification technique in traditional logic synthesis. It re-
expresses a node’s function using a set of nodes already
existing in the circuit, while preserving the circuit function-
ality. These nodes used for the re-expression are referred
to as divisors. An example of accurate resubstitution is
provided below.

Example 1 Consider the AIG shown in Fig. 3(a). We can
accurately resubstitute node w using divisors {r, s} with
the function w′ = r̄s̄. By doing so, the nodes u and v are
removed, and the resulting AIG is shown in Fig. 3(b).

This resubstitution maintains w’s function, thus preserv-
ing the overall functionality of the circuit. A simple deriva-
tion is as follows: Given that w = ūv̄ = u+ v, u = rs̄, and
v = r̄s, it follows that w = rs̄+ r̄s = rs+ r̄s̄. Substituting
r = āb̄ and s = bc, we have w = āb̄bc+ r̄s̄ = r̄s̄, which is
exactly the function w′.

Given a node and a selected set of divisors, an important
problem is to check the feasibility of achieving an accurate
resubstitution for the node with these divisors. This has
been addressed by a theorem presented in [37], which we
describe as follows:

Theorem 1 Consider a set of PIs denoted as x. Assume
that there exist m divisors with respective functions g1(x),
g2(x), . . ., gm(x), and a target node with function f(x).
These divisors can form an accurate resubstitution function
for node f , if and only if there are no two PI patterns x1

and x2 that satisfy:
1) gj(x1) = gj(x2) for each 1 ≤ j ≤ m, and
2) f(x1) ̸= f(x2).

The essence of this theorem can be explained as fol-
lows. If there is a function h(g1(x), . . . , gm(x)) that can
accurately resubstitute f(x), then for any PI patterns x1

and x2 making gj(x1) = gj(x2) for each 1 ≤ j ≤
m, we must have f(x1) = h(g1(x1), . . . , gm(x1)) =
h(g1(x2), . . . , gm(x2)) = f(x2). An example applying
Theorem 1 is as follows.

Example 2 Consider the AIG depicted in Fig. 3(a). To
determine whether the divisors {r, s} can be used to
accurately resubstitute node w, we enumerate all 16 PI
patterns for variables {a, b, c, d} and simulate the AIG. The
simulation results are listed in Table I. Note that under all
PI patterns,

• when rs = 00, w is always 1;
• when rs = 01 or rs = 10, w is always 0; and

• rs = 11 never occurs.
Therefore, no PI patterns x1 and x2 yield the same
values for {r, s} (satisfying condition 1), while producing
different values for w (satisfying condition 2). According to
Theorem 1, the divisors {r, s} can be used to accurately
resubstitute node w.

Conversely, {b, c} fail to serve as a valid divisor set for
an accurate resubstitution of node w. This is exemplified by
the PI patterns abcd = 0000 and 1000, where the divisors
{b, c} yield the same pattern (bc = 00), but w takes different
values 0 and 1, respectively. In this case, Theorem 1 does
not hold.
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Fig. 3: Example of accurate resubstitution and AppResub.

TABLE I: Simulation values under all PI patterns for the AIG in
Fig. 3(a). This table is used in Examples 2–5. The shaded patterns
are only used in Examples 4 and 5, denoting the randomly sampled
patterns for generating an AppResub.

abcd r s w ŵ = bc abcd r s w ŵ = bc

0000 1 0 0 1 1000 0 0 1 1
0001 1 0 0 1 1001 0 0 1 1
0010 1 0 0 1 1010 0 0 1 1
0011 1 0 0 1 1011 0 0 1 1
0100 0 0 1 1 1100 0 0 1 1
0101 0 0 1 1 1101 0 0 1 1
0110 0 1 0 0 1110 0 1 0 0
0111 0 1 0 0 1111 0 1 0 0

B. Approximate Resubstitution
For approximate computing, we propose approximate

resubstitution (AppResub). It simplifies the circuit by ap-
proximately re-expressing a node n’s function with a set of
divisors, while the circuit functionality is not necessarily
preserved. An example of AppResub is as follows.

Example 3 From Example 2, we cannot resubstitute node
w using the divisors {b, c}. However, if some errors are
allowed, we can approximately resubstitute w using {b, c}
with the function ŵ = bc. As shown in Table I, this
AppResub causes errors on node w under 4 PI patterns:
abcd = 0000, 0001, 0010, and 0011. With this AppResub,
nodes r, s, u, v, and w are removed. The AIG after the
AppResub is shown in Fig. 3(c).

For each node n in a circuit, there are numerous potential
AppResubs, which involve different sets of divisors and er-
rors. It is impractical to enumerate all AppResubs. Instead,
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we propose an efficient method to generate some candidate
AppResubs for each node n. This process involves address-
ing the following three pivotal questions:

1) How to select appropriate divisors for re-expressing
node n’s function?

2) Given a divisor set g, is there a function on g that can
approximate n’s function?

3) If the answer to Question 2) is yes, how to derive the
corresponding function?

They will be answered in Sections IV-B1, IV-B2,
and IV-B3, respectively. Based on the answers, we present
an algorithm to efficiently generate candidate AppResubs
in Section IV-B4.

1) Selecting Divisors: It is crucial to identify suitable
divisors for each node n in the circuit, as not all nodes are
suitable choices to re-express n’s function. For instance,
n’s TFOs are unsuitable, since using a TFO as a divisor
would create a dependency loop, which is not allowed in
a combinational circuit. Our strategy only selects divisors
from n’s divisor pool. A node d is in n’s divisor pool only
if

• d is a TFI of n; or
• d is a direct fanout of node n’s TFI, and the logic level

of d is lower than that of n.
This choice ensures that divisors are likely to influence n’s
function. The logic level limitation avoids the case where
d is n’s TFO. This selection strategy is similar to that used
in [36], [37] for accurate resubstitution.

After building n’s divisor pool, we select m divisors from
the pool to create a divisor set of n. We limit m to 0, 1, or
2 to manage complexity. Our experimental results suggest
that this range yields high-quality approximate circuits with
acceptable runtime.

Specifically, when m = 0, the set is empty. In this case,
n is resubstituted by a constant, and AppResub degrades
to a constant LAC, which is widely applied in [11]–[16],
[21], [24]. When m = 1, AppResub utilizes a single
divisor to resubstitute n, which is exactly the SASIMI
LAC used in [22], [25], [26]. When m = 2, AppResub
uses two divisors to resubstitute n. Note that the ANS
LAC proposed in [20], [23] deletes some literals from the
Boolean expression of a node in the circuit. If an ANS LAC
is applied to a Boolean expression and eventually keeps two
variables in the expression, then it is a special case of the
AppResub, where the 2 divisors are exactly the two kept
variables. For example, assume that an ANS LAC is applied
to node w in the AIG shown in Fig. 3(b). Before applying
the LAC, w’s function is w = r̄s̄ = ab · bc, as we derived
in Example 1. If an ANS LAC deletes the literals a and b,
then we have an approximate function ŵ = bc, with the new
AIG shown in Fig. 3(c). The ANS LAC in this example is
exactly an AppResub on node w with 2 divisors b and c.

