
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024 1415

Fanout-Bounded Logic Synthesis for
Emerging Technologies

Dewmini Sudara Marakkalage , Graduate Student Member, IEEE, and Giovanni De Micheli , Life Fellow, IEEE

Abstract—In logic circuits, the number of fanouts a gate can
drive is limited, and such limits are tighter in emerging tech-
nologies such as superconducting electronic circuits. Moreover,
some such technologies, e.g., adiabatic quantum-flux-parametron
(AQFP), pose additional constraints such as the need for balanced
input-to-output paths to ensure proper signal propagation. In this
work, targeting emerging technologies, we study the problem of
resynthesizing a logic network with bounded-fanout gates while
minimizing area for a given depth. Namely, we 1) formulate
the fanout-bounded synthesis (FBS) problem for a fixed target
logic depth as an integer linear program (ILP); 2) propose a
scalable top-down approach to construct a feasible solution to the
ILP; and 3) extend both the exact and the heuristic approaches
to the setting of path-balanced networks. Using our ILP, we
obtain the global optimum solutions for a number of benchmarks
that serve as ground truth for evaluating heuristic algorithms in
both general and path-balanced FBS. Our heuristic algorithm
for general FBS achieves an 11.82% better area than the state
of the art with matching or better delays while attaining the
optimum/near-optimum area for several considered benchmarks.
For the path-balanced setting, our heuristic approach achieves
8.76% better delay on average with an average area improvement
of 0.5% when using AQFP as the exemplar technology, while
achieving more than 17% better delays on several benchmarks.

Index Terms—Adiabatic quantum-flux-parametron (AQFP),
emerging technologies, fanout-bounded synthesis (FBS), integer
linear program (ILP).

I. INTRODUCTION

IN digital electronics, the ability to have multiple fanouts per
gate allows for compact implementations of complex logic

functions. However, increasing the number of fanouts of a gate
can negatively impact delay performance, and the maximum
number of fanouts a gate can support is typically limited.
Therefore, it is important to develop synthesis algorithms that
effectively utilize fanouts.

In conventional CMOS technology, fanout optimization has
been well studied, both as a means of improving the critical
path delay [1], [2], [3], [4], [5], and as a method of optimizing
special high-fanout nets, such as clock and reset signals [6].
However, the techniques developed for CMOS technology

Manuscript received 19 June 2023; accepted 9 November 2023. Date of
publication 5 December 2023; date of current version 23 April 2024. This
work was supported by the SNF Grant “Supercool: Design Methods and
Tools for Superconducting Electronics” under Grant 200021_1920981. This
article was recommended by Associate Editor S. Gao. (Corresponding author:
Dewmini Sudara Marakkalage.)

The authors are with the Integrated Systems Laboratory, Swiss Federal
Institute of Technology Lausanne, 1015 Lausanne, Switzerland (e-mail:
dewmini.marakkalage@epfl.ch).

Digital Object Identifier 10.1109/TCAD.2023.3339440

are not generally transferable to emerging technologies
such as superconducting electronics (e.g., adiabatic quantum-
flux-parametron (AQFP) [7], RQL [8], and RSFQ [9]),
field-coupled nanocomputing technologies (e.g., QCA [10]),
and spintronics [11], which generally have tight, explicit
fanout bounds and/or significantly different timing models
(e.g., clocked gates). Thus, the allowed circuit transformations
in such technologies can be fundamentally different.

For instance, in CMOS technology, the delay increase
caused by a high number of fanouts can be mitigated by
techniques such as transistor sizing. However, this option is not
available for post-CMOS technologies. Instead, when design-
ing for emerging technologies that have globally imposed,
hard fanout limits, fanout-bounding is achieved through a
combination of gate duplications and buffer insertions. This
procedure tends to consume a significant portion of resources
as compared to CMOS, so it is typically considered relatively
early in the synthesis process, e.g., in the logic synthesis stage.

Motivated by the aforementioned differences from CMOS,
we first consider the following general fanout-bounded syn-
thesis (FBS) problem in the unit-delay model: given an input
logic network and the fanout bounds and area costs of different
gate types/buffers, resynthesize the logic network by means
of gate duplications and buffer insertions such that each gate
meets its respective fanout bound while the total area is
minimized. Note that the unit-delay model encompasses many
emerging technologies that have clocked gates (e.g., AQFP
and QCA). Zhang and Jiang [12] recently studied this general
FBS problem (in the same unit-delay model) and presented an
algorithm composed of several heuristics, where the main idea
was to duplicate gates if doing so locally reduces the number
of buffers (see Section III for more details).

In this work,1 we revisit the FBS problem by taking a
rigorous approach: namely, we present the first known integer
linear programming (ILP) formulation of this problem for
a fixed target delay and use it to obtain optimum area
FBS solutions for a number of EPFL [14] benchmarks and
benchmarks of [15]. Our ILP uses the number of copies and
buffers associated with different gates and levels as variables
and has constraints to ensure that there are sufficiently many
gate copies and buffers to support all fanouts subject to fanout
bounds. As we see in Section IV, this formulation is versatile
and can be extended, for example, to facilitate different types

1This manuscript is an extension to a previous work by the authors on
general FBS [13]. This work provides more detailed explanations of our
techniques and extends both the exact and heuristic approaches to consider
additional design constraints such as path balancing.

