This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

Technology Legalization and Optimization for
Adiabatic Quantum-Flux Parametron

Siang-Yun Lee, Alessandro Tempia Calvino, Graduate Student Member, IEEE, Heinz Riener,
and Giovanni De Micheli, Life Fellow, IEEE

Abstract—Adiabatic quantum-flux parametron (AQFP) is an
energy-efficient superconducting technology. Before physical
design can be performed, AQFP technology mapping involves not
only mapping logic into supported gate types but also legalizing
the circuit to fulfill the technology-imposed constraints on path
balancing and fanout branching by inserting buffer and splitter
cells. These cells account for a significant amount of the circuit’s
area, delay, as well as for increasing energy consumption. In
this paper, we (a) identify that the AQFP legalization problem is
a scheduling problem; (b) propose linear-time depth-optimal
scheduling and irredundant buffer insertion algorithms; (c)
present heuristic optimization algorithms to further reduce buffer
count; and (d) suggest an unsupervised design space exploration
approach for AQFP technology mapping, mixing and interleaving
logic optimization and technology legalization. Experimental
results show that our design space exploration, utilizing the
proposed technology legalization and optimization flow, achieves
44% improvement on the energy-delay product compared to the
state of the art.

Index Terms—Logic synthesis, superconducting electronics,
adiabatic quantum-flux parametron, technology mapping

I. INTRODUCTION

High-performance computing of data centers and com-
puting clusters contributes to a noticeable percentage of
the world’s energy consumption, demanding more energy-
efficient computation paradigms. The adiabatic quantum-flux
parametron (AQFP) is an emerging superconducting technology
shown to achieve promising energy efficiency [1] and has
attracted increasing attention in the past decade. While the
technology is rapidly evolving [2]-[6] and larger-scale systems
are being developed [7], [8], design automation for AQFP is
also an extensively-researched topic [9]-[11].

One major challenge in AQFP design automation is the
legalization of the logic circuit to fulfill two unconventional
technology constraints, path balancing and fanout branching,
before physical design. Due to its gate-level clocking property,
AQFP gates require all input signals to arrive at the same
time, thus buffers have to be inserted on shorter data paths
to balance with the longer paths. Moreover, splitters are
needed at the output of AQFP gates driving multiple signals,
and these splitters are also clocked. Thus, logic circuits
generated by technology-independent logic synthesis must be
legalized for the AQFP technology by inserting buffers and

This research was supported by the SNF grant “Supercool: Design methods
and tools for superconducting electronics”, 200021_1920981.

Alessandro Tempia Calvino and Giovanni De Micheli are with the Integrated
Systems Laboratory, Swiss Federal Institute of Technology Lausanne, 1015
Lausanne, Switzerland. Siang-Yun Lee and Heinz Riener are with Cadence
Design Systems GmbH, Germany.

splitters. Legalization of AQFP circuits is essential to unlock
its potential of pipelined computation while maintaining correct
functionality.

In a legalized AQFP circuit, buffers and splitters (B/S)
often contribute to over 50% of the Josephson junction
(JJ) count, which is the commonly-used cost metric related
to area as well as energy consumption. Thus, optimized
algorithms for AQFP legalization are in need to reduce the
overhead and increase scalability of AQFP circuits. In this
paper, we summarize a scalable and flexible framework for
AQFP technology legalization and optimization, based on two
previous papers [12], [13]. First, we show that the AQFP B/S
insertion problem is a scheduling problem by formalizing an
irredundant B/S insertion algorithm, which is optimal subject to
a given schedule. Then, we propose depth-optimal scheduling
algorithms, forming the basis for obtaining an initial legalized
circuit. We then present two orthogonal heuristic optimization
algorithms to further optimize the B/S count. Our AQFP
legalization and optimization flow consists of obtaining two
depth-optimal schedules, iteratively optimizing them separately,
and then choosing the better one. Furthermore, we present an
unsupervised design space exploration approach that interleaves
logic synthesis and technology legalization. Finally, we discuss
how logic as well as technology constraints can be verified
after AQFP synthesis.

Our experiments demonstrate promising results in three
possible scenarios of application:

1) When a runtime-efficient synthesis flow is of concern, it is

better to separate logic synthesis and AQFP legalization.
For the latter, we present a heuristic legalization and
optimization flow which obtains similar, near-optimal
quality as the state-of-the-art ILP-based algorithm within
very little runtime.

2) When dealing with larger-scale designs, scalability is
important. Our approach is flexible in runtime budget as
the optimization part can be skipped and our scheduling-
based legalization is fast and scalable. We demonstrate
legalization results on benchmarks 10x to 100x larger
than what any other related works could handle.

3) When circuits are small enough or the runtime budget is
sufficient, logic restructuring and technology legalization
can be interleaved to achieve better results. We propose an
AQFP technology mapping approach combining existing
logic optimization techniques with our legalization flow
for design space exploration. Experimental results show a
significant 44% improvement in the energy-delay product
compared to the best-known AQFP synthesis results.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

sum

Fig. 1: An AQFP-legalized full adder circuit.

II. PRELIMINARIES
A. Adiabatic Quantum-Flux Parametron

Adiabatic quantum-flux parametron (AQFP) is a supercon-
ducting electronics technology. In an AQFP circuit, Josephson
Junctions (JIs), instead of transistors, are the active components.
By operating in the superconductive region, AQFP circuits
achieve zero static energy dissipation [14]; by operating in the
adiabatic mode, AQFP circuits achieve very small dynamic
energy consumption [1]. The basic circuit components in AQFP
are the buffer cell and the branch cell. A majority-3 logic gate
can be constructed by combining three buffer cells with a
3-to-1 branch cell, from which other logic gates, such as the
AND gate and the OR gate, can be built with constant cells
(biased buffer cells). Input negation of logic gates is realized
using a negative mutual inductance and is of no extra cost. [2]
The commonly-used cost metric of AQFP circuits is the JJ
count. A buffer costs 2 JJs, a branch cell is of no JJ cost, and
a logic gate based on majority-3 costs 6 JJs. [2]

Logic gates in an AQFP circuit need to be activated and
deactivated periodically by an excitation current [3]. In other
words, every gate in an AQFP circuit is clocked, and all input
signals have to arrive at the same clock cycle. To ensure
this, shorter data paths need to be delayed by clocked buffers.
Moreover, the output signal of AQFP logic gates cannot be
directly branched to feed into multiple fanouts. Instead, splitters
are placed at the output of multi-fanout gates to amplify the
output current. A splitter cell is composed of a buffer cell
and a 1-to-n branch cell (usually, 2 < n < 4) and is also
clocked. As the cost of splitters comes mostly from the buffer
cells, in the remainder of this paper, we do not distinguish
buffers from splitters and we will model them with the same
abstraction. Also, in all figures, we use circles to represent MAJ
gates and squares to represent buffers/splitters. To illustrate
the AQFP technology constraints, Figure 1 shows a full adder
as a legalized AQFP circuit. Splitters (S squares) are inserted
to drive multiple gates and buffers (B squares) are used to
balance paths at the inputs of all gates and over all outputs.

B. Terminology

A (logic) network is a directed acyclic graph defined by
a pair (V,E) of a set V of nodes and a set E of directed
edges. The node set V = I U O UG is disjointly composed
of a set I of primary inputs (PIs), a set O of primary outputs
(POs), and a set G of (logic) gates chosen from a library. In
this paper, we assume that an AQFP-compatible gate library
(e.g., composed of AND2, OR2, MAJ3 with optional input
negation) is used. Each PI has in-degree 0 and unbounded
out-degree, whereas each PO has in-degree 1 and out-degree
0. The out-degree of each gate is unbounded and the in-degree

is a fixed number depending on the type of the gate. For any
gate g € G, the fanins of g, denoted as FI(g), is the set of
gates and PIs connected to g on an incoming edge. Similarly,
the fanouts of a gate (or a PI) g, denoted as FO(g), is the set
of gates and POs connected to g on an outgoing edge.

A mapped network N' is a network whose node set V' is
extended with a set B of buffers. A buffer is a node with in-
degree 1. In a mapped network, the definition of the fanouts of
a gate is modified by ignoring any intermediate buffers, i.e., a
path from a gate g to one of its fanouts g, € FO(g) C (GUO)
may include any number of buffers in B, but never another
gate. The definition of fanins is modified similarly. The fanout
tree of a gate (or a PI) n, denoted by FOT(n), is the set of
buffers between n and any gate or PO in FO(n).

A schedule of a network is a function S : V' — Zx that
assigns a non-negative integer S(n) to each node n € V, called
the level of n. The depth of a network N = (V = JUOUG, E)
with a schedule S is defined as d(N) = max,co S(0). If the
schedule is omitted, then the depth of a network is the length
of the longest path from any PI to any PO.

C. Problem Formulation

To fulfill the needs in the AQFP technology for fanout-
branching and path-balancing, we define the following prop-
erties subject to the splitting capacities s; = 1,5, = 1, and
sp > 1 of PIs, gates, and buffers, respectively.

Definition 1. Given a mapped network N' = (V' =TUuOU
GUB,FE),
1) N’ is path-balanced if there exists a schedule S of N’

such that

Vni,ne € V' : (n1,n2) € E' = S(n1) = S(n2) — 1,
(1)

VieI:S(i) =0, and 2)

Vo€ 0: 8(0) = d(N'). 3)

2) N’ is properly-branched if every PI has an out-degree
no larger than s; = 1, every gate has an out-degree no
larger than s, = 1, and every buffer has an out-degree
no larger than s;.

3) N’ is legal if it is both path-balanced and properly-
branched.