2) Checking Existence of AppResub: Given a divisor set
for a node n, we can use Theorem 1 to check whether
the divisor set can be used to accurately resubstitute n.
Theorem 1 should be checked for all PI patterns, which
is typically done by time-consuming SAT-based methods.
However, for approximate computing, it is unnecessary to
enumerate all PI patterns. We propose to check the condi-
tions of Theorem 1 under some PI patterns encountered in
random logic simulation. If Theorem 1 is satisfied under

these PI patterns appearing in limited simulation rounds,
then the given divisor set is considered as a feasible divisor
set, which can be used to approximately resubstitute node
n. Otherwise, it is infeasible and thus discarded.

Example 4 Consider the AIG in Fig. 3(a). Assume that
logic simulation randomly samples 5 PI patterns abcd =
0100, 0101, 0111, 1011, and 1110 (refer to the shaded
entries in Table I). Now, we check whether the divisors
{b, c} can approximately resubstitute node w under these
PI patterns. In the simulation, the patterns on {b, c} are
bc = 10, 10, 11, 01, and 11, and the corresponding w values
are 1, 1, 0, 1, and 0, respectively. It is evident that each
pattern on {b, c} maps to a unique value of w. That is, 10,
11, and 01 map to 1, 0, 1, respectively. Thus, Theorem 1
holds under the 5 PI patterns, and {b, c} is a feasible divisor
set that can approximately resubstitute node w.

3) Deriving AppResub: Given a feasible divisor set for a
node n, we need to derive a new function h on the divisor
set to approximately resubstitute n’s function. Specifically,
we employ the same PI patterns used for existence checking
in Section IV-B2 and perform logic simulation. We build the
truth table of the function h on the divisor set under these
PI patterns. Assume that the size of the divisor set is m.
Then, the truth table has 2m input-output pairs. In the truth
table, each input is a possible pattern on the divisor set, and
the corresponding output denotes the function h’s value for
that pattern on the divisor set. If a pattern on the divisor
set appears in simulation, then the corresponding output in
the truth table is set as node n’s value under the pattern.
Otherwise, if a pattern on the divisor set does not appear
in simulation, then this pattern is treated as a don’t care
pattern. Note that since the divisor set is feasible, although
multiple PI patterns may produce the same pattern on the
divisor set, n’s values for all of them are the same.

From the truth table, we can obtain the sum-of-products
(SOP) expression of h, which can be done using a two-level
logic synthesis tool such as Espresso [38]. The resulting
SOP expression is then converted to one or more nodes in
the circuit, which are used to approximate the original node
n, thus simplifying the circuit.

Example 5 Building on Example 4 and referring to
Fig. 3(a), {b, c} is a feasible divisor set that can approxi-
mately resubstitute node w, if logic simulation is performed
with 5 PI patterns abcd = 0100, 0101, 0111, 1011, and
1110. To derive the new function on {b, c} for resubstitution,
a truth table shown in Table II is built with inputs b and c
and output ŵ. In this simulation, the pattern bc = 00 does
not appear, so it is treated as a don’t care pattern. On the
other hand, for the patterns bc = 01, 10, and 11 appearing
in the simulation, the corresponding output values are set as
ŵ = 1, 1, and 0, respectively, which can be directly obtained
from the shaded entries in Table I. Given this truth table, a
possible SOP expression is ŵ = bc. This expression is then
implemented in the AIG as a node with a complemented
output edge, as shown in Fig. 3(c).

4) Generating Candidate AppResubs: Based on the an-
swers to the three questions in Sections IV-B1–IV-B3, we
propose a procedure to generate candidate AppResubs for
each node n in the circuit C, as shown in Algorithm 1.
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TABLE II: A truth table of an approximate function with inputs
b and c and output ŵ in Example 5.

bc 00 01 10 11
ŵ - (don’t care) 1 1 0

Algorithm 1: GenerateCandidateAppResubs(C, R, L)
Input: Circuit C, user-specified simulation round R,

maximum number of candidate AppResubs L
Output: A set of candidate AppResubs Ψ

1 Simulate C for R rounds;
2 The set of candidate AppResubs Ψ← ∅;
// Add 0-divisor const AppResubs into Ψ

3 foreach node n in C do
4 if |Ψ| ≥ L then break;
5 count0← count of 0s in n’s simulation values;
6 if count0≥R/2 then Ψ← Ψ ∪ {Const0Resub(n)};
7 else Ψ← Ψ ∪ {Const1Resub(n)};
// Add 1-divisor AppResubs into Ψ

8 Ψ← AddSomeAppResubs(Ψ, nDiv=1,C, L);
// Add 2-divisor AppResubs into Ψ

9 Ψ← AddSomeAppResubs(Ψ, nDiv=2,C, L);
10 return Ψ;

Algorithm 2: AddSomeAppResubs(Ψ, nDiv,C, L)
Input: The current set of candidate AppResubs Ψ,

number of divisors nDiv, the circuit C associated
with simulation results, maximum number of
candidate AppResubs L

Output: The updated set of candidate AppResubs Ψ
1 foreach node n in C do
2 S←divisor sets with nDiv divisors;
3 foreach divisor set g in S do
4 if |Ψ| ≥ L then break;
5 if g is feasible to resubstitute n then
6 New function f̂ ← BuildFunction(n, g);
7 if Resub(n, g, f̂) can reduce area then
8 Ψ← Ψ ∪ {Resub(n, g, f̂)};

9 return Ψ;

Algorithm 1 inputs a circuit C, a user-specified simula-
tion round R, and a maximum count of candidate AppRe-
subs L. It outputs a set of candidate AppResubs, denoted
as Ψ. The algorithm first performs R rounds of logic
simulation on circuit C (Line 1). Then, it generates 0-divisor
constant resubstitutions (Lines 3–7), 1-divisor AppResubs
(Line 8), and 2-divisor AppResubs (Line 9) in sequence.

To generate constant resubstitutions, for each node n in
the circuit C, we count the number of 0s in n’s simulation
values across R rounds of simulation (Line 5). If the
number is larger than or equal to R/2, indicating n aligns
more closely with a constant 0, then we add a constant-0
resubstitution into the candidate AppResub set Ψ (Line 6).
Otherwise, a constant-1 resubstitution is added (Line 7).