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4438-307X
https://orcid.org/0000-0002-7827-3215

1416 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

of gates and buffers as well as different fanout constraints for
primary inputs.

We then present a scalable top-down synthesis algorithm
for the general FBS problem based on a heuristic different
than that of [12], where we give preference to adding buffers
over duplicating gates. Specifically, the main idea of the new
approach is to duplicate gates only if the critical path delay
would be increased otherwise. As we explain in Section III,
our heuristic exploits several improvement opportunities we
identified in the algorithm of [12]. We also present an
additional optimization step on top of the proposed top-down
approach which can be used as a high-effort optimization step
to obtain even better results. Our basic top-down heuristic
achieves a 10.9% better area as compared to the state of
the art [12] while the top-down approach with the additional
optimization step allows an 11.82% improvement on aver-
age. Notably, the critical path delays of the resulting output
networks of our top-down approaches are less than or equal to
those obtained by the state of the art because they retain the
same logic depth as the original fanout-unbounded network.2

Next, we consider the FBS with the additional requirement
of path-balancing, which is a crucial constraint of several
emerging technologies, such as AQFP and QCA. In these
technologies, gates can only drive at most one fanout, and
special branching cells called splitters are required to support
multiple fanouts. By considering the splitters as buffers with a
fanout capacity of at least two, synthesizing for such technolo-
gies can be considered a special case of FBS. However, what
makes synthesizing for these technologies more challenging
is the constraints on the arrival times of fanins of a gate. For
example, in AQFP technology, the signal propagation between
gates is facilitated by a multiphase clocking scheme, which
requires all fanins of a gate to be clocked in the same phase
(see Section II for details). One way to ensure this same-phase-
fanins constraint is to require that all fanins of a gate be at the
same logic level by adding extra buffers as necessary, which
is referred to as path-balancing in the literature.

For FBS in the path-balanced case, we first adapt the
aforementioned general-case-ILP to account for the path-
balancing constraints considering both scenarios where gate
duplications are enabled and disabled. (The latter setting has
been studied as the AQFP splitter/buffer insertion problem in
a series of research work [15], [16], [17], [18] as we describe
in Section III.)

Then, as with the general FBS problem, we present a
scalable heuristic algorithm for path-balanced FBS focusing
on AQFP technology. This algorithm starts with a top-down
approach resembling our heuristic for the general setting (with
some differences to avoid excessively duplicating gates) to
determine initial gate/buffer counts, and then follows on with
additional optimizations to mitigate the overhead of path-
balancing buffers. Remarkably, as compared to the optimum
delays in the setting without gate duplications, our heuristic
with gate duplications achieves 8.76% better delays on average
together with a 0.5% average area improvement.

2Note that, to have a fair comparison with [12], we assume the primary
inputs have unbounded fanout capacity.

In the remainder of this article, we first summarize some
concepts useful to better understand our work, including the
logic network structures we use, timing and node equiva-
lence concepts, and a brief introduction to AQFP technology
(Section II). Then, we discuss some prior work on general
FBS as well as splitter-buffer insertion for AQFP technology
(Section III). Next, in Section IV, we describe our ILP
formulation for the general FBS, and in Section V, we
present our scalable top-down algorithm and related further
optimizations. Following that, in Section VI, we extend our
approaches from Sections IV and V to facilitate the path-
balancing constraints. Finally, in Section VII, we present
our experimental results, and in Section VIII, we conclude
with a brief discussion on the results and possible future
directions.

II. BACKGROUND

In this section, we first introduce two representations of
logic that we use in our algorithms, namely, and-inverter
graphs (AIGs) and majority-inverter graphs (MIGs). Next, we
describe the notion of static timing analysis for the unit delay
model and the concept of node equivalence. Finally, we briefly
introduce the AQFP technology on which we demonstrate our
FBS approaches for the path-balanced setting.

A. And-Inverter Graphs/Majority-Inverter Graphs

The AIG is a directed acyclic graph (DAG) representation
of logic where nodes represent either primary inputs or
2-input AND gates which, respectively, have in-degree zero
or two. AIGs have two possible types of directed edges,
representing noninverted or inverted fanins. The AIG is a
universal logic representation, meaning that an AIG can
represent an arbitrary logic function, and is supported by
numerous logic synthesis tools and libraries, such as ABC [19]
and mockturtle [20], owing to its simplicity and wider com-
patibility with many logic synthesis algorithms. At the same
time, structural hashing can be easily implemented in AIGs,
enabling efficient collapsing of logically equivalent nodes. We
use AIG as the preferred logic representation in Sections IV
and V.

The MIG is defined similarly to the AIG; the only differ-
ences are that the internal nodes represent 3-input majority
gates and have in-degree three. The 3-input majority gate
outputs 1 if and only if at least two of the inputs are 1. When
one input is tied to constant 0 or 1, the majority gate acts as
a 2-input AND gate or a 2-input OR gate. Thus, MIG is also
a universal logic representation.