In an AQFP design automation flow, the logic synthesis stage
after RTL synthesis and before physical design converts an
input specification netlist (represented as, e.g., an AND-Inverter
Graph (AIG) or a Majority-Inverter Graph (MIG)) into a legal
mapped network whose gates are all AQFP-compatible. The
problem to be solved is formulated as follows:

Problem 1 (AQFP technology mapping). Given a network
N = (V =1UOUQG, E) with unconstrained gate types in G,
find a mapped network N’ = (V' = TUOUG'U B, E’) such
that:

1) N and N’ are logically-equivalent.

2) All gates in G’ are of an AQFP-compatible type (i.e.,

AND2, OR2, or MAJ3 with optional input negation).
3) N’ is legal (i.e., path-balanced and properly-branched).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

Problem 1 may be solved as one problem, or it may be
divided into two problems to be solved independently:

Problem 2 (Majority-based logic restructuring). Given a
network N = (V = I UO UG, E) with unconstrained gate
types in G, find a network N* = (V* = I UO U G*, E*),
such that:
1) N and N* are logically-equivalent.
2) All gates in G* are of an AQFP-compatible type (i.e.,
AND2, OR2, or MAJ3 with optional input negation).

Problem 3 (AQFP technology legalization). Given a network
N* = (V¥ = I UOUG*, E*) and the value of s;, find a
mapped network N’ = (V' =TI UO UG’ U B, E’), such that:
1) N’ is legal (i.e., path-balanced and properly-branched).
2) G’ = G*, and for all gates g € G*, FO(g) and FI(g)
remain the same in N’ as in N*.

Moreover, for all of the three problems, in addition to finding
a network fulfilling the requirements, we also optimize for some
common metrics. For the main problem to solve, Problem 1,
common optimization objectives are minimizing JJ count (#JJs
=6-|G’'| +2 - |B|) and minimizing JJ depth d(N').

Problem 2 is equivalent to mapping into and optimizing a
Majority-Inverter Graph (MIG) [15], which is a logic network
where all gates are MAJ3 and edges may contain inverters,
because AND2 and OR2 gates are equivalent to MAJ3 with
a constant (0 and 1, respectively) input. Graph mapping [16]
and MIG optimization [15], [17], [18] are well-researched
problems with existing algorithms to use. These algorithms
usually optimize for MIG size (|G*|) or depth (d(N*)).

In this paper, we focus on solving Problem 3. Because
G' = G*, this problem is often referred to as the AQFP
buffer (and splitter) insertion problem. Minimizing JJ count in
Problem 1 is equivalent to minimizing |B| in Problem 3.

III. RELATED WORKS

In this section, we introduce existing works solving the three
problems formulated in Section II-C. Section III-A corresponds
to Problem 2, Section III-B corresponds to Problem 3, and
Section III-C corresponds to Problem 1.

A. Majority-Inverter Graph Optimization

MIG was proposed as an alternative technology-independent
logic representation with an advantage in depth optimization
especially in arithmetic circuits [15]. Due to the special
properties of some emerging technologies including AQFP,
MIG also become a good logic synthesis data structure for these
technologies [19]. Various logic synthesis and optimization
algorithms have been proposed and tailored for MIGs. To
convert an AIG into an MIG, the simplest way is to translate

each AND?2 gate into an MAJ3 gate with a constant 0 input.

Alternatively, a versatile graph mapping algorithm can also
map from AIGs (or other types of networks) to MIGs while
optimizing for depth and/or size in the process [16]. Prominent
examples of tailored MIG optimization algorithms include
algebraic rewriting, which applies special Boolean algebraic
rules to reduce MIG depth [15], and resubstitution, which

resynthesizes a small part of the network using majority gates
to reduce MIG size [18], [20].

B. Buffer and Splitter Insertion and Optimization

(Rapid) Single-Flux Quantum (RSFQ or SFQ) [21], a sibling
superconducting technology, shares similar path-balancing and
fanout-branching constraints as AQFP and also requires buffer
and splitter insertion [22], [23]. However, a key difference be-
tween the two technologies makes the problem computationally
distinct for them: SFQ splitters are not clocked and thus not
considered in path balancing, allowing fanout branching and
path balancing to be handled separately, unlike AQFP, where
clocked splitters require joint consideration of these constraints.

The earliest AQFP design automation tools legalized the
circuit by inserting splitters at the output of multi-fanout
gates, followed by buffers on imbalanced paths [9]. This
naive approach guaranteed correct AQFP operation, but left
out possible optimizations and often resulted in excessive
buffers and splitters. Thus, a local optimization technique
called retiming [10] or buffer merging [24] was proposed. This
technique involves moving buffers across multi-fanin gates
(Figure 8 in [24]) or multi-fanout splitters (Figure 5 in [10]),
reducing buffer counts by sharing buffers or delaying splitting.
This idea was elaborated in [25] as a B/S insertion algorithm
with the notion of virtual splitters.

Subsequent improvements in B/S optimization involved more
complex algorithms. A quadratic-complexity algorithm focused
on single-wire optimization, which is locally optimal subject
to a complex cost function, was proposed in [26]. In [27], a
schedule for the mapped network was first solved as an integer
linear programming (ILP) problem, then a cubic-complexity
locally-optimal splitter-tree insertion algorithm was applied.

Exact methods solving for the global size-optimal B/S
insertion were also researched. In [12], the B/S optimization
problem was first formulated as a scheduling problem, and
then encoded and solved as an optimization modulo linear
integer arithmetic problem. The global minimum B/S insertion
results were obtained for some small benchmarks. An ILP
encoding was proposed in [28] which led to some improvement
in efficiency, and optimal results for some more benchmarks
were reported. Though size-optimality is still intractable, depth-
optimal B/S insertion has been shown to be solvable in linear
time [13].

C. AQFP Logic Synthesis

Existing AQFP logic synthesis flows can be categorized
into two approaches: solving Problem 2 and Problem 3
separately, or considering Problems 2 and 3 together. The
earliest works took the first approach to adapt available CMOS-
based design automation tools for AQFP [9], [10]. Problem 2
was addressed by AND-based technology-independent logic
synthesis followed by technology mapping into an AQFP-
compatible library, and Problem 3 was solved separately in an
additional buffer insertion stage before physical design. Later,
to better leverage the intrinsic MAJ function in AQFP circuits,
MAIJ-based logic synthesis was adopted [19], [24]. At this time,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

Problem 3 was still solved separately using the naive insertion
approach introduced in Section III-B.

Although solving the two problems separately is easier,
it is hard to predict the impact of legalization in the logic
restructuring stage. The smallest MIG in size may not be
still the smallest after legalization. Thus, in [29], the authors
proposed to consider the two problems together and optimize
directly for the final cost function. A database of optimal AQFP
sub-circuits is used in restructuring, and legalization is done
during the process. This algorithm was used in a flow consisting
of graph mapping, AQFP resynthesis, and post-synthesis buffer
optimization [11].

The latest work on AQFP synthesis, presenting currently
the best results, took the first approach (separating the two
problems) and used Bayesian optimization to find the best MIG
restructuring script with respect to the actual AQFP cost after
legalization [30].

IV. BUFFER AND SPLITTER INSERTION

In this section, we will explain how Problem 3 shall be
efficiently approached. First, in Section IV-A, we identify
that the AQFP legalization (buffer and splitter insertion)
problem is a scheduling problem because once a schedule
is given, the minimal-size mapped network can be derived
in linear time using an irredundant buffer insertion algorithm
(Algorithm 1). Then, in Section I'V-B, depth-optimal scheduling
algorithms are proposed based on the well-known As-Soon-As-
Possible (ASAP) and As-Late-As-Possible (ALAP) scheduling
algorithms. These algorithms provide different starting points
for the heuristic optimization algorithms that will be presented
in Section V.

A. Irredundant Buffer Insertion

Claim. The AQFP legalization problem (Problem 3) is a
scheduling problem on the unmapped network.

To elaborate on the above claim, we will first introduce the
notion of irredundant mapped network. Then, we will present
Algorithm 1 to show how buffers can be inserted irredundantly
given a schedule of the unmapped network.

Definition 2. A mapped network is said to be irredundant if
the following two conditions hold.

1) There is no dangling buffer, i.e., every buffer has at least
one outgoing edge.

2) There does not exist any pair of buffers whose incoming
edges are connected from the same splitter and both of
them have out-degrees smaller than s;.

Otherwise, the network is redundant.

Notice that the local retiming optimization used in [10], [25],
which pushes buffers from the outputs of a splitter to its input,
is subsumed by the definition of irredundant networks. In other
words, if a mapped network is irredundant, no optimization
can be made with the local retiming technique. This is because
local retiming looks for splitters whose fanouts are all buffers
and the sum of the fanout counts of these buffers does not

Algorithm 1: Irredundant buffer insertion

Input: An unmapped network N* = (V* =ITUQUG",E")
and a schedule S for N*
Output: Legalized mapped network N’

1t N« N*
2 foreach n € TUG" do
3 lmax «— max S(no)

ne €FO(n)

4 A+ {no € FO(n) IS(no) = lmax}

5 for I = lmax — 1 downto S(n) + 1 do
Create "st:l-‘ buffers at level l in N'
B « the set of newly-created buffers
for i =1 to |A| do

Remove n from Ali]’s fanins in N’
10 Add B[fi]] as Ali]’s fanin in N'
11 A + BU{n, € FO(n) : S(no) =1}
12 assert |[A| =1

13 Add n as A[1]’s fanin in N’

14 return N’

e e g

l=8(n)+5 O O |A] =3
I=5(n)+4 \:{OQ Bl =[3]=2 4] =2
I=5(n)+3 H Bl =[2]=1,]4|=1
1=sm+2 () lﬁ Bl =41=1,]4] =2
I=5(n)+1 Bl =[3] =114 =1
L= 5(n)

Fig. 2: Example sub-network to illustrate Algorithm 1. (s = 2)

exceed the splitting capacity s;, which violates the second
condition in Definition 2.