The generation of 1-divisor and 2-divisor AppResubs has
a similar process, as shown in Algorithm 2. Specifically,
for each node n, we first select some divisor sets with nDiv
elements, denoted as S, using the method in Section IV-B1
(Line 2). For each divisor set g in S, we check whether g is
feasible to approximately resubstitute n using the method
in Section IV-B2 (Line 5). If it is feasible, we build an
AppResub function f̂ for n on g using the method in
Section IV-B3 (Line 6). Finally, if this AppResub, denoted
as Resub(n, g, f̂), can reduce the circuit area (Line 7), then
we add it into the candidate AppResub set Ψ (Line 8).

In the worst case, for a circuit C with N nodes, the

potential number of candidate AppResubs is O(N3). It is
because for each node in the circuit, we generate 1 constant
resubstitution, no more than N 1-divisor AppResubs, and
no more than N2 2-divisor AppResubs. Thus, the upper
bound on the total number of candidate AppResubs for all
N nodes in C is N × (1 + N + N2), i.e., O(N3). For
efficiency consideration, we also limit the total number of
candidate AppResubs. Line 4 of Algorithm 1 and Line 4 of
Algorithm 2 ensure that the number of candidate AppRe-
subs does not exceed L.

V. RESUBSTITUTION-BASED EFFICIENT ALS FLOW

In this section, we propose an efficient ALS flow based
on AppResub. We first describe the overall flow in Sec-
tion V-A. Then, we detail a key step of the flow in Sec-
tion V-B, i.e., determining a set of promising AppResubs.

A. Overall Flow

Our previous work [19] described an ALS flow that
iteratively applies the minimum-error AppResub to simplify
the circuit, until the error constraint is no longer satisfied.
Since the minimum-error AppResub usually increases the
error by a small amount, the flow in [19] may require a
large number of iterations to reach the error threshold and
obtain the final approximate circuit, causing a long runtime.

To accelerate ALS, we propose a new ALS flow in
Algorithm 3, featuring two phases:

1) iteratively applying multiple promising AppResubs
(Algorithm 3 Lines 2–7), and

2) iteratively applying the single best AppResub (Algo-
rithm 3 Lines 8–13).

Phase 1) accelerates the convergence of the ALS flow, and
Phase 2) aims to further improve the quality of the final
approximate circuit.

Algorithm 3: ResubALS(Cacc, Et, R, L).
Input: accurate circuit Cacc, error threshold Et,

user-specified simulation round R, max number of
candidate AppResubs L

Output: approximate circuit C
1 Approximate circuit C← Cacc, error E ← 0;
// 1)apply MULTIPLE promising AppResubs

2 while true do
3 Ψ← GenerateCandidateAppResubs(C, R, L);
4 Promising resubs. Π∗←GetPromAppResubs(Ψ,C);
5 E ← error of an approximate circuit obtained by

applying to C all AppResubs in Π∗;
6 if E > Et then break;
7 else C←SimplifyWithMultipleAppResubs(C,Π∗);
// 2)apply SINGLE best AppResub

8 while true do
9 Ψ← GenerateCandidateAppResubs(C, R, L);

10 Best resub. π∗←GetSmallestErrorAppResub(Ψ,C);
11 E ← error of an approximate circuit obtained by

applying π∗ to C;
12 if E > Et then break;
13 else C←SimplifyWithOneAppResub(C, π∗);
14 return C;

Algorithm 3 inputs an accurate circuit Cacc, an error
threshold Et, a user-specified simulation round R for
generating candidate AppResubs, and the limit L for the
maximum count of candidate AppResubs. It returns an
approximate circuit C with an error no more than Et. The
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error metric can be any average error metric, including error
rate, mean error distance, mean Hamming distance, and
mean square error.

Phase 1) iteratively applies a set of promising AppResubs
to simplify the circuit until the error reaches the threshold
(Lines 2–7). Each iteration begins with generating a set
of candidate AppResubs Ψ (Line 3) using Algorithm 1.
From these candidates, a subset of promising AppResubs
Π∗ is selected (Line 4). The selection method will be
detailed in Section V-B. The error E of an approximate
circuit obtained by applying to C all AppResubs in Π∗ is
computed. If E exceeds Et (Line 6), the process transitions
to Phase 2). If not, all AppResubs in Π∗ are applied to the
circuit C, followed by traditional logic synthesis to remove
redundancy in C (Line 7).

Phase 2), in contrast to Phase 1), only applies the best
AppResub with the smallest error in each iteration (Lines 8–
13). Essentially, Phase 2) is similar to the flow in [19],
which is not further elaborated here.

B. Determine a Set of Promising AppResubs

In Algorithm 3, Line 4 determines a set of promising
AppResubs, denoted as Π∗, from the set of candidate
AppResubs Ψ. The objective of our flow is to achieve
maximum area reduction in the circuit, leading to the
formulation of the optimization problem in Eq. (6):

max
Π⊆Ψ

∑
π∈Π

AreaReduction(π)

s.t. 1) Error(Π) ≤ Et,

2) ∀π1, π2 ∈ Π, if π1 ̸= π2,Node(π1) ̸= Node(π2),

(6)

where Π is a subset of the candidate AppResub set Ψ,
with each π being an AppResub in Π. The function
AreaReduction(π) indicates the area saved when applying
an AppResub π to the circuit C. For instance, consider
the AIG in Fig. 3(a). After applying an AppResub that
resubstitutes node w using ŵ = bc, 4 nodes r, s, u, and v
are removed, achieving an area reduction of 4. The function
Error(Π) computes the error of an approximate circuit
obtained by applying all AppResubs in Π to the circuit
C. Here, the error can be any average error metric, such as
error rate, mean error distance, mean Hamming distance,
and mean square error. The function Node(π) returns the
node resubstituted by AppResub π.

The objective of the problem in Eq. (6) is to maximize
the total area reduction by applying all AppResubs in Π
to the circuit C. The first constraint guarantees that the
error induced by Π is within the threshold Et. The second
constraint ensures that each node in C is only resubstituted
once, thereby preventing any two AppResubs in Π from
resubstituting the same node.

In what follows, the method of obtaining Error(Π) is
introduced in Sections V-B1 and V-B2. Following that, Sec-
tion V-B3 describes a dynamic-programming-based solution
to the problem.

1) Computing the Error for a Set of AppResubs: To
determine the error introduced by a set of AppResubs
Π, previous studies [32] and [33] used a linear model as
follows:

Error(Π) ≈ Error(C) +
∑
π∈Π

∆Error(π), (7)

where Error(C) is the initial error of circuit C before
applying any AppResub in Π, and ∆Error(π) is the in-
cremental error caused by individually applying AppResub
π to circuit C. Specifically, ∆Error(π) is computed as
the difference between the error of an approximate circuit
obtained by applying π to C and Error(C).