The use of majority gates in logic synthesis has been
studied extensively in the past [21], [22], [23]. Recently,
Amarù et al. [24], [25] proposed MIG as a new paradigm
for logic synthesis. Due to the majority gate being the
natural gate in several superconducting technologies (as we
see in Section II-D), it is preferable to consider a majority-
gate-based logic representation when synthesizing for such
technologies. Consequently, we use MIG as the preferred logic
representation in Section VI.

MARAKKALAGE AND DE MICHELI: FANOUT-BOUNDED LOGIC SYNTHESIS FOR EMERGING TECHNOLOGIES 1417

B. Static Timing Analysis

In this work, we use the unit-delay model which assumes
that a signal incurs a unit delay when it passes through a gate.
The arrival time of a node n, denoted by tarr

n , is defined as
follows: if n is a primary input, tarr

n = 0. Otherwise, tarr
n = 1+

maxm∈FI(n) tarr
m , where FI(n) denotes the set of fanin nodes of n.

Note that the arrival time of a node is equal to the maximum
length of a path from the node to any primary input. Hence,
we sometimes use the term level to refer to the arrival time.
The overall circuit delay (depth of the circuit) is defined as
the maximum arrival time of any primary output.

For a given target delay D, the required time treq
n of a node

n is defined as follows: if n has no fanout nodes which are
internal to the logic network (i.e., all fanouts are primary
outputs), treq

n = D. Otherwise, treq
n = minm∈FO(n) treq

m −1, where
FO(n) denotes the set of fanout nodes of node n.

A critical path in a network is an input-to-output path of
nodes where each node n on the path satisfies treq

n = tarr
n . We

say a node is critical if it lies on at least one critical path.

C. Node Equivalence

In general, we say two nodes m and n in a logic network
are equivalent if their outputs are equal under all possible
value combinations of primary inputs. If the input graph
contains two or more equivalent nodes, their fanouts can
be redistributed among themselves at the discretion of a
synthesis algorithm without altering the overall output of the
circuit. However, for a network with many primary inputs, the
computation needed to identify all sets of equivalent nodes can
be prohibitively expensive. Thus, a more practical approach
is to find equivalent nodes by considering a node’s function
with respect to a small cut, i.e., a set of nodes that separates
the considered node from primary inputs. An example of this
type of weaker equivalence checking is structural hashing
which was originally used in IBM CAD tools [26]; for AIGs,
a widely used structural hashing technique is to identify each
gate with a signature consisting of the gate’s fanins and flags
denoting which fanins are inverted.

In this work, we do not explicitly check for equivalent
nodes; instead, we allow the AIG data structure to internally
use structural hashing to collapse any equivalent nodes. For the
output logic network, our algorithms may explicitly duplicate
some gates, hence we disable structural hashing for the output.

D. AQFP Logic Circuits

AQFP is a superconducting electronics technology with
very low power consumption due to adiabatic operations.
In AQFP, logic gates are constructed using superconductive
inductors and Josephson junctions (JJs) which are based on the
Josephson effect [27]. The number of JJs in an AQFP circuit
is commonly used as a proxy for the area cost.

For AQFP, Takeuchi et al. [28] proposed a simple cell library
based on four primitive cells—buffer, inverter, constant, and
branch—where a gate is created using an array of primitive
cells together with a branch while a splitter is constructed
using a buffer and a branch. The majority-3 gate consists
of three buffer cells together with a branch. The different

fanin inverted versions of a majority-3 gate are constructed by
substituting a subset of buffer cells with inverter cells [28].
Analogously, 2-input AND and OR gates are constructed by
substituting a buffer cell with a constant 0 or 1 cell. Each
of the three primitive cells, buffer, inverter, and constant,
consists of two JJs, and hence a splitter also uses two JJs.
All gates—majority-3, AND-2, and OR-2—as well as all their
input-inverted versions use six JJs each.

In AQFP logic, the majority-3 gate is the elementary gate
as other gates AND and OR are derived from it. Moreover,
these derived gates all have the same area as the original
majority-3 gate. As such, Cai et al. [29] proposed that
majority-gate-based logic synthesis is more suitable when
optimizing logic networks for the AQFP technology.

The output signals of AQFP gates are rather weak and
unable to drive more than one fanout. Instead, when driving
multiple fanouts, splitters (or a tree of splitters) must be used
to boost the output signal. Depending on the implementation
details, a splitter’s branching capacity can vary (usually 3
or 4 [28], [30]), and in our logic synthesis experiments for
AQFP, we assume it is 4.