For each PI or gate n, Algorithm 1 iterates over all levels [
between n its fanouts. Initially, the set A contains the fanouts
(gates and POs, if any) of n at the highest level l,,.. At each
level [, enough buffers (|B| = [lsibl]) are inserted, where |A|
is the number of nodes at level [+ 1. Then, n is removed from
the fanins of the i-th element in A, and the [ﬁ]-th buffer in
B is added instead. Finally, A is updated as the newly-created
buffers and the fanouts at the current level. Figure 2 illustrates
an example iteration (of the out-most loop) of Algorithm 1,
where s; = 2 is assumed.

Algorithm 1 runs in linear time with respect to
> nerug- IFO(n)| < |E*|. It also verifies whether it is
possible to build a properly-branched network with the given
schedule S. In line 12, the assertion makes sure that the gate
or PI n has only one outgoing edge. If this assertion does not
hold, then it is impossible to construct a legal mapped network
with § and we say that S is an illegal schedule. Otherwise,
the constructed mapped network is properly branched if the
given schedule is legal. It is also path-balanced as each node is
connected to a node at exactly one level lower. Moreover, the
constructed mapped network is irredundant because in each
fanout tree, only the minimum number of buffers is inserted
at each level [and only at most one of them has fanout count
smaller than s;,. An irredundant network is size-optimal with

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

respect to the given schedule because no buffer can be removed
while keeping the network legal.

In conclusion, a legal schedule on the unmapped network
determines an irredundant and legal mapped network, therefore
Problem 3 is equivalent to finding a legal schedule whose
corresponding irredundant mapped network is minimal.

B. Depth-Optimal Scheduling

In this and the next section, we present algorithms to
obtain a legal schedule on an unmapped network, such that
an irredundant legal mapped network can be derived using
Algorithm 1. These algorithms are intended to serve as quick
initial scheduling methods that will be further optimized later
on (Section V).

As discussed in Section II-C, common cost metrics to be

considered for AQFP circuits are network size and depth.

Unlike in many other technologies where circuit area and delay
are often inversely related in a Pareto curve and engineers must
trade one for the other, we observe that in the AQFP buffer
insertion problem, the size of an irredundant mapped network
correlates to the depth of the provided schedule. Intuitively, in
Problem 3, the unmapped network and any mapped network
have roughly the same number of paths and similar logic
sharing (slight differences may only exist in how fanouts are
split), and the size of a mapped network is the sum of all path
lengths, which is the network depth, minus the sizes of the
shared cones. In other words, a larger network depth results in
longer (balanced) paths and thus larger network size. Hence,
we present scheduling algorithms that also optimize for depth
besides being fast (having a linear time complexity) and giving
legal results.

Algorithm 2: Depth-optimal single node scheduling

Input: A node n and a partial schedule &
Output: Level S(n) assigned to node n

1 by +— max S(no)
no€FO(n)

2 edges + 0
3 foreach n, € FO(n) in a descending order of | + S(n,) do

4 splitters " (;;:f:.e—sl)-‘
S
b

5 edges + splitters +1
Lprev <1

7 while edges # 1 do

8 edges "e‘i":s“

9 borev < lprev — 1

10 S(n) by — 1

11 return S(n)

Given a partial schedule S where some nodes, including n
but excluding all fanouts of n, have not been assigned a level,
Algorithm 2 computes the value to be assigned to S(n), such
that the fanout tree of n has the minimum-possible height. This
algorithm follows a similar strategy as compared to Algorithm 1.
Variable edges corresponds to |A| in Algorithm 1, counting
the number of nodes (thus edges) needed to be connected at
each level; variable splitters corresponds to |B| in Algorithm 1,
computing the number of splitters (buffers) needed at each
level. The foreach-loop (lines 3 to 6) iterates over the fanouts

edges(y gy = 1, edges(y gy = 2,

1=8 () (n2) (13) edgesiyyy =3

=7 edges 4 7y = [%] +1=3
=6 edges = [3] =2

l=5 edges = [2] =1

l=4

Fig. 3: Example sub-network to illustrate Algorithm 2. (s = 2)

of n in descending order of their levels, and variable /,,., keeps
the level of the previous iteration. If the level does not change
from the previous to the current iteration, variable splitters is
equal to edges because l,., = [and $30 = 1 (line 4). As a
result, edges is simply increased by 1 in this iteration, counting
the fanout itself (line 5). Otherwise, when a fanout at a lower
level is encountered, we compute the minimum number of
buffers needed at level [to drive edges nodes at level [,,., as
follows. A complete binary tree of height h has at most 2"
leaves. Similarly, a splitter tree rooted at level ! can split into
at most s, fanouts at level [+ h. To drive edges fanouts at

level L, at least {ﬁ"%f%y-‘ splitter trees rooted at level [are
8

needed (line 4). Morbeover, at most one of them is not full,
i.e., they are irredundant. In line 5, this value, plus one for the
fanout itself, is used to update variable edges. Finally, after
all fanouts of n have been processed, the algorithm finds the
highest level where edges is one to schedule n (lines 7 to 10).

Figure 3 shows an example to illustrate Algorithm 2. The
node n to be scheduled has four fanouts, assigned respectively
to levels 8 (nq, ng, n3) and 7 (n4) in the partial schedule. The
splitting capacity is s, = 2. In Figure 3, edges, ;) indicates
the value of variable edges in Algorithm 2 when node n, at
level S(n,) =1 is considered in the foreach-loop (lines 3 to
6). First, edges(, g) = 1, edges(, gy = 2 and edges 3 g) = 3 are
computed, essentially counting the number of fanouts at level
| = 8. When node n4 at a lower level, [= 7, is encountered,
the number of buffers needed at level 7 to drive all nodes
at the previously-considered level [,., = 8 is computed by
[3/2877] = 2. The loop ends with l,,, = 7 and edges = 3.
Finally, in the while-loop (lines 7 to 9), edges is updated two
times before it reaches value 1, resulting in l,,, = 5. Thus,
node n is scheduled at S(n) = 4.

With the following Lemma, we show that the computation in
line 4 of Algorithm 2 has the equivalent effect in Algorithm 1
on |A| as Iy, — [iterations of line 6.

Lemma 1. Let b be a positive integer and A = ag,ay,...,a,
be a sequence of n + 1 positive integers related by a;11 =

[4:],0 < i < n. Then, a, = [{2].

Proof. We first prove that for any positive integers a and b,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

’VI'ET‘ = [&]. Let z = [{], by definition, we have

a =>a<q:=>[a"<[z"

b TR T el Tl
Suppose, for the sake of contradiction, that [5] < [§], then
there must exist an integer y such that ;3 < y < 7. Multiplying
by b and using the definitions, we have

%<b-y<z= [%-‘ <[b-y]=b-y<uz,
which leads to an absurd statement of x < z. Thus, by
[¢]
b

proved by induction on . O

contradiction, [;5] = [§] = and the statement is

Next, we prove the legality and optimality of Algorithm 2
with the following lemma.

Lemma 2. Given a legal partial schedule S, Algorithm 2
assigns the largest value to S(n) such that S is still legal.

Proof. Let the value returned by Algorithm 2 be [, and
assume, for the sake of contradiction, a schedule S’ where
8'(no) = 8(n,) Yn, € FO(n) and S'(n) = I, > l,. Let
lm = ming,, cro(n) S(no). If I;, > 1,,, S’ is obviously illegal.
Assume I] < l,,. Let e be the value of variable edges when
the foreach-loop in Algorithm 2 (lines 3 to 6) ends. The while-
loop in Algorithm 2 has [,, — [,, — 1 iterations, so the value
of variable edges before the last iteration is, by Lemma 1,
(lm ln 2)

’Ve /8 T > 1.

Now, consider an execution of Algorithm 1 using &,
in particular the iteration of the outer loop processing the
considered node n, we have |A| = e after line 11 in
Algorithm 1 in the iteration ! = l,,, — I},. The loop (lines 5-
11 in Algorithm 1) has /,, — I}, — 1 more iterations before
it ends, in which line 11 can be replaced by “A + B”
because there are no more fanouts. By the end of the loop,
Al = [e/s,(,l"‘_l"_l)-‘ > [e/s,(,l"‘_l"_z)-‘ > 1. Thus, we
conclude that 8’ is illegal, and /,, is indeed the largest possible
value for S(n). O

By corollary, if all fanouts of a node n are scheduled at the
largest level, then the level of n obtained by Algorithm 2 is
also the largest. Formally written as follows.

Corollary 3. Given a legal schedule S and a node n, let
S(n) be the level of n computed by Algorithm 2. If there
does not exist a legal schedule S’ such that max,co S’(0) =
max,c0 S(o0) and 3In, € FO(n), S’ (n,) > S(n,), then there
does not exist a legal schedule S’ such that max,co S’(0) =
max,co S(0) and §’'(n) > S(n).