However, the linearity assumed in Eq. (7) does not
account for the potential interactions among AppResubs,
leading to inaccuracies. For instance, in the AIG shown in
Fig. 3(a), one AppResub modifying node w impacts the PO
yo, while another AppResub modifying node t could also
influence yo. Such interactions among AppResubs mean
that Error(Π), could be less than, equal to, or greater than
Error(C) +

∑
π∈Π ∆Error(π), as discussed in [32]. Thus,

the error model in Eq. (7) is unsuitable for solving the
problem in Eq. (6), since the error constraint Error(Π) ≤ Et

is highly likely to be violated. If the error constraint is
violated, then Algorithm 3 will exit Phase 1) and proceed
to Phase 2), which only applies the single best AppResub
in each iteration, dramatically slowing down the ALS flow.

To avoid violating the error constraint and efficiently es-
timate Error(Π), we establish an approximate upper bound
of Error(Π) by calculating:

ErrorUpBound(Π) = Error(C) +
∑
π∈Π

∆ErrorUpBound(π),

(8)
where ∆ErrorUpBound(π) represents an upper bound of
∆Error(π), i.e., the incremental error caused by an indi-
vidual AppResub π. Note that we call ErrorUpBound(Π)
an approximate upper bound, since it is not a strict upper
bound but rather an upper bound with a high probability.
The details of computing ErrorUpBound(π) and the justi-
fication for it being an approximate upper bound will be
discussed in Section V-B2.

Using Eq. (8), we relax the error constraint of the
problem in Eq. (6), leading to the relaxed problem in
Eq. (9):

max
Π⊆Ψ

∑
π∈Π

AreaReduction(π)

s.t. 1) ErrorUpBound(Π) ≤ Et,

2) ∀π1, π2 ∈ Π, if π1 ̸= π2,Node(π1) ̸= Node(π2).

(9)

Clearly, if ErrorUpBound(Π) serves as a true upper bound
of Error(Π), then any solution satisfying the constraints of
the relaxed problem must also satisfy those of the problem
in Eq. (6). This relaxation not only ensures adherence to the
error constraint, but also facilitates the error computation,
thereby accelerating the overall ALS flow. However, since
ErrorUpBound(Π) is an approximate upper bound, in rare
cases, Error(Π) may exceed ErrorUpBound(Π), which may
further lead to an invalid solution Π∗

wrong to the problem in
Eq. (6). Nevertheless, the real error caused by Π∗

wrong will
be measured and checked by Lines 5–6 of Algorithm 3,
deciding whether to apply Π∗

wrong or not. This mechanism
ensures that Algorithm 3 finally generates an approximate
circuit satisfying the error constraint.

2) Computing the Approximate Error Upper Bound:
This section shows how to compute an approximate up-
per bound of Error(Π). By Eq. (8), it is based on
∆ErrorUpBound(π). Thus, we first describe how to com-
pute ∆ErrorUpBound(π) for an AppResub π in the cir-
cuit C.
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We first build an approximation miter with the accurate
circuit Cacc and the approximate circuit C, as shown in
Fig. 2. As mentioned in Section II-C, the miter encodes
the deviation function D between Cacc and C using K
bits d1, d2, . . . , dK . Notably, the approximation miter can
compute the error of C for any average error metric,
including error rate, mean error distance, mean Hamming
distance, and mean square error. Recall that Eq. (5) utilizes
the approximation miter to compute the error of C as
Error(C) = 1

M

∑M
i=1

∑K
k=1 2

k−1dk(x
i).

Assume that after applying AppResub π to circuit C, the
resulting approximate circuit is C′. We also assume that the
miter including Cacc and C′ has K outputs d′1, d

′
2, . . . , d

′
K .

By Eq. (5), Error(C′) can be computed similarly. The
incremental error caused by applying AppResub π to circuit
C, denoted as ∆Error(π), is then expressed as:

∆Error(π) = Error(C′)− Error(C)

=
1

M

M∑
i=1

K∑
k=1

2k−1
(
d′k(x

i)− dk(x
i)
)

=
1

M

K∑
k=1

2k−1

(
M∑
i=1

(
d′k(x

i)− dk(x
i)
))

.

(10)

Considering dk(x
i) and d′k(x

i) can only be 0 or 1, we
further have:

∆Error(π) =

1

M

K∑
k=1

2k−1

 ∑
i:dk(x

i)=0

d′k(x
i) +

∑
i:dk(x

i)=1

(
d′k(x

i)− 1
)

≤ 1

M

K∑
k=1

2k−1

 ∑
i:dk(x

i)=0

d′k(x
i)

 .

(11)
Thus, we let

∆ErrorUpBound(π) =
1

M

K∑
k=1

2k−1

 ∑
i:dk(xi)=0

d′k(x
i)

 ,

(12)
which serves as an upper bound of ∆Error(π). To effi-
ciently compute d′k(x

i) for each k and i, we utilize the
method based on the change propagation matrix in [29].

By substituting ∆ErrorUpBound(π) from Eq. (12) into
Eq. (8), we can compute ErrorUpBound(Π). Now, we
explain why ErrorUpBound(Π) is an approximate upper
bound of Error(Π) (the real error caused by Π).

Assume that Π = {π1, . . . , πS}, where πj represents a
specific AppResub in the set of AppResubs Π. Based on
Constraint 2 in the problems in Eqs. (6) and (9), we can
assume that each πj targets a unique node for resubstitution.
After applying all πj’s in Π to the circuit C, the resulting
approximate circuit is denoted as CΠ, with the miter outputs
being dΠ1 , d

Π
2 , . . . , d

Π
K . Similar to Eqs. (10) and (11), the

error after applying all AppResubs in Π is computed as:
Error(Π) = Error(C) + ∆Error(Π)

=Error(C) +
1

M

K∑
k=1

2k−1

(
M∑
i=1

(
dΠk (x

i)− dk(x
i)
))

≤Error(C) +
1

M

K∑
k=1

2k−1

 ∑
i:dk(xi)=0

dΠk (x
i)

 .

(13)

Assume that after applying AppResub πj to circuit C, the
resulting approximate circuit is Cπj , and the corresponding
miter outputs are dπj

1 , d
πj

2 , . . . , d
πj

K . By Eqs. (8) and (12),
we have

ErrorUpBound(Π)

=Error(C) + 1

M

K∑
k=1

2k−1

 ∑
i:dk(x

i)=0

 ∑
πj∈Π

d
πj

k (xi)

 .

(14)
Comparing Eqs. (13) and (14), to prove that

ErrorUpBound(Π) is an approximate upper bound
of Error(Π), we only need to show that for all k’s
and i’s satisfying dk(x

i) = 0, it is very likely that
dΠk (x

i) ≤
∑

πj∈Π d
πj

k (xi).
Since dΠk (x

i) and d
πj

k (xi) can only be 0 or 1, we
only need to consider the case where dΠk (x

i) = 1. When
dk(x

i) = 0, the assumption that dΠk (x
i) = 1 means that

under the PI pattern xi, the application of all AppResubs
in Π influences the miter output dk, changing dk’s value
from 0 to 1. Similarly, if dk(xi) = 0 and d

πj

k (xi) = 1,
this indicates that the application of πj influences the miter
output dk, changing dk’s value from 0 to 1. In essence,
if any single AppResub πj in Π influences dk, then the
simultaneous application of all AppResubs in Π will also
influence dk with a high probability.