As with many superconducting technologies, AQFP gates
are clocked. The logic values are propagated between con-
secutive gates when their active periods overlap. This overlap
is achieved by ensuring that, for each gate n, all fanins of n
are clocked by the same phase and n itself is clocked by the
next available phase (e.g., for a 4-phase clocking scheme, if
fanins of n are activated by a clock in some phase φ, then n is
activated by a clock in phase φ + π/4.) To achieve this kind
of overlap throughout the network, the usual practice is:

1) to ensure all fanins of a gate are in the same logic level;
2) map consecutive logic levels to consecutive rows of

gates/buffers in the physical circuit;
3) activate consecutive rows of gates by clock signals in

consecutive phases.
We remark that, in general, it is not mandatory to have all
fanins exactly in the same logic level, but it is sufficient to
have them in the same logic level modulo the number of clock
phases. Even this requirement can be eliminated by using a
more elaborate clocking scheme where nonconsecutive clock
phases can also overlap [31]. To keep things simple and allow
comparisons with recent work on AQFP logic synthesis, in
this work, we work in the former setting.

Depending on the design of registers and the clocking mech-
anism used, there can be different requirements on whether
splitters are needed for primary inputs, whether path balancing
is needed for primary inputs, and if path balancing is needed
for primary outputs [32]. In our proposed FBS approaches for
the path-balanced setting, we assume that splitters are needed
for primary inputs (which is a notable difference from the
general FBS setting where we assume primary inputs have
unbounded fanout capacity to be consistent with [12]) and
that path-balancing is needed for primary inputs and primary
outputs (i.e., all primary outputs are at the same level).

To illustrate synthesis for AQFP under fanout and path-
balancing constraints, consider the example logic network on
the left of Fig. 1 and two of its fanout-bounded, path-balanced
versions in the middle and on the right. The one in the middle

1418 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

does not have any duplicated gates while the one on the right
has one gate duplication. In this example, duplicating gates
benefits both the area and the delay; the delay is reduced by
one logic level and the area is reduced by two JJs.

III. RELATED WORK

In this section, we first discuss some notable work related
to FBS and briefly explain how our approach differs from
the existing methods. Then, we also discuss some work
related to the AQFP splitter/buffer insertion problem which
can be viewed as a special case of FBS with path-balancing
constraints.

A. General Fanout-Bounded Synthesis

An early theoretical work on general FBS using gate
duplications and buffers by Hoover et al. [33] presented an
algorithm that limits the number of fanouts of each gate by
any given constant c ≥ 2 at the expense of a constant factor
increase in both the total number of gates and the depth.3 Their
algorithm assumes the natural setting that the input consists
of bounded-fanin gates.

A vital ingredient of their work that is pertinent to FBS
in general is the minimum-size minimum-height buffer tree
construction. Namely, given the levels of fanouts of a gate,
construct a tree consisting of the gate and a set of buffers such
that 1) the gate is at the root; 2) the total number of buffers is
minimized; and 3) the height of the tree is minimized. In the
case where the gates and buffers have the same fanout bound
t ≥ 2, Golumbic [34] showed how to construct such a tree
using a slightly modified Huffman-coding-like algorithm [35].

Recently, Zhang and Jiang [12] studied the problem of
general FBS in the unit delay model and proposed an algorithm
consisting of several heuristic optimizations. The main idea
of their work is to duplicate gates if that results in a buffer
reduction in the local neighborhood without significantly
affecting the critical path delay. To this end, they proposed
a recursive evaluation procedure to determine the number of
duplicates for each gate. After the duplicate count for each gate
has been determined, for each node in the reverse topological
order, their algorithm constructs “skewed” buffer trees using
an algorithm similar to [35]. Finally, for each set of equivalent
nodes, their buffer trees are considered together and the load
is redistributed. This step does not alter the levels of the nodes
but may remove some redundant equivalent nodes.

After further analyzing the algorithm of Zhang and Jiang,
we identify the following optimization opportunities.

1) The computed numbers of gate duplicates in the
recursive evaluation step do not guarantee that the
fanout-bounded version achieves the same minimum
possible logic depth as the original, fanout-unbounded
network. (Note that the original depth is always achiev-
able using gate duplicates under the assumption that the
number of fanouts for a primary input is unbounded.)

3The depth increase allows for an additive O(logc(# primary outputs))-
term, which is unavoidable under constant-factor size increase considering a
network with a single gate that feeds to a large number of primary outputs.

2) The priority-queue-based method used in [12] for
skewed buffer tree construction, although achieves the
best possible size for the buffer tree, is not guaranteed to
achieve the best possible level for the root node unless
the fanout bound is two. However, for fanout bounds
≥ 3, it is always possible to obtain the best size for the
buffer tree as well as the optimal level for the root node
using the method proposed by Golumbic [34].

3) In [12], it is not stated how the fanouts are initially
assigned to the duplicated copies prior to the skewed
buffer tree construction or how their initial levels are
determined. For instance, if all copies of a gate are
naively placed at the same level when it is possible to
place some copies at higher levels, the critical path delay
can be adversely affected. However, it is difficult for
an algorithm to make such decisions unless it already
knows the levels of the fanouts.

4) The buffer forest rebalancing step does not guarantee
that we get the minimum possible duplicate count (even
locally for a considered set of equivalent nodes). This is
because the rebalancing step is run only after fixing the
levels of the duplicated nodes.

In our scalable algorithm for general FBS, we capitalize
on all these optimization opportunities. Specifically, by recon-
structing the network in the reverse topological order, our
algorithm has the full knowledge of the levels of fanouts of
a gate, before the gate itself is synthesized. In Section V,
we describe in detail how our top-down approach enables
exploiting each aforementioned opportunity.