Algorithm 2 requires that a node is only scheduled after all
of its fanouts have been scheduled. In other words, a reversed
topological order is required. Thus, it is suitable to use an
ALAP scheduling scheme, which first schedules all POs of a
network to an upper bound), and then schedules the remaining
nodes to the largest-possible level (“as late as possible”) in a
reversed topological order. We present Algorithm 3 for this
purpose. It first computes a sufficiently large upper bound A
on the depth of the mapped network for ALAP scheduling,

Algorithm 3: Depth-optimal ALAP scheduling

Input: An unmapped network N* = (V* =TUOUG",E")
Output: A schedule S for N*
A d(N*)- 1+ rrela‘%[—U—Lmk’g alODY)

log(sp)
foreach o € O do
| Sx (o) “— A
foreach n € I U G" in a reversed topological order do
| Sa(n) « schedule_node(n, Sy) // alg. 2
lmin l’lrlel}ls,\(l)
7 foreach i € I do
8 | S(i)« 0
9 foreach n € OUG" do
| S(n) < Sx(n) — lmin
11 return S

[

T T

-
=]

assuming each node would need a balanced splitter tree to drive
the maximum fanout in the network. POs are first scheduled at
A. Then, each node is scheduled using Algorithm 2 in a reversed
topological order. Finally, to obtain a schedule independent
of the value of A, post-scheduling correction is applied: PIs
are moved to level 0 to fulfill Equation (2), and the levels of
all other nodes are reduced by the smallest PI level before
correction. This algorithm has a linear time complexity with
respect to the network size.

We have shown with Corollary 3 that the depth-optimal
scheduling problem has optimal substructure when nodes are
scheduled in a reversed topological order. Now, we can prove
that Algorithm 3 achieves optimal depth.

Theorem 4. Given an unmapped network N*, let the schedule
for N* returned by Algorithm 3 be S. The irredundant mapped
network N’, obtained by running Algorithm 1 with N* and §
as inputs, is legal and its depth d(N') is minimal.

Proof. At line 6 of Algorithm 3, the depth of schedule Sy
is max,c0 Sx(0) = A by definition. After the correction in
lines 6-10, the maximum level becomes \ — [,,in, Which is
also the resulting depth d(N'). Thus, minimizing depth d(N')
is equivalent to maximizing the lowest PI level [,;, during
scheduling because A is a constant.

In Algorithm 3, levels of POs are maximized to A. By
Corollary 3, each node is scheduled at the largest level because
all of its fanouts are scheduled before it and they are also
scheduled at their largest possible levels. By induction, levels
of all nodes are maximized and thus depth is minimized. The
legality of S is similarly proved by Lemma 2. O

In conclusion, Algorithm 3 guarantees to find a legal schedule
for an unmapped network. Followed by Algorithm 1, a legal
mapped network is obtained in linear time. By Theorem 4,
such mapped network is depth-optimal.

C. Alternative Depth-Optimal Scheduling

The methods presented in the previous section give a
depth-optimal mapped network, but size optimality is not
guaranteed. Indeed, the AQFP size optimization problem is
likely a difficult one without an algorithm that is both optimal
and has polynomial time complexity. Thus, we propose to use
depth-optimal networks as starting points and further optimize

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

for size with heuristic algorithms presented in Section V. As
heuristics are often biased by the starting point, we present
in this section an alternative depth-optimal scheduling method
based on ASAP instead of ALAP scheduling.

An ASAP scheduling scheme schedules each node, in a
topological order, to the lowest-possible level according to
the schedule of its fanins. To do so, we define a mobility
Sfunction p : V* — Z>(representing the maximum negative
displacement that can be made to a node (from Sapap(n) to
Sasap = Sarar(n) — p(n)) while keeping the schedule legal
and depth-optimal. Algorithm 4 computes (a lower bound on)
the mobility of each node and uses these values to obtain an
ASAP schedule using a given ALAP schedule.

Algorithm 4: Depth-optimal ASAP scheduling

Input: An unmapped network N* = (V* =TUOUG", E*)
and its ALAP schedule Sapap
Output: ASAP schedule Sasap for N*
1 foreach i € I do
2 | p(i)«0
3 foreach n € G* do
4 | pn) oo
5 Sasap + Savap
6 foreach n € G* in a topological order do

7 SASA[»('H) — SASAP(TL) [.L('n,)

8 foreach n, € FO(n) do

9 | T(no) «+ 0

10 lprev +— max Susar(no)
no€FO(n)

11 edges + 0
12 foreach | = S(n,) : n, € FO(n) in descending order do
13 mobility + 0

14 for Iy, — [iterations do

15 if edges =1 then

16 | mobility « mobility +1

17 edges +— (’—’ﬁ?]

18 foreach n;, € FO(n) : S(n,) > [do
19 | T(ny) < T(n,)+ mobility

20 edges + edges +1

21 Lprey <1

22 mobility < 0
23 for | = Sasar(n) upto Iy, — 2 do

24 if edges =1 then
25 | mobility « mobility +1
26 edges « [%]

27 foreach n, € FOb(n) do
28 | w(no) + min(u(n,),T(n,) + mobility)
29 return Sasap

Mobility is initialized to infinite for gates and to 0 for PIs
(lines 1-4). For each node n in topological order, first, n is
scheduled to a lower level based on its ALAP schedule and
mobility (line 7). Then, the mobilities of its fanouts are updated
using a similar computation as in Algorithm 2. A map T stores
the temporary mobilities of the fanouts of n, initialized to zero
(lines 8-9). The foreach-loop in lines 12-21 is similar to lines
3-6 in Algorithm 2, except that the computation of variable
splitters in Algorithm 2 is rewritten as a loop (lines 14-17)
to compute the local mobility (variable mobility), which is
the number of buffers needed to balance the splitter tree from
level Iy to [, and is added to the temporary mobilities T’
of all the processed fanouts (lines 18-19). Again, the for-loop
in lines 23-26 is similar to lines 7-9 in Algorithm 2, where

the local mobility is also similarly computed. Finally, p is
updated for each fanout, but to guarantee a legal schedule, it
is only updated if the computed temporary mobility is smaller
(lines 27-28). In other words, from the perspective of n,, the
minimum mobility among the values computed via its different
fanins as n will be taken.

V. BUFFER AND SPLITTER OPTIMIZATION

The scheduling-based legalization approach presented in the
previous section allows us to find one (or two) legal mapped
network that is (are) depth-optimal. In some scenarios, this
may already be good enough, but it is still possible to further
optimize the obtained mapped network to reduce its size. In this
section, given a mapped network, we attempt to find a better
schedule to minimize |B|. Two orthogonal heuristic algorithms
are proposed in Sections V-A and V-B, and then combined as
a portfolio flow in Section V-C.

A. Chunked Movement

The chunked movement technique attempts to move groups of
nodes up or down to reduce the total number of buffers. Moving
a gate g up (down) by [levels means that S(g) is increased
(resp. decreased) by [while the levels of the other gates
remain the same. During the process, we always ensure that the
network is legal and buffers are inserted irredundantly using
Algorithm 1. A movement is legal if the network remains legal
after the movement. For example, if a gate g has a fanout g, at
level S(g,) = S(g) + 1, then moving g up alone is not legal.
Similarly, if a gate g has more than one fanout, then moving
any of its fanouts down to level S(g) + 1 is not legal because
there must be a splitter occupying the only outgoing edge of
g at S(g) + 1. We observe that sometimes it is impossible
to legally move a single gate, or that moving it alone does
not reduce the total buffer count. However, rearranging some
neighboring gates together might eventually lead to further
reduction. Thus, we propose to identify groups of connected
gates and move them together as chunks, defined as follows.

A gate g and one of its fanouts g, € FO(g) are said to be
close if either one of the following conditions holds:

1) [FO(g)| = 1 and S(g0) = S(g) + L.
2) |FO(g)| > 1 and 5(g,) = S(g) +2.

If a gate g and its fanout g, are not close, then there is flexibility
at the output of g and the input of g,. A chunk is a set
C of closely-connected gates. Seen as a group together, it
has multiple incoming and outgoing edges, called the input
interfaces (IIs) and output interfaces (Ols), respectively. An
interface is an ordered pair (g.,g.) of a gate in the chunk
ge € C and an external gate g, ¢ C, and either g. € FI(g.)
(for an II) or g, € FO(g.) (for an OI).

Algorithm 5 illustrates how a chunk is identified. Starting
from an initial gate gy, a chunk is formed by exploring its
fanins and fanouts and adding gates into the chunk if they
are close (line 8), or recording an input or output interface
otherwise (line 11). When a new gate is added to the chunk,
its fanins and fanouts are also explored (line 9). The queue @
stores the edges to be checked next.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

Algorithm 5: Chunk construction
Input: An initial gate go

Output: A chunk C and its interfaces T
C + {go}

Q {(gmg) g € FI(go) UFO(go)}
T+ 0

while Q # () do

(QCa Qe) + pop(Q)

if go € C then continue

if gc and g. are close then
C+CU g

Q+ QU {(geeg) :
10 else

1 | T+ TU{(gc,9c)}

12 return C, T
@/ RII
lack=2
RII
slacE])/ \IE(]:R_

slack—

LIRS - R

g € FI(g.) UFO(g.)}

Fig. 4: Example sub-network showing a chunk (in grey).

By definition, a chunk has flexibilities at all of its interfaces.

Moreover, the set of all chunks in a mapped network forms

a partitioning of all gates. Figure 4 shows an example chunk.

Starting from the initial gate gj, closely-connected gates

g1, 92, 93, g4 are added into the chunk in the respective order.

The gate gy, for example, cannot be moved up nor down legally
without moving other gates at the same time. Also, although
the gate gy can be legally moved down, moving it alone would
only incur more buffers. However, if the entire chunk is moved
down together by one level, one buffer is saved, which is
analyzed as follows.

To see how many levels a chunk can be moved, a slack is
computed at each interface. For an input interface (g, ge).

