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Abstract—Technology-independent logic synthesis is crucial in
electronic design automation to find the simplest logic network
for the given functionality. By minimizing nodes and levels of
the network, logic synthesis reduces the power consumption and
propagation delay of the circuit. However, due to the inherent
complexity, synthesis algorithms are mostly heuristic and may get
trapped by the local optima. This paper introduces a novel design
space exploration strategy to approach the global optimum more
effectively. Instead of focusing on iteratively refining a single
network, our approach combines multiple candidate networks
simultaneously and identifies the promising “crossover”. Our
method assists existing strategies in achieving better circuit
qualities using fewer exploration efforts. Experimental results
demonstrate that our flow decreases the network size by 1.7%
on average, compared with the latest design space exploration
flow, within the same time limit.

I. INTRODUCTION

Technology-independent logic synthesis finds the most ef-
ficient circuit that implements a given functionality, which is
a fundamental problem for integrated circuit designers, com-
plexity theory studies [1], and cryptography applications [2].
Reducing number of nodes in the AND-Inverter Graph (AIG)
representation, for instance, is crucial for minimizing power
consumption and wafer area assumption of the CMOS cir-
cuits [3], [4].

Although exact multi-level synthesis guarantees returning
the smallest network for functions with less than five in-
puts [5], finding the optimal network for larger functions
remains an open problem [6]. Various scalable logic synthesis
algorithms have been developed over decades [7], including
two-level logic optimizations [8], [9], algebraic methods [10]–
[13], and Boolean methods [14]–[16]. However, these heuristic
algorithms will likely be stuck at a local optimum without
an effective design space exploration (DSE) strategy [17].
Indeed, randomly rewiring in genetic algorithms [18], [19] and
accepting cost growth in the simulated annealing methods [20]
lead to even smaller networks.

Therefore, as the efficiency and effectiveness of synthesis
algorithms approach their practical limits, the emphasis in
logic synthesis has progressively shifted from developing more
powerful heuristics to refining the orchestration of existing
scripts. Previous studies implement various techniques to fine-
tune the sequence of synthesis algorithms [21]–[24], and
a recent approach introduces strategies to “undo” previous
optimizations to escape local optima [25].

This paper introduces an evolution strategy named global
crossover to assist existing flows for more efficient design
space exploration. As shown in Fig. 1, the overall idea of
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Fig. 1: Example of a logic crossover.

crossover is to identify and extract different portions from
multiple functionally equivalent feasible networks (parents A
and B) and combine their strengths to construct more advanta-
geous networks (offspring 1, 2, and 3). Compared to existing
strategies, the advantage of crossover is the utilization of
multiple networks. While previous flows deal with one single
network at a time, the global crossover processes multiple net-
works simultaneously and combines the optimizations found
in different networks into a single offspring. This improves the
exploration efficiency and increases the likelihood of finding
the global optimum.

In the rest of this paper, we present background in Section II
and motivate our work in Section III. Then, we illustrate
the implementation of the global crossover in Section IV
and demonstrate in Section V how this evolution strategy
can be integrated into an evolutionary algorithm to improve
exploration efficiency. Finally, we provide experimental results
in Section VI and conclude our work in Section VII.

II. BACKGROUND

A. Logic Network

Logic networks are technology-independent representations
of gate-level circuits. A logic network is a directed acyclic
graph where vertices represent logic gates or primary inputs,
and edges represent wires. By definition, the nodes are single-
output gates. For instance, AND-Inverter Graph (AIG) is a
commonly used logic network representation where nodes
are two-input AND gates, and the weighted edges indicate
inverters.

The endpoints of a node 𝑛’s incoming edges are the fanins
of n, denoted by 𝛿− (𝑛). Similarly, the set of endpoints of a
node 𝑛’s outgoing edges are called the fanouts of n, denoted



by 𝛿+ (𝑛). Nodes without fanins are the primary inputs (PIs),
and nodes without fanouts are the primary outputs (POs).

Node 𝑓 is a support of 𝑛 if 𝑓 is the immediate fanin of 𝑛

or a fanout of 𝑓 is the support of 𝑛. A cone of a node 𝑛 is
the set of nodes on the path between 𝑛 and a set of supports
of 𝑛. The transitive-fanin cone (TFI) of a node 𝑛 is the cone
between 𝑛 and the set of PIs.

B. Synthesis Algorithms

Most scalable logic synthesis heuristics are based on peep-
hole optimization [26]. The basic idea is to iteratively extract
subgraphs, termed “windows”, from the logic network and
find a better replacement, referred to as a dependency circuit,
for updates. Depending on the method used to discover the
dependency circuit, synthesis algorithms can be classified into
several types: rewriting [27], [28], refactoring [29], resubsti-
tution [3], [30], and balancing [31], [32].

A common limitation across these methods is that the
window size is constrained by the algorithm. For example,
rewriting applies to windows with at most 6 inputs, and
resubstitution finds a dependency circuit with up to 3 nodes.
Beyond these thresholds, the heuristics either become non-
scalable or fail to produce sufficiently effective dependency
circuits. Therefore, these algorithms are regarded as local
transformations when developing a synthesis flow.