B. Path-Balanced Fanout-Bounded Synthesis

As for the path-balanced setting, there is a line of work on
satisfying fanout and path-balancing constraints for the AQFP
technology (e.g., [16], [17], and [18]), but these works mainly
consider doing so without gate duplications. In literature,
this problem is often referred to as the AQFP splitter/buffer
insertion problem, and it is a special case of the path-balanced
FBS.

In early work on AQFP splitter/buffer insertion, the main
idea was to optimize individual fanout nets using different
approaches such as dynamic programming and local retiming-
like methods for pushing buffers from fanins to fanouts. The
work of Lee et al. [16] took a rigorous approach where
they presented an exact formulation of the problem as a
satisfiability modulo theory (SMT) problem using the theory
of integer linear arithmetic. Namely, they use the logic depth
of each gate as an SMT variable and, for each fanout net,
they consider constraints that must be satisfied by any valid
splitter/buffer insertion. In contrast, our proposed method uses
an ILP to encode the problem and uses the number of gate
copies/buffers of each fanout net in each level as variables,
which supports gate duplications.

The work in [16] also presented a more elaborate retiming
algorithm where an initial splitter/buffer inserted network is
further optimized by identifying collections of tightly con-
nected gates (chunks) where buffers can be pushed forward
(from inputs to outputs) or vice-versa to reduce the buffer

MARAKKALAGE AND DE MICHELI: FANOUT-BOUNDED LOGIC SYNTHESIS FOR EMERGING TECHNOLOGIES 1419

Fig. 1. Example logic network (left) and two of its possible fanout-bounded, path-balanced versions targeting AQFP technology assuming a fanout capacity
of 1 for gates and 3 for splitters. (Buffers and splitters are shown by triangles.) The version in the middle does not use any gate duplication whereas the
version on the right allows gate duplication resulting in a reduction in both the overall number of logic levels as well as the total area.

Fig. 2. Example logic network (left) and a possible fanout-bounded version assuming a fanout limit of 2 (right).

count. This retiming technique was later used in [17] for area
recovery in delay optimal AQFP synthesis. More recently,
Fu et al. [18] presented a dynamic programming approach to
globally optimize splitters and buffers in AQFP synthesis and
an ILP-based solution to approximate the optimum solution.

As a final remark, we emphasize the lack of gate duplica-
tions in the existing work on splitter/buffer insertion. However,
duplicating gates is an important option that warrants increased
attention because it can reduce both the area and the delay as
we see in the example of Fig. 1.

IV. GLOBALLY OPTIMUM GENERAL

FANOUT-BOUNDED SYNTHESIS

In this section, we present our ILP formulation of FBS in the
unit-delay model. Given an input logic network, a predefined
target logic depth D, the gate and buffer costs (e.g., area),
and their respective fanout bounds, the proposed ILP finds the
minimum cost logic network that meets all fanout bounds, has
logic depth at most D, and is functionally equivalent to the
input logic network.

We remark that we do not aim to make any logic restruc-
turing; instead, our ILP determines how to duplicate gates and
add buffers to the input logic network. For instance, consider
the logic network shown on the left of Fig. 2 where the
primary inputs (i1, . . . , i4) are shown on the bottom and the
primary outputs (o1, . . . , o5) are at the top. If we assume gates
and buffers both have fanout capacity 2, then one possible

solution to the FBS problem is the network shown on the right,
where we have two gates duplications (n1 and n3) and added
two buffers (shown in blue triangles).

To derive the ILP, we start with the following notation.
Let I be the set of all primary inputs of the input network,
let G be the set of all gates, and let N = I ∪ G be the set
of all nodes. For example, in the example network shown
in Fig. 2, I = {i1, . . . , i4}, G = {n1, n2, . . . , n7} and N =
{i1, . . . , i4, n1, . . . , n7}. For a node n ∈ N, let FO(n) be
the collection of fanout nodes of n. Let kn be the number
of primary outputs directly connected to node n. Thus, for
example, for the network in Fig. 2, we have FO(n1) = {n3, n4}
and FO(n3) = {n4, n5, n6}, and kn2 = kn4 = kn5 = kn6 =
kn7 = 1.

Let cgate be the cost (area) of a gate (we assume the network
is homogeneous, but our ILP can easily be generalized to
support different types of gates), let cbuff be the cost of a
buffer, let fgate be the fanout capacity of a gate, and let fbuff
be the fanout capacity of a buffer.

For example, the setting studied in [12] for FBS assumed
gates and buffers each have fanout capacity 2 and considered
the optimization of the total node count. For this case, we thus
have fgate = fbuff = 2 and cgate = cbuff = 1.

Let n ∈ N be a node in the original graph. We say a node
m in a fanout-bounded circuit is n-equivalent if one of the
following holds.

1) n is a primary input and m is the corresponding primary
input in the fanout-bounded version.

1420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

2) n is a gate with fanins n1, n2 and m is a gate with
fanins m1, m2 such that m1 is n1-equivalent and m2 is
n2-equivalent.