Formally, this relationship can be expressed as

dΠk (x
i) ≈ dπ1

k (xi) ∨ dπ2
k (xi) ∨ . . . ∨ dπS

k (xi) ≤
∑
πj∈Π

d
πj

k (xi),

where ∨ denotes the OR operation, and the inequality is
because the OR of a set of binary variables is no more than
their sum. The inequality means that for all k’s and i’s
satisfying dk(x

i) = 0, dΠk (x
i) ≤

∑
πj∈Π d

πj

k (xi) approx-
imately holds. Therefore, Error(Π) ≤ ErrorUpBound(Π)
also approximately holds.

3) Knapsack-Based Solution: The problem in Eq. (9) can
be formulated as a specific knapsack problem as follows.

• Elements:
– Item: each AppResub π in the candidate AppRe-

sub set Ψ corresponds to an item.
– Value: the area reduction caused by an AppResub
π, denoted as AreaReduction(π), corresponds to
the value of the item.

– Weight: the approximate upper bound of the incre-
mental error caused by an AppResub π, denoted
as ∆ErrorUpBound(π), corresponds to the weight
of the item.

• Objective: maximizing the total value (area reduction)
of the items selected for the knapsack.

• Constraints:
– Capacity constraint (corresponding to Constraint

1 of the problem in Eq. (9)): the error margin
Emargin = Et − Error(C) is set as the knapsack
capacity.

– Selection constraint (corresponding to Constraint
2 of the problem in Eq. (9)): Assume that circuit
C consists of N nodes n1, n2, . . . , nN . The can-
didate AppResubs in Ψ are categorized into N
groups, Ψ1,Ψ2, . . . ,ΨN , where each Ψi contains
all candidate AppResubs for node ni. From each
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group of items (i.e., Ψi), at most one item (i.e.,
one AppResub) can be selected and put into the
knapsack.

Although this knapsack model is similar to the one
in [20], our method significantly diverges from [20] in
several ways: First, unlike the method in [20], which is
limited to the error rate metric, our approach supports any
average error metric, such as error rate, mean error distance,
mean Hamming distance, and mean square error. Second,
we introduce a more precise model (i.e., Eqs. (8) and (12))
to estimate an error upper bound for a set of AppResubs.
Lastly, rather than solving the knapsack problem as in [20],
we propose a more efficient solution by addressing its dual
problem, which is described next.

A classical method to solve the knapsack problem is
based on dynamic programming with the state-transition
equation shown in Eq. (15):

DP(i, w) = max{DP(i− 1, w),

DP(i−1, w−∆ErrorUpBound(ψi,1))+AreaReduction(ψi,1),

DP(i−1, w−∆ErrorUpBound(ψi,2))+AreaReduction(ψi,2),

. . . ,

DP(i−1, w−∆ErrorUpBound(ψi,|Ψi|))+AreaReduction(ψi,|Ψi|)},
(15)

where DP(i, w) denotes the maximum total value achiev-
able with the first i groups under the capacity w, and ψi,j

is the j-th item in the i-th group Ψi. The term DP(i−1, w)
accounts for not selecting any item from group i, while
DP(i−1, w−∆ErrorUpBound(ψi,j))+AreaReduction(ψi,j)
represents selecting the j-th item from group i. This equa-
tion aligns with the selection constraint, ensuring at most
one item from each group is chosen for the knapsack. The
final solution to the knapsack problem is DP(N,Emargin),
where N is the number of groups and Emargin is the
knapsack’s capacity.

A critical issue in solving the knapsack problem using
Eq. (15) is the non-integer nature of item weights, which
represents the error upper bounds of the AppResubs. Even
if we multiply all the weights by a large constant α to make
them integers, as proposed in [20], both the time and space
complexity of the dynamic-programming-based method will
also increase significantly, where the time complexity is
O(αNEmargin). To address this issue, we propose to solve
the dual problem of the knapsack problem using the state-
transition equation shown in Eq. (16):

DP’(i, v) = min{DP’(i− 1, v),

DP’(i−1, v−AreaReduction(ψi,1))+∆ErrorUpBound(ψi,1),

DP’(i−1, v−AreaReduction(ψi,2))+∆ErrorUpBound(ψi,2),

. . . ,

DP’(i−1, v−AreaReduction(ψi,|Ψi|))+∆ErrorUpBound(ψi,|Ψi|)},
(16)

where DP’(i, v) denotes the minimum total weight (error
upper bound) achievable with the first i groups to obtain a
value of at least v (total area reduction). The dual problem’s
advantage lies in the typical integer nature of item values
(area reduction). For example, if our flow works on AIGs,
the area reduction (value) caused by an AppResub (item)
is the number of nodes removed, inherently an integer. By
avoiding the non-integer issue, the shift to the dual problem
significantly reduces the time and space complexity. The

solution to the dual problem is denoted as V ∗, which is
the largest integer satisfying DP’(N,V ∗)≤Emargin. It can
be proven that the original knapsack problem has the same
solution as its dual problem, i.e., DP(N,Emargin) = V ∗.
From the solution to the dual problem, we can easily recover
the selected items in the knapsack. These selected items
(i.e., AppResubs) can further construct the solution to the
problem in Eq. (9), i.e., the set of promising AppResubs Π∗.
Note that sometimes there does not exist any Π satisfying
the error constraint of the problem in Eq. (9). In this case,
Algorithm 3 terminates Phase 1), i.e., iteratively applying
multiple promising AppResubs, and moves to Phase 2), i.e.,
iteratively applying the single best AppResub.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Our resubstitution-based ALS flow is implemented in
C++ and evaluated on a laptop with AMD Ryzen9 7945HX
processors and 64GB RAM. To boost our method’s effi-
ciency, our flow is parallelized using 32 threads, particularly
focusing on the most time-consuming steps in Algorithm 3:
GetPromAppResubs and GetSmallestErrorAppResub. These
steps involve estimating the errors for all candidate Ap-
pResubs, with each thread tasked with computing the error
estimation for a specific candidate AppResub.

In all experiments, our ALS flow begins by converting
the original circuit into an AIG and applies AppResubs to
the AIG. The reason for using AIGs is that many AIG-based
logic synthesis works [35], [39] and ALS works [16], [33]
have shown significant advantages in reducing hardware
cost, particularly for CMOS technologies. After simplifying
the original AIG with our ALS flow, the resulting approxi-
mate AIG is mapped into a gate netlist using ABC [40]. Un-
less otherwise specified, the standard cell library employed
is the Nangate 45nm library [41]. Furthermore, as men-
tioned in Section V-A, the SimplifyWithMultipleAppResubs
function in Algorithm 3 not only simplifies the circuit by
applying AppResubs, but also performs traditional logic
synthesis to further remove circuit redundancy. Since our
goal is reducing area, the area-oriented optimization script
“compress2rs” in ABC is applied. Given the randomness
in logic simulation, our ALS flow may produce different
approximate circuits in different runs. Thus, all experiments
on our method are performed three times, and the circuit
with the smallest area is reported. Meanwhile, the runtime
of our method is reported as the total runtime of the three
runs.