C. Evolutionary Algorithm and Evolution Strategies

The genetic algorithm is an optimization method analogous
to biology evolution [33]. The fundamental elements of a
genetic algorithm are evolution strategy and selection. The
evolution strategy usually includes mutation and crossover,
which provides the mobility for evolution. Mutation generates
offspring from a single parent, and crossover recombines
multiple parents. Then, the selection is the stage to evaluate
the fitness of individuals in a generation and choose the parents
to generate the next generation. Schwefel et al. introduce the
notation in Equation (1) to describe an evolution strategy.

(𝜇/𝜌+,𝜆) − ES, (1)

where 𝜇 denotes the number of parents, 𝜌, 𝜌 ≤ 𝜇, represents
the number of parents involved when creating the offspring,
and 𝜆 is the number of offspring. The plus (+) and comma (,)
indicate two different rules when selecting the parents of the
next generation. A plus-selection considers both parents and
offspring in the population, while the comma-selection only
considers the offspring.

III. CROSSOVER: THE MISSING STRATEGY

Formulated within the framework of evolution strategies,
the essence of developing a synthesis flow lies in determining
the optimal values for parameters 𝜇, 𝜆, and 𝜌. This section
reviews related works in the domain of logic synthesis flow
designs, particularly highlighting their relationship with evolu-
tionary algorithms. We establish that current methods provide
sufficient components for an evolutionary algorithm; however,
they lack a robust crossover strategy. Our motivation is to

(a) (1 + 𝜆)-ES (b) (𝜇, 𝜆)-ES

Fig. 2: Existing evolution strategies in related works. Each square
represents a logic network, and each arrow corresponds to a synthesis
algorithm, acting as local transformations.

address this gap by enabling global crossover among multi-
ple networks, thereby facilitating more versatile evolutionary
strategies for logic synthesis.

A. (1 + 𝜆)-ES and Fitness Function

The first category of synthesis flow is shown in Fig. 2a. Ob-
serving that early synthesis mistakes are often irreversible [17],
these flows aim to select the most promising algorithm among
all candidates. Decisions are not merely based on selecting the
locally optimal network; instead, they are informed by model
prediction results [23], the multi-arm bandit algorithm [21], or
some hybrid heuristics [24].

From the perspective of the evolutionary algorithm, these
flows apply (1 + 𝜆)-ES, generating 𝜆 > 1 offspring using
one parent network. Compared with greedy algorithms that
correspond to the (1+1)-ES, increasing 𝜆 improves the variety
of the population. Together with a fine-tuned fitness function,
these methods converge slower, explore a larger portion of
the design space, and return better networks than greedy
algorithms or predefined sequences of synthesis scripts.

B. Mutation and (𝜇, 𝜆)-ES

Rather than focusing on selecting the correct algorithm,
the second category of synthesis flow addresses the con-
sequences of incorrect decisions by implementing two key
mechanisms [25]. First, the flow introduces “decompression”
algorithms that significantly restructure the network to reverse
previous optimizations. Second, if the exploration gets trapped
by a local optimum, the flow restarts, undoing all previous
algorithms and returning to the initial network setup.

As shown in Fig. 2b, the strategy of accepting decom-
pression algorithms can be regarded as mutations in the
evolutionary algorithm. Besides, the flow would accept these
offspring even if they are worse than their parents, embody-
ing the comma-selection strategy. Furthermore, adopting the
multiple restarts aligns with increasing the number of parents,
essentially allowing 𝜇 > 1.

C. Enabling (𝜇/𝜌+,𝜆)-ES

Previous works have laid the groundwork for an effective
evolutionary algorithm, yet they lack a crucial component:
crossover. As illustrated in Fig. 3, current state-of-the-art
flows employ (𝜇, 𝜆)-ES; however, the networks are optimized
separately, and the diversity within the population is not fully
utilized.



This motivates our work to enable crossover for logic
synthesis. The overall idea of the crossover is depicted in
Fig. 1. Given two or more parent networks, the offspring
of a crossover recombines the nodes from their parents to
generate a functionally equivalent network. Compared with the
mutation-only strategy, employing crossover could improve the
design of space exploration in the following two ways.

1) Direct optimization: By combining the good properties
of the parents in the offspring, the crossover may result
in more advantageous networks. For example, while the
two parents in Fig. 1 have sizes of 5 and 7, respectively,
the first offspring created by crossover reduces the size
to 4.

2) Indirect optimization: Global crossover further dimin-
ishes the likelihood of convergence to local optima
leveraging the diversity in the population. For instance,
offspring 2 and 3, as depicted in Fig. 1, may not
immediately result in a reduced network size; however,
they do integrate circuit structures previously absent in
their parent networks. These newly introduced structures
can potentially unveil new opportunities for optimization
in subsequent synthesis algorithms.