S(gc) - S(ge) -
S(gc) - S(ge) -

1, if [FO(ge)| =1
2, otherwise.

slack(ge, ge) = { 4)

For an output interface, g. and g, are exchanged in Equation (4).

When trying to move a chunk down, the maximum number of
levels we can move is the minimum slack at all input interfaces;
when moving a chunk up, it is the minimum slack at all output
interfaces.

We further classify input interfaces as relevant or not.

An input interface (g.,ge) is said to be a relevant input
interface (RII) if

Vg0 € FO(ge), 9o & C : 8(g0) > S(gc). (5)

For example, in Figure 4, (go, g5) is not an RII because gs
has another fanout at a higher level than S(gp), so when g is
moved, no buffer is added or eliminated at this interface.

(a) Before retiming (b) After moving b,

Fig. 5: Example sub-network for retiming. (s, = 3)

We decide to move a chunk up or down on whether there are
more Ols or RIIs. If a chunk has OIs and y RIIs, moving the
chunk up by [levels eliminates [- (z — y) buffers (if z > y),
and moving the chunk down eliminates [- (y — z) buffers
(if y > z). In Figure 4, there are 3 RlIs and 2 OlIs, and the
minimum slack at all IIs is 1, thus moving the chunk down
by 1 level reduces 1 buffer.

Overall, the chunked movement algorithm iteratively con-
structs a chunk using Algorithm 5 for each node that is not yet
in a chunk and tries to move the chunk up or down, applying
the movement only when it is legal and beneficial.

B. Retiming

The optimization of buffers and splitters in an AQFP
circuit is reminiscent of the register minimization problem
called retiming. Minimum register retiming is the problem
of relocating the registers of a circuit in order to minimize
their number while preserving the functionality. Retiming is
formulated as a linear problem dual to the minimum-cost flow
problem for which many polynomial algorithms exist [31].

In this section, we propose the AQFP B/S retiming algorithm,
which minimizes buffers and splitters in an AQFP network,
similar to how registers are minimized in minimum register
retiming. Previous work applied a retiming-like optimization
to AQFP logic [10], [25]. However, their approach does not
perform global retiming but moves buffers locally from the
output of splitters to the input. This optimization is subsumed by
Algorithm 1 in the definition of irredundant mapped networks.

Minimizing the number of buffers can be seen as maximizing
sharing of buffers on multiple paths. Without accounting for
fanout-branching, e.g., assuming that buffers have an infinite
splitting capability, the minimum number of buffers is achiev-
able in polynomial time using a minimum register retiming
algorithm considering each buffer as a register. Retiming
preserves the path-balancing constraint since each path traverses
the same number of registers before and after retiming. As
mentioned in Section III-B, previous works successfully applied
this idea to the RSFQ technology family [22], but when the
fanout-branching constraint in AQFP comes into consideration,
splitter relocation is conditional on respecting the splitting
capacity. Hence, retiming is only a heuristic for AQFP B/S
optimization instead of an optimal algorithm.

Figure 5a shows an example mapped sub-network under
retiming, where s, = 3 is assumed. This sub-network is redun-
dant because b; and by have out-degree 2 < s; (Definition 2).
Indeed, a mapped network can become redundant temporarily
during retiming. Not all buffers can be retimed at the same time,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

Algorithm 6: B/S retiming

Input: Mapped network N’

Output: Optimized mapped network N’
1 while improvement do
select_retimeable_buffers(/N')
set up retiming direction to forward
maximum_flow(N")
get_minimum_cut(N")
N' + move_retimed_buffers(N')
while improvement do
select_retimeable_buffers(/N')
set up retiming direction to backwards
maximum_flow(N")
get_minimum_cut(N")
12 N’ + move_retimed_buffers(N")
13 N’ « reconstruct_fanout_trees(N”)
14 return N’

e e N a W N

-
-2

and this example shows two such cases. First, by cannot be
retimed because its movement would increase the fanout count
of n to 2, violating the fanout constraint of gates (s, = 1).
Second, only one of the splitters by and b, can be selected for
retiming since the movement of both of them would increase
the fanout count of by to 4, violating the fanout constraint of
buffers (s, = 3). Also, fanouts of splitters in the same fanout
tree originating from the same gate are exchangeable, and such
exchanges may affect possible retiming optimizations. For
example, instead of FO(b1) = {fo, f1}, FO(b2) = {fa2, f3}
in Figure 5a, FO(b1) = {fo, f2}, FO(b2) = {f1, f3} is also
possible and may unlock more retiming on by and bs. Figure 5b
shows the fanout tree after the relocation of splitter by to its
transitive fanout cone (not shown).

The B/S retiming algorithm is shown in Algorithm 6, which
takes a legal mapped network as input and outputs an optimized
mapped network. The retiming problem is formulated as a
binary maximum-flow problem similar to [32], which separates
flow computation into forward and backward directions. The
algorithm performs two optimization loops in both directions
until no more improvements can be made. A loop starts by
selecting buffers to be retimed (lines 2 and 8), which are
buffers that can be relocated without exceeding the splitting
capacity of its fanin node. In the case of mutually exclusive
selections (i.e., two splitters cannot be retimed at the same
time), one is picked randomly. Each selected buffer is a source
and a sink of a unitary flow. Next, the algorithm proceeds by
selecting the retiming direction (lines 3 and 9), computing the
binary maximum flow using the augmenting path algorithm
(lines 4 and 10), getting the minimum cut (lines 5 and 11)
and moving the selected buffers to the new position if there
is a reduction (lines 6 and 12). Since retiming movements
may create redundant fanout trees, the algorithm terminates by
reconstructing each fanout tree irredundantly using Algorithm 1
(line 13).

An example of a forward retiming iteration is depicted in

Figure 6. Figure 6a shows the initial sub-network, where s, = 3.
The algorithm selects the buffers in orange to perform retiming.

Figure 6b shows the optimized sub-network after retiming. Two
new buffers are inserted (in green). The number of buffers is

&
o O

(a) Initial sub-network

0 [
"~ ®
g/é

Fig. 6: Example of forward retiming. (s, = 3)

Algorithm 7: Buffer and splitter optimization

!

Input: Mapped network Nj;
Output: Optimized mapped network N,

1 Nyyp « bs_retiming(N;;) // alg. 6
2 repeat

3 Nope M’mp

4 Nip ¢ chunked_movement(Ng,,) // alg. 5
5 Nimp bs_retiming(Nypp) // alg. 6
6 Nip randomize(Ny,)

7 until [N, | > [N,
s
8 return N,

reduced from 6 to 5 while maintaining the same path lengths.

C. Buffer and Splitter Optimization Flow

Algorithm 7 describes our optimization flow. It combines
chunked movement and retiming to achieve better results than
the individual algorithms. Additionally, we use a deterministic
randomization function to select a different topological order
and to rearrange the fanout of nodes in the network. This helps
explore different local optima heuristic retiming may fall into
by randomizing the tie-breaking mechanism in the algorithm.
Specifically, the order of processing different fanouts of a gate
sometimes leads to different retiming results due to the first-
come-first-serve nature of filling a splitter’s s_b fanout slots.
This can be considered as local heuristic choices made by the
algorithm, whose goodness can only be evaluated after the
global optimization is done and is hard to predict during the
optimization process. Empirically, adding such randomization
in the optimization flow enhances the optimization quality of
some benchmarks, providing a few percent further reductions
on the buffer count on average.

VI. AQFP LoGIC SYNTHESIS TOOLBOX

As discussed in Section II-C, the AQFP technology mapping
problem (Problem 1) can be divided into two subproblems, MIG
restructuring (Problem 2) and AQFP legalization (Problem 3).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

Algorithm 8: AQFP technology legalization flow
(solves Problem 3)

Algorithm 9: AQFP technology mapping with design
space exploration (solves Problem 1)

Input: MIG network N*
Output: Mapped network N’

1 SaLap — ALAP(N™) // alg. 3
2 Sasap « ASAP(N™, Sarar) // alg. 4
3 NapLap < insert_buffers(N*, Sarap) // alg. 1
4 Njsap insert_buffers(N*, Sasap) // alg. 1
5 Napap ¢ optimize(Ny ap) // alg. 7
6 Niasap ¢ optimize(Nysap) // alg. 7
7 if |Nipap| < |Nisap| then

8 | return Nf ,p

9 else

-
=]

| return Njg,p

Solving the two subproblems together, such as the resynthesis
algorithm in [29], leads to a high problem complexity, thus has
to rely on a pre-computed database and is only locally optimal.
Hence, we propose to solve the two subproblems untangled,
but mixed and interleaved in multiple iterations to enhance
quality of result. It is essential for the algorithms used to solve
both subproblems to be efficient, such that more iterations can
be done in reasonable runtime and achieve better quality.

In this section, we first present a scalable and efficient AQFP
technology legalization flow combining the proposed schedul-
ing, buffer insertion, and buffer optimization algorithms. Then,
we present an AQFP technology mapping solution combining
existing MIG optimization methods and the proposed AQFP
technology legalization flow with an on-the-fly design space
exploration methodology. Finally, we discuss how verification
is done throughout the process.

A. Technology Legalization Flow

In Section IV, we presented algorithms to obtain an initial
scheduling (Section I'V-B) and to insert buffers irredundantly
(Section IV-A). In Section V, we presented optimization algo-
rithms to further reduce the buffer count of a mapped network.
Combining everything together, a technology legalization flow
is presented in Algorithm 8. Two initial scheduling, ALAP
and ASAP are obtained with the depth-optimal scheduling
algorithms and result in two mapped networks by inserting
buffers irredundantly. Then, the two mapped networks are
optimized independently using the portfolio optimization flow.
Finally, the better one with a smaller size is adopted.