To evaluate the hardware cost of a circuit, we utilize
area ratio (the area of the approximate circuit over that
of the accurate one) and delay ratio (the delay of the
approximate circuit over that of the accurate one). Smaller
ratios are preferred due to more reduction in area and
delay. Unless otherwise specified, in all experiments with
our ALS flow and other ALS flows, the area and delay
of circuits are measured after technology mapping using
ABC. To evaluate the accuracy of circuits, four different
average error metrics, error rate, normalized mean error
distance, normalized mean Hamming distance, and mean
square error are considered in our experiments. They are
measured by performing 102,400 rounds of logic simulation
to ensure accuracy. Note that our method only supports

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3510513

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2024 at 13:50:03 UTC from IEEE Xplore.  Restrictions apply. 



10

average errors, so we do not compare it with other ALS
methods under the maximum error constraints, such as [26]
and [27].

The benchmarks used in our experiments are listed in
Table III. They are accurate circuits selected from IS-
CAS85 [42], BACS [43], and EPFL [44] benchmarks. These
circuits are used in the related works that we compare
against [18], [25], [45]. Table III reports the sizes and depths
of the benchmarks in AIGs. As in [45], the AIGs have been
well optimized to ensure as little redundancy as possible.
These AIGs are then used as inputs to our ALS flow and
those ALS flows for comparison. Table III also includes
the areas and delays of the benchmarks after mapping the
optimized AIGs using the Nangate 45nm library.

In the following, we first describe an experiment used
to choose parameters of our ALS flow. Then, we will
compare our ALS flow with state-of-the-art methods under
different error metrics, i.e., error rate, normalized mean
error distance, normalized mean Hamming distance, and
mean square error.
TABLE III: Experimental benchmarks. Area and delay are mea-
sured by mapping the AIGs into the Nangate 45nm library.

Benchmark
suite Circuit #PIs/#POs AIG Gate netlist

Size Depth Area/µm2 Delay/ns

ISCAS85

c880 60/26 313 22 198.17 0.59
c1355 41/32 390 16 235.94 0.56
c1908 33/25 367 25 229.56 0.86
c2670 233/140 579 17 385.17 0.68
c3540 50/22 937 32 521.09 1.02
c5315 178/123 1306 28 720.33 0.72
c7552 207/108 1469 26 903.60 1.43

BACS

absdiff 16/9 104 14 70.22 0.41
add32 64/33 302 20 211.20 0.55
buttfly 32/34 226 31 153.75 1.05
mac 12/8 124 20 90.97 0.59

mult8 16/16 470 44 336.76 1.30
mult16 32/32 2033 41 1445.98 1.29

EPFL

add128 256/129 1019 314 982.9 4.83
barshift 135/128 2688 14 1945.0 0.85

div 128/128 23667 4473 19949.5 89.78
log2 32/32 38540 419 26422.8 11.56
max 512/130 2686 549 2456.2 10.98

mult64 128/128 33242 326 22401.5 6.87
sine 24/25 7044 180 5334.4 4.50
sqrt 128/64 21951 4591 19035.5 128.16

square 64/128 20030 296 14394.6 5.88

B. Parameter Choices

Our ALS flow, as detailed in Algorithm 3, has two
important parameters: the number of simulation rounds R
for generating the candidate AppResubs and the maximum
number of candidate AppResubs L. We design the follow-
ing experiment on the ISCAS85 benchmarks for choosing
these parameters. The applied error metric is error rate, set
with a threshold of 5%.

First, we do not limit the total number of candidate
AppResubs (L = +∞) and observe the impact of varying
R on the number of AppResubs, the area ratio of final
approximate circuits, and the runtime. The upper part of
Fig. 4 plots the number of candidate AppResubs in the
first iteration versus R. It is observed that increasing R
generally results in a decrease in the number of candidate
AppResubs. This is reasonable because with a larger R,
the truth tables of the resubstitution functions are built
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Fig. 4: Impact of the number of simulation rounds R on the
number of candidate AppResubs in the first iteration, the area
ratio of the final approximate circuits, and the total runtime of
generating the final approximate circuits.

with more PI patterns, and the resubstitution functions are
closer to the accurate ones. This narrows the space for
approximation and thus reduces the number of candidate
AppResubs. However, exceptions do exist, such as the case
of c1908 when R increases from 32 to 64. This is caused
by the randomness of logic simulation.

The middle part of Fig. 4 plots the area ratios of the final
approximate circuits versus R. The area ratios remain rela-
tively stable for different R’s. Notably, for all benchmarks,
the area ratios achieved by a smaller R are slightly smaller
than those with a larger R. For example, for benchmarks
c880, c2670, and c3540, the area ratios achieved by R = 16,
32, and 64 are obviously smaller than those achieved by
R = 8192 and 16384. As analyzed above, a smaller R
means more candidate AppResubs, and thus our ALS flow
explores a larger solution space and has more opportunities
to find better approximate circuits with smaller area ratios.

In the bottom part of Fig. 4, the total runtime of
generating the final approximate circuits is plotted. As R
increases, the runtime for the smallest benchmarks c880 first
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slightly decreases and then remains stable, and the runtime
for the small benchmarks c1355, c1908, c2670 shows an
overall decreasing trend. This is because a larger R leads
to fewer candidate AppResubs, which requires less time
to estimate the errors caused by the AppResubs, hence
reducing the runtime of the whole ALS flow. Conversely,
for larger benchmarks c3540, c5315, and c7552, the runtime
initially decreases but then increases with R. The reason
that R decreases initially is similar to that for the small
benchmarks. However, as R further increases, additional
rounds of simulation are required to generate the candidate
AppResubs. The simulation time for generating the candi-
date AppResubs becomes significant and impacts overall
runtime, and hence, the runtime of the whole ALS flow
increases when R is large.

Given the above observations, to make the ALS flow
efficient and effective, R should neither be too small (to
avoid long runtime) nor too large (to avoid long runtime
and bad quality). In practice, we choose R = 64 to
balance the final circuit quality and runtime. Meanwhile,
we set L = 105 to limit the total number of candidate
AppResubs. This is guided by the observation that the
number of candidate AppResubs in the first iteration is
less than 105 for most benchmarks when R = 64. In the
following experiments, we choose R = 64 and L = 105 as
the default parameters for our ALS flow.