3) m is a buffer such that its fanin m1 is n-equivalent.
Note that by the third criterion, any buffer in a buffer tree
rooted at an n-equivalent gate is also n-equivalent. According
to this definition, in the example fanout-bounded network
(assuming fgate = fbuff = 2) shown on the right of Fig. 2,
there are two n1-equivalent gates and two n2-equivalent gates.
Moreover, the two buffers represented as blue triangles in
level 2 are n2-equivalent.

1) Variables: We use two kinds of integer variables. For
each node n ∈ N and for each level � ∈ {1, . . . , D}, we intro-
duce variables gn,� to denote the number of gate copies in level
� in the fanout-bounded circuit that is n-equivalent. Similarly,
we introduce variables bn,� to denote the number of buffers
in level � in the fanout-bounded circuit that are n-equivalent.
For example, for the logic network shown in Fig. 2, the
introduced variables take the following values: gn1,1 = 2,

gn2,1 = 1, gn3,2 = 2, gn4,3 = 1, gn5,3 = 1, gn6,3 = 1,

gn7,3 = 1, bn2,2 = 2, and gn,� = 0 for all unspecified variables
gnq,� with q ≤ 7 and � ≤ 3.

2) Constraints: Next, we introduce constraints to ensure
that the values of variables indeed correspond to a valid
fanout-bounded logic network that is equivalent to the input
network. To this end, we first have that gn,0 = 0 and bn,0 = 0
for all n ∈ N since there cannot be any gates or buffers in the
same level as the primary inputs. (In fact, these variables are
redundant and we can write the ILP without them, but having
these variables with the above constraint makes it easier to
specify the remaining constraints in a concise manner.) Next,
consider a fixed level � ∈ {1, . . . , D} and a fixed gate n ∈ G.
We denote by avl(n, �), which stands for “availability of
n-equivalent signals by level �,” the total fanout capacity of
all n-equivalent gates/buffers that are placed in levels strictly
less than �. Note that

avl(n, �) =
�−1∑

�′=0

(
fbuff · bn,�′ + fgate · gn,�′

)

which is a linear function of the ILP variables. We denote by
req(n, �), which stands for the “requirement of n-equivalent
signals by level �,” the total fanout requirement of n-equivalent
gates/buffers by all gates and buffers in level � or below. Note
that each copy of a fanout of an n-equivalent gate increases
the fanout requirement by one, and each n-equivalent buffer
also increases the fanout requirement by one. Namely, we can
write

req(n, �) =
�∑

�′=1

⎛

⎝bn,�′ +
∑

m∈FO(n)

gm,�′

⎞

⎠

which is again a linear function of the ILP variables.
Now, observe that, in any variable assignment that cor-

responds to a valid fanout-bounded network with depth D,
it must hold that avl(n, �) ≥ req(n, �) for all n ∈ G and
� ∈ 1, . . . , D. To see this, consider any valid depth-D fanout-
bounded version of the input network, and let gn,�, bn,� be
the corresponding ILP variable values. Fix any gate n ∈ G

and let � = 1. Note that for any gate m ∈ FO(n), gm,1 must
be 0. Otherwise, there must be a copy of n at level 0, which
is a contradiction as n is not a primary input. Similarly, there
cannot be any n-equivalent buffer at level 1 either. Thus, it
must hold that avl(n, 1) = 0 ≥ 0 = req(n, 1). Now, suppose
that avl(n, �) ≥ req(n, �) must hold for any valid depth-D
fanout-bounded version. We inductively show that avl(n, �+1)

≥ req(n, �+ 1) must also hold. Observe that the total number
of connections between n-equivalent gates/buffers and their
fanouts that must cross the boundary between level � and
�+1 is at least

∑
m∈FO(n) gm,�+1+bn,�+1. The total remaining

capacity of n-equivalent gates/buffers that are at levels below
� is avl(n, �)− req(n, �). Thus, the additional capacity needed
to support all crossing connections must be provided by
n-equivalent gates/buffer that are at level �. Namely, we must
have

fgate · gn,� + fbuff · bn,� ≥
∑

m∈FO(n)

gm,�+1 + bn,�+1

− (avl(n, �)− req(n, �))

which yields

avl(n, �)+ fgate · gn,� + fbuff · bn,�

≥ req(n, �)+
∑

m∈FO(n)

gm,�+1 + bn,�+1

or equivalently, avl(n, �+1) ≥ req(n, �+1) after rearranging.
Finally, we ensure that we have enough capacity remaining

in n-equivalent gates/buffers to support the respective primary
outputs (if any). Namely, for all n, it must hold that

avl(n, D+ 1)− req(n, D) ≥ kn.

The same can be achieved by viewing all fanouts connected
to a gate n as n-equivalent buffers placed at level D+ 1, and
simply adding the constraint avl(n, D+ 1) ≥ req(n, D+ 1).