IV. ENABLING GLOBAL CROSSOVER

As motivated in Section III, our goal is to enable global
crossover that generates the offspring network as a combina-
tion of multiple parent networks for logic synthesis. In the
rest of this section, we will detail the problem formulation of
global crossover and demonstrate the three steps to accomplish
a crossover.

A. Step 1: Primary Input Alignment and Structural Hashing

Similar to the chromosome synapsis during meiosis [34],
we first align the parent networks by matching their primary
inputs and then merge them into a complex network. This
alignment creates a unified basis for simulating the Boolean
functions and facilitates functionality comparisons. Besides,
we perform structural hashing, which eliminates nodes with
identical immediate fanins and functionality, thereby reducing
structure redundancy in the circuit. Finally, we keep only
one set of primary outputs from a parent network, allowing
the remaining outputs to stay dangling without any fanouts.
After merging parent networks, this approach ensures that the
resulting complex network maintains a streamlined structure,
avoiding unnecessary complexity while preserving essential
node functionalities.

Fig. 3b illustrates the resulting complex network of two
parent networks in Fig. 3a after step 1. Nodes 1 and 7 in
Fig. 3a are identical as they are the AND of the same inputs,
𝑖3 and 𝑖4; therefore, they are merged into the grey node during
structural hashing.

Structural hashing is a polynomial time algorithm that im-
proves our network representation’s efficiency. As introduced
in Section II, synthesis methods utilize peephole algorithms
that only modify a portion of the network. Since the parent
networks are generated from the same initial network using

(a) Initial networks (b) Complex network (c) Choice network

Fig. 3: The procedure of a global crossover.

local transformations, the aggregated size of the complex
network is, in practice, far less than the combined size of
the individual parent networks.

B. Step 2: Equivalency Checking and Choice Network

After being merged into a complex network, the parent
networks engage in exchanging and recombining nodes to
create offspring networks. To maintain functional integrity
throughout this process, it is crucial that only nodes belonging
to the same equivalence class, a set of nodes with equivalent
functionalities, can be swapped. To this end, we preprocess the
complex network obtained in Step 1 and derive all functionally
equivalent nodes utilizing SAT sweeping [35], [36].

Specifically, we derive a collection of simulation patterns
that are capable of differentiating between varying func-
tionalities using SAT formulation [36]. Nodes with identical
simulation patterns are then subjected to formal verification
methods to confirm their equivalence. Table I details the
patterns extracted for the example in Fig. 3b, where the
network comprises five primary inputs and eleven nodes. We
use different colors to indicate different equivalence classes.
For instance, the patterns observed in sets 𝐴 = {𝑛3, 𝑛8},
𝐵 = {𝑛4, 𝑛10}, and 𝐶 = {𝑛5, 𝑛12} are congruent, indicating
the nodes in each set are highly likely to be functionally
equivalent. In fact, they are indeed functionally equivalent after
SAT checking. Therefore, they are eligible for exchange during
the crossover.

To efficiently store the equivalence classes, we revisit the
concept of the choice network [37]–[39]. Within a choice net-
work, each equivalent class corresponds to a choice between

TABLE I: Matching equivalent nodes using SAT sweeping.

Pattern 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛8 𝑛9 𝑛10 𝑛11 𝑛12
1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 0
2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1
3 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0
4 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0
5 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0
6 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0
7 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1



the candidate nodes. We introduce virtual nodes, also called
representatives, corresponding to these choices; for example,
nodes 𝑛𝐴, 𝑛𝐵, and 𝑛𝐶 as illustrated in Fig. 3c. These virtual
nodes act as placeholders or hubs for the collective fanouts
of all nodes within a given choice. Formally, let 𝑥 be a
representative, then the fanout set of 𝑥 is defined as the union
of the fanout sets of all nodes 𝑥 within its equivalence class,
as shown in Equation (2).

𝛿+ (𝑥) :=
⋃

𝑦∈EC(𝑥 )
𝛿+ (𝑦), (2)

where 𝐸𝐶 (𝑥) represents the set of nodes in 𝑥’s equivalence
class.

The choice network model efficiently encodes potential
crossover networks, where each combination of choices cor-
responds to a different feasible network configuration. Indeed,
by employing a linear number of nodes relative to the choices,∑

𝑋 |𝑋 |, a choice network can represent an exponentially grow-
ing number of network combinations, approximately

∏
𝑋 |𝑋 |.

C. Step 3: Global Crossover Problem Formulation

However, not all
∏

𝑋 |𝑋 | network crossing over results in
a valid logic network due to the necessity of adhering to
the underlying graph structure of the network. To depict the
feasibility region, we formulate the constraints in the crossover
problem.

TABLE II: Variable declaration for the global crossover formulation.