B. Design Space Exploration for AQFP Technology Mapping

Imagine a design space consisting of all legal and logically
equivalent mapped networks, the optimization problem of
AQFP technology mapping is to find the best one in the design
space in terms of a cost metric (usually, JJ count or depth).
Performing MIG restructuring and AQFP legalization can be
seen as moving along two orthogonal directions (or axes) in
the design space, exploring first different logically-equivalent
MIGs without buffers, and then different mapped networks
corresponding to the same MIG. This approach confines the
degree of freedom of the exploration in order to be more
scalable and potentially explore a larger space within the

Input: Unconstrained network N
Output: Optimized mapped network N’

1 Nj + map_into_MIG(N) // [16]
2 Npey < copy(Ng)
3 best_cost + oo
4 for restart = 1 upto num_restarts do
5 Nb:sl_irxrxer — N[;
6 Nc‘urr — N (;
7 best_cost_inner < 0o
8 rnd < new_random_engine()
9 timer < start_timer()
10 for step — 1 upto max_steps do
11 N, « restructure_MIG_randomly(N_,,,, rnd)
// [151, [1e6], [18], [33]1, [34]
12 curr_cost + evaluate(legalize(Nj,,)) // alg. 8
13 if curr_cost < best_cost_inner then
14 Nl’;esl_inner — Nc‘urr
15 best_cost_inner < curr_cost
16 last_impr « step
17 if step — last_impr > max_no_impr then break
18 if elapsed_time(timer) > timeout then break
19 if best_cost_inner < best_cost then
20 Nl;esl — Nl’:e:l_jnner
21 best_cost < best_cost_inner

2 N’ « legalize(N,,,,)
23 return N’

// alg. 8

confined regions. However, if the two axes are only explored
once each, then still only a small subset of the entire space is
explored and the result may be far from the global optimal.
The major problem is that during MIG restructuring, buffers
are not inserted yet and the algorithm can only decide on the
best moves based on a truncated cost metric (usually, MIG size
or depth) which does not completely correlate to the actual
cost metric.

We propose a design space exploration approach, illustrated
in Algorithm 9, which performs multiple iterations of MIG
restructuring and legalizes the MIGs in every iteration to
compute the actual JJ cost, such that the exploration is
correctly guided. As formulated in Problem 1, the input is
an unconstrained network N, so we first map it into an MIG
network (line 1). In the rest of the algorithm, four copies of the
MIG are maintained: the initial MIG N, the overall best MIG
Ny, the best MIG in the inner for-10op Ny inner» and the
current MIG N(.. The algorithm explores the design space
by starting num_restarts times from the initial point N (the
outer for-loop, lines 4-21), each time exploring MIGs along a
random trajectory (the inner for-loop, lines 10-18). For each
MIG, the second axis of different mapped networks is also
explored, and the cost is evaluated on the best mapped network
(line 12). The best-seen MIGs are book-marked on the current
trajectory (Ny.q inner» lin€ 14) and on all trajectories (N,
line 20). The inner loop is terminated when no improvement
is observed for max_no_impr steps consecutively (line 17),
or when the timeout limit is exceeded (line 18). These two
parameters set the effort level of each restart and are the major
factors determining the trade-off between runtime and quality
of results.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

The key ingredients of Algorithm 9 are the functions
map_into_MIG (line 1), restructure_MIG_randomly (line
11), and legalize (lines 12 and 22). In line 1, function
map_into_MIG calls a graph mapping algorithm [16]. In the
case where N is an AIG, it can also be transformed directly into
an MIG by converting each AND?2 into a MAJ3 with a constant
0 fanin. In line 11, function restructure_MIG_randomly applies
a randomly-chosen MIG restructuring script. In our experience,
scripts that perform well consist of a drastic restructuring
step, such as mapping into k-LUT network [33] and then
remapping into MIG [16], followed by some MIG optimization
steps, such as resubstitution [18], [20], algebraic rewriting [15],
and balancing [34]. In line 12, the current MIG is legalized
using the proposed legalization flow (Algorithm 8) to obtain a
mapped network N’ for evaluation. Depending on the design
objective, the function evaluate may return the JJ count (#JJs
=6-|G'| +2-|B|), depth (d(N")), or energy-delay product
(EDP = #]Js - d(N')). Line 22 legalizes the best MIG again
also using Algorithm 8. If better runtime efficiency is desired,
lighter-effort legalization (for example, by limiting the number
of optimization iterations in Algorithm 7) can be used in line
12 for cost evaluation while keeping the final legalization in
line 22 the highest-affordable effort.

The advantages of this design space exploration approach are
two-fold. First, compared to existing approaches, it explores
a larger design space, and the frontier of exploration also
stretches further. This is thanks to the hill-climbing strategy,
where we simply record the best-seen design on the trajectory
and keep moving forward when the cost gets worse instead of
rolling back. Moreover, the key enabling factor to explore on
the orthogonal axis (different mapped networks from the same
MIG) is that the legalization runtime is fast enough, which
motivates the focus of this paper on efficient heuristic buffer
optimization methods instead of unscalable exact algorithms.
The second advantage of Algorithm 9 is that the design space
exploration is done on the fly. That is, no heavy data training,
complicated decision-making, or human expert intuition is
needed to guide the exploration, and the results are not over-
fitted for a subset of benchmarks. The direction of exploration
is guided by the simplest strategy, randomness, and the best
transformation sequence is discovered on the fly. As there is
a factor of luck involved, the purpose of the outer loop is to
mitigate the possibility of a “bad” random seed leading to
unsatisfactory results and to increase the chance of meeting
at least one “good” random sequence in all restarts. Setting
the number of restarts higher would increase the chance of
obtaining an even better result, but such improvement saturates
at some point and the additional runtime is wasted in repeating
similar optimization sequences. Empirically, we have found
that setting num_restarts= 5 reaches a good balance between
runtime and quality.

C. Verification

To ensure the correct functionality of the synthesized AQFP
circuit, two types of verification should be performed: logic
equivalence to the specification and legality with respect to the
AQFP technology constraints. These correspond to the first and

the third condition in Problem 1. The second condition, i.e.,
only AQFP-compatible gates are used, is ensured automatically
by having used MIG as logic representation in the restructuring
step.

For logic equivalence, we apply the well-developed combi-
national equivalence checking algorithm [35] on the mapped
network N’ and the original network N. For legality verifica-
tion, we check if the mapped network is indeed path-balanced
and properly-branched. First, a schedule S of the mapped
network is (re-)computed by visiting all nodes in a topological
order and assigning:

0 ifnel

max S(n;) +1 otherwise.
n;EFI(n)

S(n) = (6)

Then, we verify if N’ is path-balanced by traversing all nodes
again and testing Equations (1) to (3). The “for all edges” in
Equation (1) is equivalent to checking all fanins n; of all
gates no. Finally, we verify if N’ is properly branched by
comparing the number of fanouts of all PIs, gates, and buffers
against the parameters s;, sy, and s, respectively. With our
data structure and constraint formulation, the AQFP technology
legality verification can be done in linear time.

VII. EXPERIMENTAL RESULTS

All of the algorithms and flows presented in this paper are
implemented in the open-source C++ logic synthesis library
mockturtle' [36]. In this section, we present experimental results
of our methods solving Problem 3 alone (Section VII-A) as
well as solving the bigger Problem 1 (Section VII-C). We also
demonstrate in Section VII-B the scalability of the proposed
B/S insertion algorithm using much bigger benchmarks. To
be consistent with previous works that we compare to, we
use s, = 4 for the splitting capacity of buffers. All results are
verified with the verification methods described in Section VI-C
and published? for third-party verification.

A. Technology Legalization and Buffer Optimization

First, we compare the performance of our B/S insertion and
optimization flow (Algorithm 8) against the state-of-the-art
(SoTA) on solving the same problem [27]. For the sake of
completeness, we list all of the benchmarks used in the first
work on AQFP B/S insertion [25] in Table I, but the totals are
computed only with the benchmarks presented in [27]. The
number of gates (|G*|) and the depth (d(N*)) of the initial
MIGs, as well as the number of buffers (| B|), the JJ count
(#JJs) and the depth (d(N’)) of the mapped networks are listed.
Moreover, the runtime (Time) used by our flow is presented.
Unfortunately, the runtime data was not presented in [27]. In
the last column, we list the known global optimum results
obtained by ILP solving [28] to have an idea of how far the
heuristics are from optimal. Some of the numbers are only an
upper bound because the ILP formulation could not be solved
within reasonable time, and some of the benchmarks are too
big for the ILP solver to return any partial result.

Uhttps://github.com/Isils/mockturtle
Zhttps://github.com/lsils/SCE-benchmarks

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

TABLE I: Technology legalization results comparing to the state-of-the-art and global optimum.