C. Experiments Under the Error Rate Constraint

This set of experiments approximates the ISCAS85
benchmarks under the error rate constraint. Note that these
benchmarks are random or control circuits, and error rate
is a suitable error metric for them.

1) Comparison with the ALS Flow in [25]: Tam et
al. [25] proposed an area-oriented ALS flow working on
AIGs. We compare our flow to it using a 5% error rate
threshold, which is the same threshold used in [25]. The
comparison focuses on the sizes of the resulting approx-
imate AIGs. The data from [25] is used for a direct
comparison. The benchmark c1355 is excluded, since it
is not used in [25]. As illustrated in Table IV, our flow
consistently achieves smaller approximate AIGs than Tam et
al.’s flow for all benchmarks. On average, our flow reduces
the AIG size ratio by 8.5%, compared to Tam et al.’s.
Moreover, our flow can generate approximate AIGs within
41 seconds for all benchmarks. Table IV also shows the
runtime of Tam et al.’s flow for reference, which is directly
obtained from [25]. We do not compare the depths of the
final AIGs generated by the two flows, since the depths of
the final AIGs are not reported in [25]. However, our flow
guarantees that the depths of the final AIGs do not exceed
those of the original AIGs. Technology mapping results are
not included here due to the lack of relevant data in [25], but
such results will be presented in subsequent experiments.

2) Comparison with the BLASYS Flow in [18]: Ma et
al. [18] developed an ALS flow known as BLASYS [18],
which uses Boolean matrix factorization to reduce circuit
area. We run BLASYS’s source code and compare it with
our flow under error rate thresholds of 0.5% and 5%. For
fairness, both the BLASYS flow and our flow utilize 32
CPU threads and apply the same ABC script for synthe-
sis (“compress2rs”) and mapping (“dch;amap”). Table V

TABLE IV: Comparison of our flow with that in [25] under
the error rate threshold of 5%. The bold entries indicate that
our flow outperforms that in [25].

Circuit Original
AIG size

AIG size AIG size ratio* Runtime/s
Ours Tam et al. Ours Tam et al. Ours Tam et al.

c880 313 246 267 78.6% 85.3% 4.70 3.71
c1908 367 152 161 41.4% 43.9% 9.72 3.41
c2670 579 507 540 87.6% 93.3% 12.38 6.35
c3540 937 706 832 75.3% 88.8% 35.49 30.79
c5315 1306 1235 1328 94.6% 101.7% 27.38 9.41
c7552 1469 1196 1425 81.4% 97.0% 40.11 29.52
Average 76.5% 85.0% 21.63 13.87

* AIG size ratio = AIG size / Original AIG size.

TABLE V: Comparison of our flow with the BLASYS flow under
error rate thresholds of 0.5% and 5%. The bold entries indicate
that our flow outperforms BLASYS.

Circuit Error rate
bound

Area ratio Delay ratio* Runtime/s
Ours BLASYS Ours BLASYS Ours BLASYS

c880 0.5% 82.3% 84.3% 112.2% 112.6% 3.9 234.5
5% 76.4% 78.5% 101.5% 108.5% 3.3 255.9

c1355 0.5% 96.3% 100.1% 92.5% 102.6% 18.3 153.9
5% 87.0% 86.2% 105.4% 105.8% 21.3 262.7

c1908 0.5% 93.3% 94.6% 78.7% 93.8% 22.8 110.3
5% 38.0% 39.2% 42.1% 39.5% 9.3 394.4

c2670 0.5% 67.3% 71.3% 89.7% 98.4% 10.5 800.9
5% 63.2% 68.1% 83.8% 86.3% 12.3 1010.6

c3540 0.5% 97.1% 97.5% 99.3% 97.7% 21.3 1256.4
5% 78.0% 82.3% 99.7% 101.7% 35.4 2577.3

c5315 0.5% 97.9% 99.2% 110.3% 114.7% 19.8 3141.4
5% 92.5% 98.0% 100.6% 116.1% 27.3 4116.2

c7552 0.5% 81.7% 84.5% 139.5% 135.9% 28.5 4543.9
5% 80.8% 83.1% 112.9% 134.0% 40.2 5247.3

Average 80.8% 83.4% 97.7% 103.4% 19.5 1721.8
* Delay ratios larger than 100% mean delay increase. This is also appli-
cable to the following tables.

compares the results with bold entries indicating when our
flow outperforms BLASYS.

For all cases except c1355 at a 5% error rate threshold,
our flow reduces more area than BLASYS. On average, our
flow generates approximate circuits with an area ratio of
80.8%, improving over BLASYS by 2.6%. In addition, our
flow typically generates approximate circuits with shorter
delays than BLASYS. On average, our flow achieves a 5.7%
delay reduction over BLASYS. However, our flow may
produce approximate circuits with larger delays than the
original circuits, as in the case of benchmarks c880, c1355,
c5315, and c7552. This happens because our approach
prioritizes area reduction, potentially at the expense of
increased delay. In terms of runtime, our flow demonstrates
significant efficiency, consistently outperforming BLASYS.
On average, it can approximate these benchmarks with only
19.5 seconds, which is 88× faster than BLASYS.

D. Experiments Under the Normalized Mean Error Dis-
tance Constraint

This experiment approximates the BACS benchmarks
under the normalized mean error distance constraint. Given
that these benchmarks are arithmetic circuits, normalized
mean error distance, which considers the significance of
the circuit outputs, is a suitable error metric for them. Our
flow is compared against BLASYS under the normalized
mean error distance thresholds of 0.59% and 2.94%. The
setup of BLASYS remains the same as that outlined in
Section VI-C2.

The comparison result is shown in Table VI. We can
see that our flow always achieves larger area reduction
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than BLASYS. On average, our method produces approx-
imate circuits with an area ratio of 21.9%, showing a
20.9% improvement over BLASYS. Moreover, except for
the benchmark mac at the 0.59% normalized mean error
distance threshold, our flow can generate approximate cir-
cuits with smaller delay ratios than BLASYS. On average,
our flow reduces 21.7% delay over BLASYS. In terms of
runtime, our method only needs 16.2 seconds on average.
It significantly outperforms BLASYS and is 400× faster.
TABLE VI: Comparison of our flow with the BLASYS flow under
normalized mean error distance (NMED) thresholds of 0.59%
and 2.94%. The bold entries indicate that our flow outperforms
BLASYS.