𝐺 (𝑉𝐺 , 𝐸𝐺) Choice network
𝐻 (𝑉𝐻 , 𝐸𝐻 ) Offspring network
𝑆𝑥 {0, 1} Selection variable of node 𝑥 ∈ 𝑉𝐺

𝐷𝑥 R Depth variable of node 𝑥 ∈ 𝑉𝐺

Table II presents the definition of related variables. Given
a choice network 𝐺 = (𝑉𝐺 , 𝐸𝐺) constructed by steps 1 and
2 as input, our problem formulation of crossover aims to find
an offspring network, 𝐻 = (𝑉𝐻 , 𝐸𝐻 ). The crossover does not
create new nodes or introduce new functionality to the network
but only selects existing nodes in 𝐺 to generate 𝐻. Therefore,
𝑉𝐻 ⊆ 𝑉𝐺 . However, 𝐻 is not necessarily a subgraph of 𝐺,
as the crossover allows replacing the fanin 𝑦 of a node 𝑥 by
another node candidate in the same equivalence class as 𝑦. This
rewiring introduces node connections and network structures
that do not exist in 𝐺.

In the rest of this section, we will detail the definitions in
Table II and introduce the constraints to ensure the feasibility
of the offspring network 𝐻.

1) Selection Variables and Depth Variables: For each node
(or choice representative), 𝑥, in the choice network 𝐺, we
assign two variables to capture essential characteristics of the
network, the size and depth, at node 𝑥.

The selection variable, denoted as 𝑆𝑥 , where 𝑆𝑥 ∈ {0, 1},
is a binary variable indicating whether node 𝑥 is included in
the crossover network 𝐻. Assigning 𝑆𝑥 = 0 excludes node 𝑥

from the resulting network. Therefore, the size of the network
𝐻 can be quantified by the sum of all selection variables:, i.e.,

|𝑉𝐻 | =
∑︁
𝑥

𝑆𝑥 . (3)

The depth variable, denoted by 𝐷𝑥 , where 𝐷𝑥 ∈ R,
represents the depth at 𝑥. Primary inputs have zero depth, and
the overall network depth, denoted by 𝐷, is the maximum
depth of its primary outputs, i.e.,

𝐷 = max
𝑥∈PO

𝐷𝑥 . (4)

2) Dependency and Functionality Constraints: If a node 𝑥

is included in 𝐻, then all its input nodes (immediate fanins)
must also be included. We formulate these requirements using
dependency constraints, as shown in Equation (5), to maintain
the logic flow from inputs to outputs.∧

𝑥∈𝑉𝐺

∧
𝑦∈ 𝛿− (𝑥 )

(𝑆𝑦 ∨ 𝑆𝑥) = 1. (5)

This expression asserts that for every node 𝑥 in the graph 𝐺,
and for each fanin 𝑦 of 𝑥, 𝑆𝑥 = 1 implies 𝑆𝑦 = 1. This ensures
that all nodes in 𝐻 are supported by the primary inputs.

The functionality constraints states that 𝐻 fully implement
all primary outputs from the parent networks, given by:∧

𝑥∈PO

𝑆𝑥 = 1, (6)

where 𝑥 can be either a node or a choice representative.
For example, this equation requires 𝑆𝑏 = 𝑆𝑐 = 1 for

the choice network in Fig. 3c, where 𝑏 and 𝑐 are the rep-
resentatives of two equivalence classes, 𝐵 = {𝑛4, 𝑛10} and
𝐶 = {𝑛5, 𝑛12}, and correspond to primary outputs 𝑜2 and 𝑜1,
respectively.

3) Choice Decision Constraints: During the crossover pro-
cess, each choice representative can arbitrarily choose among
the candidate nodes in its equivalence class gathered in Sec-
tion IV-B. We use choice decision constraints, as shown in
Equation (7), to express this procedure.

∧
𝑥∈𝑉𝐺

©­«
∨

𝑦∈EC(𝑥 )
𝑆𝑦

ª®¬ ∨ 𝑆𝑥

 = 1, (7)

where EC(𝑥) denotes the set of nodes with the same function
as 𝑥. Notably, if 𝑥 is not a choice representative, EC(𝑥) = 𝑥

and 𝑦 = 𝑥, making the constraint a tautology for this node.
Compared to Equation (5), a choice representative 𝑥 has

more flexibility in propagating the dependency constraint since
𝑆𝑥 = 1 implies that at least one node in EC(𝑥) needs to be
included by 𝐻.

For example, the choice decision constraint at representative
𝑥 = 𝑐 corresponds to the term:

(𝑆5 ∨ 𝑆12) ∨ 𝑆𝑐 = 1,

since 𝑛5 and 𝑛12 are in the equivalence class EC(𝑐). As a
result, although PO constraints require 𝑆𝑐 = 1, Equation (7)
holds provided that 𝑆5 ∨ 𝑆12 = 1. However, dependency



(a) Complex network (b) Invalid crossover (c) Valid crossover

Fig. 4: Example of topology conflicts. Nodes {𝑛1, 𝑛3, 𝑛5} in blue
and {𝑛2, 𝑛4, 𝑛6} in green are from different parents. Node 𝑛3 and
𝑛6 are XOR nodes, i.e., 𝑛3 = 𝑛1 ⊕ 𝑛5 and 𝑛6 = 𝑛2 ⊕ 𝑛4. Arbitrary
choice decisions, e.g. 𝑆3 = 𝑆6 = 1, can lead to cyclic dependencies,
as highlighted in the red box.

constraint for a regular node, e.g., 𝑛12, corresponds to the two
terms:

(𝑆11 ∨ 𝑆12) ∧ (𝑆𝑏 ∨ 𝑆12) = (𝑆11 ∧ 𝑆𝑏) ∨ 𝑆12,

which requires both fanins’ selection variables, 𝑆11 and 𝑆𝑏 to
be true, if 𝑆12 = 1.