We thus get the following ILP formulation for FBS under
a predetermined depth bound D, where the objective function
is to minimize the total area

Minimize
∑

n∈G

D∑

�=1

(
cgate · gn,� + cbuff · bn,�

)

Subject to

avl(n, �)− req(n, �) ≥ 0 ∀ n ∈ N, 1 ≤ � ≤ D

avl(n, D+ 1)− req(n, D) ≥ kn ∀ n ∈ N

gn,0 = 0 n ∈ G

bn,0 = 0 n ∈ N

gn,�, bn,� ∈ Z ∀ n ∈ N, 1 ≤ � ≤ D.

Let OPT be the optimum area of a fanout-bounded version
of the input network with maximum depth D. Since any such
valid network corresponds to a feasible solution for the ILP, it
is clear that the value of ILP is at most OPT. We now give an
algorithm (Algorithm 1) to transform any feasible ILP solution
to a fanout-bounded network of maximum depth D, which is
equivalent to the original network, thus showing that our ILP
in fact finds the optimum area.

The algorithm first sorts all variables gn,�, bn,� in the
increasing order of �. Then, considering the variable values in

MARAKKALAGE AND DE MICHELI: FANOUT-BOUNDED LOGIC SYNTHESIS FOR EMERGING TECHNOLOGIES 1421

Algorithm 1: Algorithm for Constructing a Fanout-
Bounded Network Using a Feasible Solution to the ILP

input: Input network ntk, parameters fgate, fbuff, and a
feasible ILP solution gn,�, bn,� for n ∈ N and
0 ≤ � ≤ D.

output: A fanout-bounded version of ntk.
1 Let newsig be a map from nodes in ntk to a queue of pairs

(new node, remaining capacity)
2 for all p ∈ primary inputs of ntk do
3 newsig[p].push((newntk.create_pi(),∞))

4 Let data be an empty list.
5 for all nonzero gn,� do Add (�, n, “gate”) to data
6 for all nonzero bn,� do Add (�, n, “buff ”) to data
7 Sort data in the ascending order of levels.
8 for all (�, m, t) ∈ data in the ascending order of levels do
9 if t = “gate” then

10 Look up fanins of m in newsig.
11 newgate ← Create a new gate by choosing the first

available equivalent fanins in newsig.
12 Decrement remaining capacity for used fanin nodes

and remove them from the queue if remaining
capacity reach zero.

13 newsig[m].push((newgate, fgate))

14 else
15 newbuff ← Create a new buffer by choosing the first

available equivalent node in newsig[m].
16 Decrement remaining capacity for the used fanin.
17 Pop from newsig[m] if remaining capacity is zero.
18 newsig[m].push((newbuff, fbuff))

19 return the constructed network.

that order, construct the gn,� gate copies or bn,� buffers in a
new network. To facilitate this construction, for each n ∈ N,
the algorithm maintains a queue of currently constructed
n-equivalent gates/buffers together with their remaining fanout
capacities. Each time it uses such a gate/buffer, it decrements
the count; once the count reaches zero, the corresponding
gate/buffer instance is removed from the queue. Since the
algorithm constructs gates/buffers in a level-by-level fashion
using a feasible variable assignment, we can see that the
algorithm always has sufficient equivalent signals in the
corresponding queues when executing lines 11 and 15.

V. TOP-DOWN HEURISTIC APPROACH FOR GENERAL

FANOUT-BOUNDED SYNTHESIS PROBLEM

In this section, we first present our scalable top-down
heuristic algorithm that greedily finds a feasible solution to the
derived ILP. We then propose an additional optimization step
that we can integrate with the top-down approach that allows
further area reductions in certain cases.

Although solving the ILP introduced in Section IV gives
the optimum solution, solving it optimally for large networks
which we often encounter in practice is a prohibitively expen-
sive computation, and hence not a viable approach in many
practical settings. On the other hand, the top-down approach
we propose in this section is scalable to very large networks
as it runs in O(S log S) time, where S is the size of the
input network (i.e., the number of wires in the network).
Although this approach is not optimum in general, we note

that it achieves optimum or near-optimum areas for several
considered benchmarks in our experiments.

In the proposed approach, we consider the gates n ∈ G
in the reverse topological order, and for each n in this order,
determine values for variables gn,� and bn,� such that the
constraints avl(n, �) − req(n, �) ≥ 0 and avl(n, D + 1) −
req(n, D) ≥ kn are satisfied. Since we consider the nodes in
the reverse topological order, when we consider a node n,
we already know the levels of all fanouts of n-equivalent
gates/buffers except for those fanouts that arise due to fanins
of n-equivalent buffers. We call those fanouts external fanouts
of n-equivalent gates/buffers.

When determining the values for gn,� and bn,�, we prefer
minimizing the number of gate duplicates by utilizing buffers
as much as possible to support the fanout requirement. This
decision is motivated by the following facts. First, duplicating
a gate will increase the fanout requirement of other nodes:
for example, suppose that n’s fanins are m1 and m2. Then,
duplicating an n-equivalent gate increases the fanout load of
m1 and m2-equivalent gates/buffers. This is in contrast to
adding a buffer which only increases the fanout load by one.
Second, it is natural to assume that the area of a buffer is not
more than that of a gate, and the fanout capacity of a buffer
is usually more than that of a gate. Thus, in terms of area,
replacing a gate copy with a buffer is always beneficial.