MIG N* SoTA [27] Ours (Algorithm 8) Global optimum [28]

Bench. |G*| d(N™) |B| #1Js d(N') |B| #JJs d(N') Time (s) |B| #Js d(N’)
adderl 7 4 - - - 16 74 8 0.00 16 74 8
adder8 71 17 - - - 371 1204 33 0.01 371 1204 33
mult8 439 35 1681 5996 70 1690 6014 70 0.18 <1724 <6082 <70
counterl6 29 9 66 306 17 65 304 17 0.00 65 304 17
counter32 82 13 156 804 23 154 800 23 0.01 154 800 23
counter64 195 17 351 1872 30 347 1864 30 0.02 347 1864 30
counter128 428 22 755 4078 38 747 4062 38 0.07 747 4062 38
cl?7 6 3 - - - 12 60 5 0.00 12 60 5
c432 121 26 829 2384 37 839 2404 37 0.02 829 2384 37
c499 387 18 1173 4668 29 1173 4668 29 0.09 1173 4668 29
c880 306 27 1536 4908 40 1511 4858 40 0.15 - - -
cl1355 389 18 1186 4706 29 1184 4702 29 0.06 1178 4690 29
c1908 289 21 1253 4240 34 1234 4202 34 0.09 1232 4198 34
c2670 368 21 1869 5954 28 1912 6032 28 032 <1804 <5816 <28
¢3540 794 32 1963 8690 52 1943 8650 52 0.81 <1926 <8516 <52
c5315 1302 26 5505 18942 40 5640 19092 40 206 <6260 <20332 <42
c6288 1870 89 8832 28884 179 8647 28514 179 2.56 - - -
c7552 1394 33 6768 21908 58 7437 23238 56 4.20 - - -
sorter32 480 15 - - - 480 3840 30 0.06 480 3840 30
sorter48 880 20 - - - 880 7040 35 0.20 880 7040 35
alu32 1513 100 13976 37030 169 13836 36750 169 2.74 - - -
Total* 47899 155370 873 48359 156154 871 13.38

From Table I, we can see that the heuristic methods achieve
optimum for the smaller benchmarks and are fairly close to
optimum for most of the benchmarks. While our flow obtains
slightly worse results in average size than SoTA, the difference
is very small (0.96% in number of buffers and 0.5% in JJ
count). Thanks to the depth-optimal scheduling, we obtain a
better depth in one benchmark (c¢7552). Most importantly, these
results are obtained using short runtime. Thus, our flow can be
used in design space exploration, where legalization is called
extensively, such that large improvements can be achieved
(Section VII-C).

It is also worth mentioning that, out of the 21 benchmarks,
the legalization and optimization result starting from an ASAP
scheduling is taken (i.e., better than the one from an ALAP
scheduling) in 16 benchmarks. We can see that ASAP may

provide better quality in more cases, but this is not definitive.

Thus, trying both starting points, as in Algorithm 8, helps
achieve better results when the runtime budget is sufficient.

B. Scalable AQFP Legalization

To demonstrate the scalability of our AQFP legalization
approach, we use the largest 10 benchmarks in the EPFL
benchmark suite [37] for experiment, which are 10x-100x in
size compared to the benchmarks generally used in previous
works on AQFP logic synthesis. The MIGs are obtained using
delay-oriented graph mapping [16]. In Table II, we compare our
results obtained using a simple depth-optimal legalization flow
(Algorithm 3 followed by Algorithm 1, column “D.-opt. legal.”)
as well as depth-optimal legalization with further optimization
(Algorithm 8, column “D.-opt. legal.+opt.”) against results of
non-depth-optimal legalization with optimization presented in
[12] (column “Non.-d.-opt. legal.+opt.”). A timeout limit of
300 seconds is enforced. From this experiment, we can see that
simple legalization without optimization is very fast, so such a
flow can still be used in design space exploration even when

benchmarks are large. Comparing the mapped network depths,
the proposed depth-optimal scheduling reduces the depth by
about 9% on average.

C. Technology Mapping

With the proposed design space exploration approach pre-
sented in Section VI-B, we present new best-known results
on the problem of AQFP technology mapping on the MCNC
benchmark suite [38]. In Table III, our results are compared to
SoTA [30]. Since [30] outperformed other previous works [11],
[19], [24], [29] on all benchmarks and on all metrics?, data from
these works is omitted. We use the same optimization objective
as in [30], i.e., minimizing energy-delay product (EDP).
The parameters used in Algorithm 9 are num_restarts = 5,
max_steps4 = 1000, max_no_impr = 50, and timeout = 100
seconds. With this parameter setting, for most benchmarks, the
loop-breaking condition is max_no_impr before the timeout
limit is exceeded. This is an intentional decision to make the
experiment more reproducible on different machines.

In addition to #JJs, d(N’) and EDP, the last two columns
in Table III list, respectively, the total runtime of Algorithm 9
(column “Time”) and the runtime for cost evaluation (line 12 in
Algorithm 9, column “Eval.”) using Algorithm 8. The runtime
information of [30] is unfortunately not provided.

Our design space exploration achieves strictly better results
than [30] in #JJs and EDP on all benchmarks. In total, 36%
improvement in #JJs, 12% improvement in depth, and 44%
improvement in EDP are achieved within manageable runtime.

3 [19] and [29] used different assumptions, i.e. primary inputs do not need
to be balanced, so the numbers presented in the papers are different. As both
works are open-sourced and flexible to taking different assumptions, we reran
the experiment with the same assumptions for a fair comparison.

4All restarts end within 200 steps due to the two terminating conditions, so
this value is never really reached.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

TABLE II: Technology legalization results on the largest EPFL benchmarks

MIG N* Non-d.-opt. legal.+opt. [12] D.-opt. legal. (alg. 3 + alg. 1) D.-opt. legal.+opt. (alg. 8)
Bench. |G*| d(N™) |B| d(N') Time (s) |B| d(N') Time (s) |[B| d(N') Time (s)
div 57300 2217 2084772 4918 271.71 1881255 4371 0.87 - 4371 >300
hyp 136109 8762 - 17910 >300 9035578 17246 2.78 - 17246 >300
log2 24456 200 98047 414 19492 129547 379 0.10 86705 379 64.18
multiplier 19710 133 79651 286 13.21 102005 264 0.08 63414 264 43.50
sin 4303 110 17470 225 5.67 18905 188 0.01 14886 188 4.12
sqrt 23238 3366 1751742 8191 5.64 1791005 6628 0.49 1343705 6628 284.10
square 12180 126 60552 256 42.71 89516 251 0.03 63630 251 18.30
arbiter 7000 59 31011 65 5.80 27566 63 0.01 25721 63 1.28
mem_ctrl 42758 73 305689 182 87.86 216927 114 027 215202 114 10.55
voter 7860 47 18044 99 5.43 19263 86 0.01 15736 86 0.92
TABLE III: Best-known results on AQFP technology mapping.

Bench. SoTA [30] Ours (Algorithm 9)
#1Js d(N') EDP #11s d(N") EDP Time (s) Eval. (s)
5xpl 726 10 7260 368 -49% 9 -10% 3312 -54% 66.2 0.7
¢1908 5108 34 173672 4434 -13% 29 -15% 128586 -26% 190.4 36.4
c432 3098 34 105332 2342 -24% 27 -21% 63234 -40% 68.0 2.7
c5315 16410 30 492300 13986 -15% 24 -20% 335664 -32% 519.8 267.8
c880 3876 23 89148 3364 -13% 19 -17% 63916 -28% 100.6 14.6
chkn 3500 15 52500 2238 -36% 15 0% 33570 -36% 96.5 6.0
count 1400 12 16800 1302 1% 11 -8% 14322 -15% 71.3 1.4
dist 3536 14 49504 1824 -48% 14 0% 25536 -48% 116.7 6.1
in5 3370 14 47180 1602 -52% 13 1% 20826 -56% 120.2 44
in6 2884 11 31724 1708 -41% 12 49% 20496 -35% 90.3 3.5
k2 14748 22 324456 8376 -43% 19 -14% 159144 -51% 404.7 102.8
m3 2680 12 32160 1600 -40% 12 0% 19200 -40% 115.6 43
max512 4812 16 76992 2740 -43% 14 -13% 38360 -50% 140.8 10.1
misex3 11272 20 225440 2634 -71% 17 -15% 44778 -80% 238.1 21.9
mlp4 2976 14 41664 1588 -47% 14 0% 22232 -47% 160.0 7.3
prom2 22326 20 446520 15258 -32% 16 -20% 244128 -45% 788.8 286.5
sqré 916 10 9160 710 -22% 9 -10% 6390 -30% 59.3 0.7
xldn 1208 11 13288 714 -41% 10 -9% 7140 -46% 61.5 0.5
Total 104846 322 2235100 66788 -36% 285 -12% 1239208 -44% 3414.6 771.8

VIII. CONCLUSIONS

This paper presents a full flow on the AQFP technology
mapping problem, focusing mainly on legalization and optimiza-
tion. We first establish that the AQFP legalization problem is a
scheduling problem and propose two depth-optimal scheduling
algorithms. Then, the obtained schedules may be further
optimized for size using the proposed chunked movement
and retiming techniques. As both irredundant buffer insertion
and depth-optimal scheduling have linear time complexity,
scalability is guaranteed. Finally, we combine our legalization
flow with MIG logic optimization and propose an unsupervised
design space exploration for AQFP technology mapping, which
achieves massive improvement over the state-of-the-art. As
AQFP legalization is performed after each MIG optimization
trial in design space exploration, one of the key elements to its
success is the efficient optimization heuristics in the legalization
flow. For the sake of completeness, we also discuss verification
methods for legalized AQFP circuits.

REFERENCES

[1] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adi-
abatic quantum flux parametron as an ultra-low-power logic device,”
Superconductor Science and Technology, vol. 26, no. 3, p. 035010, 2013.

[2] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-
parametron cell library adopting minimalist design,” Journal of Applied
Physics, vol. 117, no. 17, p. 173912, 2015.

[31 N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi,
and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library de-
signed using a 10 ka cm ™2 niobium fabrication process,” Superconductor
Science and Technology, vol. 30, no. 3, p. 035002, 2017.

N. Takeuchi, M. Nozoe, Y. He, and N. Yoshikawa, “Low-latency adiabatic
superconductor logic using delay-line clocking,” Applied Physics Letters,
vol. 115, no. 7, p. 072601, 2019.