4) Depth Propagation and Topology Constraints: The
crossover involves more than arbitrary choice decisions when
considering the logic network’s acyclic characteristic. Despite
having identical functionalities, recombining nodes with dif-
ferent topological arrangements can lead to configurations
with cyclic dependencies, which are not permissible in logic
networks.

For instance, the complex network in Fig. 4a has three
choices, and each has two candidate nodes from both parents.
𝑛3 and 𝑛6 are XOR nodes with different topologies.

𝑛3 = 𝑛1 ⊕ 𝑛5 and 𝑛6 = 𝑛2 ⊕ 𝑛4.

In this scenario, selecting nodes based on choices at 𝑏 and
𝑐 could lead to conflicts. Specifically, if 𝑆3 = 𝑆6 = 1 and 𝑆4 =

𝑆5 = 0, then the crossover, as shown in Fig. 4b, becomes cyclic
and thus invalid. To prevent such conflicts and maintain the
acyclic nature of the network, we implement two constraints.

First, we use depth propagation constraints, as shown in
Equation (8), to express the depth relationship between a node
𝑥 and its fanin 𝑦.

𝐷𝑦 + 1 ≤ 𝐷𝑥 ,∀𝑥 ∈ 𝑉𝐺 , ∀𝑦 ∈ 𝛿− (𝑛). (8)

This equation asserts the topological order of the network:
if a node 𝑦 is in 𝑥’s transitive fanin cone, then 𝐷𝑦 is strictly
lower than 𝐷𝑥 , i.e.,

𝑦 ∈ TFI(𝑥) ⇒ 𝐷𝑦 < 𝐷𝑥 . (9)

Second, we introduce topology constraints, as shown in
Equation (10), to associate choice decision with the depth
propagation.

𝐷𝑦 ≤ (1 − 𝑆𝑦) · |𝐺 | + 𝐷𝑥 , ∀𝑥 ∈ 𝑉𝐺 ,∀𝑦 ∈ EC(𝑥), (10)

where |𝐺 | > 0 is the size of the complex network. When 𝑆𝑦 =

1, then the inequality becomes 𝐷𝑦 ≤ 𝐷𝑥 . These constraints

set the lower bound of EC(𝑥) as the maximal depth of selected
nodes in its equivalence class. When 𝑆𝑦 = 0, Equation (10)
holds regardless of 𝐷𝑥 because 𝐷𝑦 ≤ |𝐺 |. Therefore, depth
variables of non-selected candidates do not affect 𝐷𝑥 .

The topology constraints avoid loops during crossover by
checking if the choice representative, 𝑥, of a node 𝑦 is in
the transitive fanin cone, TFI(𝑦). Note that this technique
is frequently used in scheduling problems [40]. Leiserson et
al. have proved the completeness and soundness of similar
constraints for retiming [41]. In this paper, we specialize the
proof for choice networks.

Proposition 1. 𝐻 is acyclic if and only if Equation (8) and
Equation (10) hold.

Proof. (⇒) holds because we can assign 𝐷𝑥 as the index
of 𝑥 in the topological order given an acyclic graph, which
satisfies Equation (5) by definition. Besides, |𝐺 | is larger than
the difference between two indices in the topological order;
thus, it is sufficient to relax the constraint in Equation (10) if
𝑆𝑦 = 0.

To prove (⇐), we assume for the sake of deriving a contra-
diction that there exists a cyclic graph 𝐻, whose corresponding
𝑆𝑥 configuration satisfies Equation (8) and Equation (10).

Such a loop must contain at least one choice representative.
Otherwise, it implies that one of the parent networks is cyclic,
which contradicts the assumption that parent networks are
valid logic networks. Let 𝑥 be the choice representative on
the loop, and 𝑦 be the selected candidate node in EC(𝑥), i.e.,
𝑆𝑦 = 1. Observe that 𝑥 must be in the transitive fanin cone of
𝑦 to form a loop. According to Equation (9), 𝐷𝑥 < 𝐷𝑦 holds.
Meanwhile, our assumption that Equation (9) holds implies
𝐷𝑦 ≥ 𝐷𝑥 if 𝑆𝑦 = 1. E □

5) Objective Function for Exact Crossover: Size and depth
are the two most frequently used cost metrics for logic
synthesis and are derived using Equation (3) and Equation (4),
respectively. We develop the objective function expressed in
Equation (11).

min .
∑︁
𝑥∈𝑉𝐺

𝑆𝑥 + 𝛼 · 𝐷, (11)

where 𝛼 decides the tradeoff between size and depth opti-
mization. In this paper, we prioritize size optimization and set
𝛼 → 0. Nevertheless, note that the constraints introduced in
previous sections are cost-generic and independent from the
objective function and the logic network representation. Be-
sides, Wang et al. have demonstrated the capability of express-
ing specialized cost functions on technology-independent logic
networks [42]. Therefore, we conclude that our formulation is
generalizable for technology-dependent tasks.