Circuit NMED
bound

Area ratio Delay ratio Runtime/s
Ours BLASYS Ours BLASYS Ours BLASYS

absdiff 0.59% 48.5% 73.9% 92.9% 144.9% 2.7 29.3
2.94% 22.7% 47.0% 52.2% 76.2% 2.4 29.0

adder32 0.59% 10.1% 32.2% 45.5% 68.3% 8.7 223.8
2.94% 5.8% 25.7% 27.1% 37.5% 7.2 261.4

buttfly 0.59% 20.6% 50.0% 37.9% 53.5% 6.3 87.8
2.94% 13.3% 40.5% 26.7% 55.1% 6.0 95.3

mac 0.59% 76.6% 95.6% 106.5% 91.3% 2.1 10.6
2.94% 23.7% 46.5% 37.9% 63.3% 2.4 33.2

mult8 0.59% 24.9% 51.6% 65.2% 75.4% 17.1 845.2
2.94% 8.4% 23.2% 27.9% 58.5% 9.9 954.6

mult16 0.59% 7.4% 16.4% 49.9% 67.2% 69.3 37383.1
2.94% 1.5% 11.6% 18.6% 56.9% 60.3 37860.0

Average 21.9% 42.8% 49.0% 70.7% 16.2 6484.5

E. Experiments Under the Normalized Mean Hamming
Distance Constraint

This experiment approximates the EPFL benchmarks
under the normalized mean Hamming distance constraint.
We compare our flow with BLASYS under the normalized
mean Hamming distance thresholds of 5% and 10%, which
are the same thresholds used in [18]. We do not run the
source code of BLASYS in this experiment, since the
benchmarks are too large and the runtime of BLASYS is
extremely long. Instead, we directly use the data reported
in [18] for comparison. Although they are not obtained us-
ing the same Nangate 45nm library as our flow, the relative
area and delay ratios can still provide a reference on the
performance of our flow. Given that the EPFL benchmarks
are large, we limit the total number of candidate AppResubs
as L = 20000 in this experiment, while R is still set as 64.

The comparison result is shown in Table VII. We can
see that our flow consistently outperforms BLASYS in area
reduction. On average, our flow achieves an area ratio of
59.1%, improving over BLASYS by 26.5%. Particularly,
for the benchmark div under the 5% normalized mean
Hamming distance threshold, our flow reduces the area
by 80.1% over BLASYS. Meanwhile, our flow can gen-
erate approximate circuits with smaller delay ratios than
BLASYS for the benchmarks div and max. However, we
also notice that our flow may produce approximate circuits
with larger delays than the original circuits. Moreover,
our flow is significantly faster than BLASYS. We can
approximate these benchmarks under the normalized mean
Hamming distance constraint in 16275 seconds on average.

F. Experiments Under the Mean Square Error Constraint

This experiment approximates some benchmarks from
the BACS and EPFL suites under the mean square error

TABLE VII: Comparison of our flow with the BLASYS flow under
normalized mean Hamming distance (NMHD) thresholds of 5%
and 10%. The bold entries indicate that our flow outperforms
BLASYS. N/A indicates that the data is not reported in [18].

Circuit NMHD
bound

Area ratio Delay ratio Runtime/s
Ours BLASYS Ours BLASYS Ours BLASYS

adder 5% 77.0% 89.4% 106.1% 90.8% 66 20418
10% 70.0% 79.4% 96.7% 80.9% 147 N/A

bar 5% 87.1% 95.8% 122.6% 105.6% 84 210600
10% 82.5% 90.0% 93.4% 88.5% 186 N/A

div 5% 5.8% 85.9% 9.8% 91.6% 7332 N/A
10% 1.4% 76.2% 1.2% 73.0% 10479 N/A

log2 5% 71.3% 92.9% 109.9% 100.5% 70671 N/A
10% 68.9% 82.1% 105.4% 78.2% 43317 N/A

max 5% 21.0% 91.0% 40.3% 114.3% 414 N/A
10% 18.5% 77.6% 12.3% 94.3% 567 N/A

mult64 5% 75.2% 87.7% 117.0% 99.4% 1164 N/A
10% 68.8% 80.5% 113.1% 93.8% 113984 N/A

sin 5% 63.1% 84.3% 102.8% 93.1% 1242 1670958
10% 62.1% 71.7% 99.8% 79.9% 2310 N/A

sqrt 5% 46.1% N/A 79.3% N/A 2673 N/A
10% 44.1% N/A 75.6% N/A 5085 N/A

square 5% 88.3% 95.8% 106.6% 85.8% 3606 N/A
10% 85.3% 88.5% 91.8% 75.5% 5046 N/A

Average
w/o sqrt 59.1% 85.6% 83.1% 90.3% 16275 N/A

TABLE VIII: Comparison of our flow with the DASALS flow
under mean square error (MSE) constraint. The MSE bounds are
exactly the same as the ones used in [45]. The bold entries indicate
that our flow outperforms DASALS.

Circuit MSE bound Area ratio Delay ratio Runtime/s
Ours DASALS Ours DASALS Ours

absdiff 33.5 34.9% 54.7% 54.7% 61.2% 5.4
mac 11.0 62.6% 64.3% 64.3% 68.2% 3.9

mult8 40.0 82.8% 87.5% 87.5% 68.4% 49.2
adder32 48.2 79.9% 93.4% 93.4% 51.4% 1047.3

sin 25.7 95.7% 98.4% 98.4% 100.4% 4758.9
Average 71.2% 79.6% 79.6% 69.9% 1173.0

constraint. The compared ALS flow is DASALS [45].
DASALS formulates the ALS problem as a differentiable
architecture search problem. It tries to directly search the
whole circuit structure to generate better approximate cir-
cuits. Only part of the benchmarks in the BACS and EPFL
suites are tested in [45], and we select them for comparison.
Note that the work [45] only tests the mean square error
constraint and does not report the performance under other
error metrics, so we only compare our flow with DASALS
under the mean square error constraint. We directly use the
data reported in [45] and maintain the same mean square
error bounds as those used in [45] for a fair comparison.
Moreover, both our flow and DASALS utilize the MCNC
standard cell library [46] for technology mapping.

As shown in Table VIII, our flow outperforms DASALS
in terms of area ratios for all benchmarks, and reduces
more delays than DASALS for all but two benchmarks,
mult8 and adder32. On average, our flow achieves an 8.4%
area reduction, compared to DASALS. Moreover, we can
approximate these benchmarks under the mean square error
constraint in 1173 seconds on average. Table VIII omits the
runtime of DASALS since [45] does not report it.

VII. CONCLUSION

This work proposes an efficient resubstitution-based ALS
flow. The proposed flow is based on an effective LAC
called AppResub, which approximately simplifies a circuit
by re-expressing a node’s function using a set of other
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nodes in the circuit. We design a simulation-based method
to efficiently generate candidate AppResubs in a circuit.
Furthermore, we design a two-phase ALS flow. The first
phase iteratively applies multiple promising AppResubs to
accelerate the ALS flow, while the second further improves
the circuit quality by iteratively applying the AppResub
with the smallest error. To determine a set of promising
AppResubs in the first phase, we formulate a problem
to maximize the area reduction while satisfying the error
constraint. It is solved by dynamic programming on a
relaxed problem using a proposed error upper bound model.
Experiments show that our flow is efficient and significantly
reduces the hardware cost of resulting approximate circuits.
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