R. Saito, C. L. Ayala, and N. Yoshikawa, “Buffer reduction via n-phase
clocking in adiabatic quantum-flux-parametron benchmark circuits,” JEEE
Trans. Appl. Supercond., vol. 31, no. 6, pp. 1-8, 2021.

Y. He, C. L. Ayala, Y. Zeng, X. Zou, L. Yan, W. Pan, and N. Yoshikawa,
“Low clock skew superconductor adiabatic quantum-flux-parametron logic
circuits based on grid-distributed blocks,” Superconductor Science and
Technology, vol. 36, no. 1, p. 015006, 2022.

N. Tsuji, Y. Yamanashi, N. Takeuchi, C. Ayala, and N. Yoshikawa,
“Design and implementation of scalable register files using adiabatic
quantum flux parametron logic,” in Proceedings of ISEC, 2017.

C. L. Ayala, T. Tanaka, R. Saito, M. Nozoe, N. Takeuchi, and
N. Yoshikawa, “MANA: A monolithic adiabatic integration architecture
microprocessor using 1.4-zj/op unshunted superconductor josephson
junction devices,” IEEE Journal of Solid-State Circuits, vol. 56, no. 4,
pp. 1152-1165, 2020.

Q. Xu, C. L. Ayala, N. Takeuchi, Y. Murai, Y. Yamanashi, and
N. Yoshikawa, “Synthesis flow for cell-based adiabatic quantum-flux-
parametron structural circuit generation with hdl back-end verification,”
IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 1-5, 2017.

C. L. Ayala, R. Saito, T. Tanaka, O. Chen, N. Takeuchi, Y. He, and
N. Yoshikawa, “A semi-custom design methodology and environment
for implementing superconductor adiabatic quantum-flux-parametron
microprocessors,” Superconductor Science and Technology, vol. 33, no. 5,
2020.

G. Meuli, V. N. Possani, R. Singh, S. Lee, A. T. Calvino, D. S.
Marakkalage, P. Vuillod, L. G. Amaru, S. Chase, J. Kawa, and G. De

[4

[5]

[6]

[7

(8]

9

(10]

[11]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

[12]

[13]

[14]

[15]

[16]

171

[18]

[19]

[20]

[21]

122]

[23]

[24]

[25]

[26]

[27]

[28]

129]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434385

”»

Micheli, “Majority-based design flow for AQFP superconducting family,
in Proceedings of DATE, 2022, pp. 34-39.

S.-Y. Lee, H. Riener, and G. De Micheli, “Beyond local optimality of
buffer and splitter insertion for AQFP circuits,” in Proceedings of DAC,
2022, pp. 445-450.

A. T. Calvino and G. De Micheli, “Depth-optimal buffer and splitter
insertion and optimization in AQFP circuits,” in Proceedings of ASP-DAC,
2023, pp. 152-158.

Y. Harada, H. Nakane, N. Miyamoto, U. Kawabe, E. Goto, and T. Soma,
“Basic operations of the quantum flux parametron,” IEEE Trans. Magn.,
vol. 23, no. 5, pp. 3801-3807, 1987.

L. G. Amaru, P. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., vol. 35, no. 5, pp. 806-819, 2016.

A. Tempia Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli,
“A versatile mapping approach for technology mapping and graph
optimization,” in Proceedings of ASP-DAC, 2022, pp. 410-416.

H. Riener, E. Testa, L. G. Amaru, M. Soeken, and G. De Micheli,
“Size optimization of MIGs with an application to QCA and STMG
technologies,” in Proceedings of NANOARCH, 2018, pp. 157-162.
S.-Y. Lee, H. Riener, and G. De Micheli, “Logic resynthesis of majority-
based circuits by top-down decomposition,” in Proceedings of DDECS,
2021, pp. 105-110.

E. Testa, S. Lee, H. Riener, and G. De Micheli, “Algebraic and boolean
optimization methods for AQFP superconducting circuits,” in Proceedings
of ASP-DAC, 2021, pp. 779-785.

S.-Y. Lee and G. De Micheli, “Heuristic logic resynthesis algorithms
at the core of peephole optimization,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 2023.

K. K. Likharev and V. K. Semenov, “Rsfq logic/memory family: A new
josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3-28, 1991.
N. K. Katam and M. Pedram, “Logic optimization, complex cell
design, and retiming of single flux quantum circuits,” IEEE Trans. Appl.
Supercond., vol. 28, no. 7, pp. 1-9, 2018.

G. Pasandi and M. Pedram, “PBMap: A path balancing technology
mapping algorithm for single flux quantum logic circuits,” JEEE Trans.
Appl. Supercond., vol. 29, no. 4, pp. 1-14, 2018.

R. Cai, O. Chen, A. Ren, N. Liu, C. Ding, N. Yoshikawa, and Y. Wang,
“A majority logic synthesis framework for adiabatic quantum-flux-
parametron superconducting circuits,” in Proceedings of GLSVLSI, 2019,
pp. 189-194.

R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa, and Y. Wang, “A buffer
and splitter insertion framework for adiabatic quantum-flux-parametron
superconducting circuits,” in Proceedings of ICCD, 2019, pp. 429-436.
C. Huang, Y. Chang, M. Tsai, and T. Ho, “An optimal algorithm for
splitter and buffer insertion in adiabatic quantum-flux-parametron circuits,”
in Proceedings of ICCAD, 2021.

R. Fu, M. Wang, Y. Kan, N. Yoshikawa, T.-Y. Ho, and O. Chen, “A
global optimization algorithm for buffer and splitter insertion in adiabatic
quantum-flux-parametron circuits,” in Proceedings of ASP-DAC, 2023,
pp. 769-774.

D. S. Marakkalage and G. De Micheli, “Fanout-bounded logic synthesis
for emerging technologies,” in IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., (to appear).

D. S. Marakkalage, H. Riener, and G. De Micheli, “Optimizing adiabatic
quantum-flux-parametron (AQFP) circuits using an exact database,” in
Proceedings of NANOARCH, 2021.

R. Fu, J. Huang, M. Wang, N. Yoshikawa, B. Yu, T. Ho, and O. Chen,
“BOMIG: A majority logic synthesis framework for AQFP logic,” in
Proceedings of DATE, 2023.

C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1-6, p. 5-35, 1991.

A. P. Hurst, A. Mishchenko, and R. K. Brayton, “Fast minimum-register
retiming via binary maximum-flow,” in Proceedings of FMCAD, 2007.
A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., vol. 26, no. 2, pp. 240-253, 2007.

A. Mishchenko, R. K. Brayton, S. Jang, and V. N. Kravets, “Delay
optimization using SOP balancing,” in Proceedings of ICCAD, 2011, pp.
375-382.

A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Eén, “Improvements
to combinational equivalence checking,” in Proceedings of ICCAD, 2006,
pp. 836-843.

M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. Tempia Calvino, D. S. Marakkalage, and

G. De Micheli, “The EPFL logic synthesis libraries,” 2022. [Online].
Available: http://arxiv.org/abs/1805.05121

[37] L. Amari, P.-E. Gaillardon, and G. De Micheli, “The EPFL combinational
benchmark suite,” in Proceedings of IWLS, 2015.

[38] S. Yang, Logic synthesis and optimization benchmarks user guide: version
3.0. Microelectronics Center of North Carolina (MCNC), 1991.

Siang-Yun Lee is a R&D engineer at Cadence
Design Systems, Munich, Germany. She received
the B.Sc. degree from the Department of Electrical
Engineering, National Taiwan University (NTU),
Taipei, Taiwan, in 2019, and the Ph.D. degree in
Computer and Communication Sciences from EPFL,
Lausanne, Switzerland, in 2024, where she worked in
the Integrated Systems Laboratory led by Prof. G. De
Micheli. Her research interests include logic synthesis
and design automation for emerging technologies.

Alessandro Tempia Calvino received a B.S. degree
in Computer Engineering from the Politecnico di
Torino, Turin, Italy, in 2017, and an M.S. degree
in Computer Engineering from the Politecnico di
Torino, in 2020, and Télécom Paris, Paris, France,
in 2021. He is currently pursuing a Ph.D. degree in
Computer Science with the Swiss Federal Institute
of Technology Lausanne, Lausanne, Switzerland in
the Integrated Systems Laboratory. His research
interests include design automation, logic synthesis,
and emerging technologies.

Heinz Riener is an engineer at Cadence Design
Systems, Munich, Germany. He holds a Ph.D. degree
in Computer Science from University of Bremen,
Germany. He received his B.Sc. and M.Sc. degree
from the Technical University Graz, Austria. From
2015 to 2017, he worked at the German Aerospace
Center, Bremen, Germany, in the group of Avionics
Systems. From 2017 to 2021 he worked at the
Integrated Systems Laboratory at EPFL, Lausanne,
Switzerland. His research interests are logic synthesis,
formal methods, and computer-aided verification of
hardware and software systems.

Giovanni De Micheli is Professor and Director of
the Integrated Systems Laboratory at EPFL Lausanne,
Switzerland. He is a Fellow of ACM, AAAS and
IEEE, a member of the Academia Europaea and
an International Honorary member of the American
Academy of Arts and Sciences. His current research
interests include several aspects of design technolo-
gies for integrated circuits and systems, such as
synthesis for emerging technologies. He is member
of the Scientific Advisory Board of IMEC and
STMicroelectronics. Prof. De Micheli is the recipient
of the 2022 ESDA-IEEE/CEDA Phil Kaufman Award, the 2019 ACM/SIGDA
Pioneering Achievement Award, and several other awards.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https:/creativecommons.org/licenses/by/4.0/