V. ADAPTIVE EVOLUTIONARY ALGORITHM

Utilizing the crossover method introduced in Section IV and
various synthesis algorithms as mutation methods, we propose
an evolution algorithm that equips (𝜇/𝜌, 𝜆)-ES. In this section,
we introduce an adaptive evolutionary algorithm framework to



orchestrate these methods and determine the hyperparameters
of the evolutionary process dynamically.

An overview of the adaptive algorithm is depicted in Fig. 5.
We use a state transition diagram to illustrate the dynamic
decision-making on the fly. The process starts from state
𝑆0, where the users specify the initial network and a set of
available synthesis algorithms. Subsequently, we generate the
first generation by randomly applying these algorithms as local
moves on the input network, as shown in state 𝑆1.

From 𝑆1, our workflow iteratively applies evolution strate-
gies, including mutation and crossover, to evolve the popula-
tion and loop back to 𝑆1, similarly to the typical evolutionary
algorithm. Distinctively, our approach selects between three
predefined sets of hyperparameters based on the converge rate,
denoted as Δ, 0 ≤ Δ ≤ 1. We calculate the converge rate
as the number of best results updates in a certain interval.
For example, Δ = 1 indicates that a smaller network is found
and the best result is updated in every generation. Conversely,
Δ = 0 when the best cost remains unchanged and stuck at a
local optimum.

We establish two thresholds, Δmin and Δmax, and categorize
the evolution strategy according to Δ’s value.

• If Δ > Δmax, the network’s size decreases continuously,
and the best size is updated frequently. This happens if the
networks possess rich optimization opportunities and are
far from optimal. In this scenario, our algorithm decreases
the mutation rate to focus synthesis algorithms on size
reduction, as depicted by 𝑆3 in Fig. 5. Moreover, we set
the objective function in Equation (11) and employ exact
crossover to minimize network size, thereby integrating
optimizations found by different synthesis algorithms in
the same offspring to accelerate the convergence.

• If Δmin ≤ Δ ≤ Δmax, our adaptive algorithm transitions
the state from 𝑆1 to 𝑆2 in Fig. 5 to continue optimization
while preserving population diversity. Unlike the exact
crossover in 𝑆3, the crossover in 𝑆2 randomly returns
multiple suboptimal solutions in the feasibility region

Initialization Population

Lower mutation rate

Exact crossoverRandom crossover

Higher mutation rate

Fig. 5: State transition diagram of our adaptive evolutionary algo-
rithm. Circles represent logic networks. We use three colors to indi-
cate different evolution strategies selected according to the adaptive
algorithm based on the converge rate Δ.

using heuristics. Besides, a higher mutation rate is used
to facilitate escaping local optima.

• If Δ < Δmin, then the population has rapidly converged
to local optima. In this case, both mutation and crossover
cannot easily create new offspring. Therefore, we transi-
tion to state 𝑆1 and reinitialize the population from the
input network to recover the variety.

Finally, if the elapsed time reaches the user-specified time
limit, the evolution process is terminated, and we return the
best network discovered during the entire process.

VI. EVALUATION

This section presents experimental results to demonstrate
the advantage of crossover and the effectiveness of our adap-
tive evolutionary algorithm. In these experiments, we compare
our method with a state-of-the-art design space exploration
flow [25] and a flow-tuning algorithm based on multi-arm
bandit models [21]. They correspond to the two evolution
strategies: (𝜇, 𝜆)-ES and (1 + 𝜆)-ES, respectively.

We run these flows on the EPFL benchmark suite that
comprises combinational arithmetic and control logics with
different sizes [43]. All three methods aim to optimize the AIG
size. Our initial AIGs are highly-optimized LUT6 networks.
We excluded one benchmark “hyp” from the benchmark suite
in our experiments due to the excessively large network
size, which prevents our method from completing sufficient
numbers of generations within the time limit of 3600 seconds.
They are first converted into AIG and then preprocessed
using three iterations of ABC compress2rs script [44]. We
convert the Boolean equality constraints to linear inequalities
and utilize Gurobi [45] to solve the exact crossover formulated
in Section IV. We run all the experiments on a computer with
a 3.7GHz AMD Ryzen 9 5900X processor with 64GB RAM.

To ensure a fair comparison, all the methods employ the
same set of synthesis algorithms from ABC as the local
transformation [44]. compress2rs and dc2 are prede-
fined sequences of size optimization scripts and the scripts
if;mfs;fx;st restructure the AIG network, potentially
increasing the size, to escape local optima. For additional
parameter setups used in our experiments, refer to Table III.

TABLE III: Parameter setup for the experiments. The upper half of
parameters are common in both our method and the state-of-the-art
flow [25]. The lower half is for crossover and our adaptive algorithm.

Num. restarts (num. population, 𝜇) 4
Time limit 3600s (900s for each restart)
Compression (mutation) compress2rs or dc2
Decompression (mutation) if;mfs;fx;st
Mutation rate 𝑆2 (High): 100%, 𝑆3 (Low): 50%
Num. parents in crossover (𝜌) 4
Num. offspring (𝜆) 𝑆2 (Random): 4 𝑆3 (Exact): 1
Conv. rate thresholds Δmin = 0.05, Δmax = 0.5

A. Exploration Trajectories

To demonstrate the advantages of incorporating crossover
in the evolution strategy, we plot the exploration trajectories
of the state-of-the-art flow in Fig. 6. Dots in the figure are
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Fig. 6: Design space exploration trajectories without crossover. Each dot in the graph represents an explored network. We use orange, blue,
and green colors to depict three different restarts from the input network. Each trajectory comprises 100 line segments representing the first
100 local transformations. The red dot represents the network reached in Table IV with crossover. The numbers in the figure are the best
networks reached in the corresponding trajectories. The first three benchmarks are highly optimized AIGs with different functionalities. The
last two benchmarks have the same functionality but from different optimization stages.

explored networks, and lines represent the local transforma-
tions. The coordinates of these logic networks are determined
by a {0, 1} vector composed of node selection variables 𝑆𝑛
introduced in Section IV. The coordinate of a network is
derived in the following way:

1) First, we apply a global crossover to all the explored
networks and generate a large complex network 𝐺

comprising all the nodes and functionalities.
2) Then, the nodes in a network 𝐻 that occur in the

trajectory are the subset of the vertices in 𝐺. Thus, 𝐻
can be encoded as a {0, 1} vector 𝑆 of length |𝐺 | as
demonstrated in Section IV.

3) Finally, to visualize them in a figure, we apply prin-
cipal component analysis and select a two-dimensional
projection that differentiates these vectors the most.

This encoding method allows us to analyze the structural
difference between networks with the same size and depth.
For instance, the trajectory in Fig. 6a shows the perturbation of
the adder’s logic network at the local optimum with a constant
size of 892.

The results in Fig. 6c and Fig. 6d demonstrate the advan-
tages of crossover in the evolutionary algorithm. The trajecto-
ries of different restarts (line segments with different colors)
diverge gradually after the first few local transformations,
which aligns with the observation in [17]. Instead of predicting
the “correct” direction or increasing the number of restarts,
crossing over these different networks is a more efficient
strategy to escape the local optima. Meanwhile, mutation-
only exploration relies merely on extending the length of local
transformations; therefore, they are trapped by the three local
optima in the solution space and fail to achieve the same
quality of results as the red point.

Besides, the crossover can also assist the previous synthesis
flow by combining and utilizing the strengths of different
parents. This scenario is demonstrated in Fig. 6b, where the
three trajectories overlap, indicating that local transformations
have sufficient reachability in the solution space. In this case,
increasing the number of restarts explores the same portion of

the solution space, thus, does not improve the exploration effi-
ciency of the mutation-only flow [25]. However, after enabling
crossover, our evolutionary algorithm utilizes the diversity
in the population and merges the advantageous substructures
from different trajectories. Consequently, crossover improves
the convergence rate, allowing our flow to reach smaller
networks in the same time limit, as shown in Section VI-B.

Moreover, the difference between four sets of trajectories
in Fig. 6 justifies our adaptive algorithm. Indeed, the solution
space differs across not only benchmarks but also the optimiza-
tion stage of the same benchmark, as demonstrated in Fig. 6c
and Fig. 6d. Only by adjusting the parameters dynamically
according to the landscape of the solution space during the
exploration can we find the most appropriate strategy to
improve the exploration efficiency.

B. Design Space Exploration Efficiency

Table IV demonstrates the comprehensive comparison be-
tween our flow and the state-of-the-art exploration flow [25]
and a flow-tuning algorithm based on multi-arm bandit mod-
els [21]. We highlight the best size for each benchmark. Note
that the performance of these flows depends heavily on the
random number generator. To mitigate randomness, we report
the smallest AIG sizes observed across six trials, each with
a distinct random seed. We set a sufficiently large time limit
for both methods and recorded the time elapsed when first
achieving the displayed circuit size in the exploration, denoted
as 𝑇 .

We observe that the flow-tuning approach is not suitable for
these benchmarks. Note that the initial networks in Table IV
are highly optimized AIGs mapped from the smallest LUT-
6 network and inherently hard to optimize further. On these
networks, most local transformations cannot lead to immediate
size reduction, and a positive reward can be achieved only by
accepting these moves with negative gain. In this scenario,
model-based methods must reach a sufficient deep sampling
stage in order to distinguish a good flow from a bad one.
However, this requires a large number of MAB iterations,



TABLE IV: Comparison with the state-of-the-art design space exploration flow [25] and a flow-tuning algorithm based on multi-arm bandit
models [21]. The columns labeled “T” denote the time elapsed upon achieving the optimal size for the first time. We monitor the time limit
following each local transformation, resulting in a potential slight deviation from the 3600-second time limit. The columns titled “#Gen”
denote the number of generations, which correspond to the length of the synthesis algorithm sequence originating from the initial networks
and indicate the depth of exploration.

Initial (1 + 𝜆)-ES [21] (𝜇, 𝜆)-ES [25] (𝜇/𝜌, 𝜆)-ES (Ours)
Benchmark Size Depth #PIs #POs Size T(s) #Iter Size T(s) #Gen Size T(s) #Gen
adder 908 322 256 129 892 3600.0 254 892 0.5 5490 892 0.5 237
bar 2688 14 135 128 2688 3600.0 60 2688 0.0 0 2688 0.0 47
div 20377 5601 128 128 20238 3600.0 2 18818 445.7 50 18840 3351.0 24
log2 41984 881 32 32 41984 3600.0 0 32928 1765.3 21 32217 2891.0 16
max 3229 448 512 130 3049 3600.0 56 3004 798.9 1323 2990 3630.8 189
multiplier 50147 822 128 128 38275 3600.0 2 33843 3701.7 16 32473 3612.6 15
sin 16425 362 24 25 10065 3600.0 7 8245 3947.7 13 7884 3673.7 9
sqrt 30968 6162 128 64 23049 3600.0 2 23147 2653.5 44 22852 3283.7 19
square 20623 701 64 128 18266 3600.0 4 16388 887.2 33 16346 3613.4 30
arbiter 805 312 256 129 805 3600.0 244 790 3080.6 3654 764 3603.8 378
cavlc 1085 37 10 11 965 3600.0 102 403 1358.7 3539 474 3115.1 507
ctrl 83 11 7 26 74 3600.0 1323 66 911.8 38255 61 3322.2 3990
dec 379 5 8 256 321 3600.0 374 322 1804.2 8852 304 20.0 890
i2c 1373 41 147 142 780 3600.0 208 685 1718.5 6136 672 2102.3 673
int2float 322 34 11 7 253 3600.0 459 128 2948.2 18809 128 1010.2 1852
mem ctrl 7964 39 1204 1231 7051 3600.0 14 6715 853.8 308 6730 3075.8 182
priority 455 55 128 8 405 3600.0 343 374 1801.7 7448 367 346.3 868
router 100 16 60 30 98 3600.0 1086 96 1.8 30051 94 44.0 3426
voter 18398 128 1001 1 12224 3600.0 3 8967 834.1 122 8932 3597.7 86
Average 11490 9552 8342 8195

which is not feasible within the time limit. This limitation also
applies to other machine learning-based flow-tuning methods.
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Fig. 7: AIG size optimization of the arbiter circuit. The 𝑥-axis is the
CPU time in a log scale, and the 𝑦-axis displays the best AIG size
achieved within the time window. We plot the results of six runs for
each method. These runs have different random seeds.

Compared with the (𝜇, 𝜆)-ES flow, our flow returns smaller
networks within the same time limit and reduces the number of
nodes by 1.7%. For example, the size reduction of the arbiter
circuit from 805 to 794 takes the (𝜇, 𝜆)-ES 50 minutes and
3539 iterations of compression and decompression. By em-
ploying the crossover strategy, our method reduces the circuit
size further down to 764, which is a significant improvement
considering the limited optimization opportunities in these
benchmarks. The process of size optimization is displayed in
Fig. 7. Although the trajectories are affected by the random
seed, the trend is clear that our flow converges faster and

achieves better results.
Note that crossover does not always improve the exploration

efficiency and does not necessarily lead to better circuit size,
for example, on the benchmark “cavlc” in Table IV. Our
flow finds a network with 474 nodes, while the network
size found by the baseline is 403. This is because of the
runtime overhead of employing crossover. As displayed in
Table IV, the number of generations of our flow is significantly
lower than the baseline within the same time limit. In the
one-hour time limit, our flow accomplishes 507 generations
when optimizing “cavlc” while the baseline flow finishes
3539 iterations. Therefore, the maximum distance restricts our
reachability in the solution space.

VII. CONCLUSION

Over decades, various logic synthesis heuristics have been
developed, demonstrating sufficient effectiveness in generating
local transformations. Nowadays, the design space exploration
strategies that orchestrate these local transformations are be-
coming the bottleneck of synthesis flows. This paper proposes
global crossover, an evolution strategy for logic synthesis,
which identifies and extracts different portions from multiple
feasible networks and combines their strength to construct a
more advantageous network. Compared with mutation-only
flows, crossing over multiple networks escapes the local op-
timum more easily while allowing a faster convergence rate.
We employ the proposed crossover in an adaptive evolutionary
algorithm to adjust the strategies on the fly. Experimental
results show that our flow achieves better circuit qualities using
fewer exploration efforts.
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