However, we cannot completely eliminate gate duplication
because the addition of buffers can increase the number of
logic levels (i.e., the critical path length). Recall that tarr

n is the
minimum level node n can be at even if we assume unbounded
fanout capacities. Thus, for any � < tarr

n , setting gn,� to a
nonzero value makes the solution infeasible. Similarly, for any
� ≤ tarr

n (note the inclusion of equality), setting bn,� to a
nonzero value also makes the solution infeasible.

For given levels of external fanouts of n-equivalent
gates/buffers and the minimum possible level (i.e., tarr

n) for
an n-equivalent gate, we use Algorithm 2 to determine the
values of gn,� and bn,� variables by considering each node
in the reverse topological order. We then use Algorithm 1 to
construct the corresponding fanout-bounded logic network.

We remark that our top-down approach is fundamentally
different from the work of Zhang and Jiang [12]. In [12], a set
of n-equivalent gates and their corresponding levels are already
determined when the buffer-forest rebalancing algorithm is run
in order to reduce the number of gate duplicates. This can
lead to some redundant gate copies that remain in the network
even after rebalancing is performed. In contrast, our algorithm
uses Algorithm 2 to decide the set of n-equivalent gates that
we absolutely need along with their levels, thus redundant
gate copies are never created. Moreover, in the “skewed buffer
tree construction” and “buffer-forest rebalancing” algorithms
of [12], there can be situations where it does not construct the
best buffer tree/forest when fgate, fbuff > 2 and cgate > cbuff.
To see this, suppose that fgate = fbuff = 3 and cgate > cbuff
and consider the fanout net shown in Fig. 3(a). The algorithm
of [12] may either decide to duplicate node n and produce the
forest shown in Fig. 3(b) which has a cost of 2 ·cgate or it may
construct the skewed buffer tree shown in Fig. 3(c) where the
node n is placed at level 4. However, the buffer tree shown in

1422 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 3. Fanout net for a node n with levels of fanouts already decided (a), two possible outcomes for the fanout net of n if the algorithm of [12] is used
(b) and (c), and the optimum buffer tree for n (d) when fbuff = fgate = 3 and cgate > cbuff.

Algorithm 2: Algorithm for Determining gn,� and bn,�

Values for a Node n ∈ N, Given �min
n and the Levels of

All External Fanouts of n-Equivalent Gates/Buffers
input: Input network ntk, parameters fgate, fbuff, a node n,

tarr
n , and a list folevn of levels of n’s fanouts.

output: Values of gn,�, bn,� variables for � = 1, . . . , D.
1 Set gn,�, bn,� = 0 for all �
2 for t = 1 to length(folevn) do
3 Let rem← length(folevn)− t · fgate
4 if rem ≤ 0 then
5 for i = 1 to length(folevn) in steps of fgate do
6 Increment gn,folevn[i]−1.
7 return variable values

8 s← rem mod (fbuff − 1)
9 if s > 0 then

10 Add fbuff− s many copies of ∞ to folevn (i.e., dummy
fanouts with unbounded required time).

11 Use the skewed buffer tree construction from [12] until
we have t buffer trees.

12 if the root levels of all buffer trees are at least tarr
n then

13 Set gn,� and bn,� according to the construction.
14 return variable values

Fig. 3(d) is better than both the options; it has a lower area
than the one in Fig. 3(b) and gives a better placement for node
n than the one in Fig. 3(c). In contrast to [12], our algorithm
always constructs the optimum buffer forest for given levels
of external fanouts and tarr

n . Namely, for r = 1, 2, . . . , we
consider r copies for the root gate, employ a modified version
of the algorithm of Golumbic [34] to derive r buffer trees, and
find the minimum value of r such that roots of all trees meet
the arrival time requirement.

A. Improved Top-Down Approach With Overduplication

Recall that in our vanilla top-down approach, for each fanout
net, we find the smallest buffer forest that does not increase
the overall critical path length. The intuition behind settling
for the smallest buffer forest is to minimize duplication of
gates, and hence avoid unnecessarily increasing the load on
the fanins of those gates.

One potential drawback of this frugal approach is as follows:
consider a scenario where we may have the option of placing
two copies of a node n at level tarr

n + 1. However, we may
end up placing a single copy of n at level tarr

n instead, thus
forcing more duplications for n’s fanin nodes as their fanout

Fig. 4. Intermediate step of FBS with levels decided for all nodes
except n, n1, n2 (top), the synthesized fanout nets by the algorithm described
in naive top-down approach (middle), and the synthesized fanout nets if
overduplication allowed (bottom) when fbuff = fgate = 3 and cgate > cbuff.

nets do not have enough slack to add buffers. To illustrate
this point, assuming that fgate = fbuff = 3 and cgate > cbuff,
consider the time our algorithm processes the fanout net of
node n in the setting shown on top in Fig. 4 where the levels
are already decided for all nodes except n, n1, and n2. Since
the naive top-down approach greedily tries to minimize the
number of duplicates for n, it will be placed at level 2 (no
duplication) with one buffer at level 3 as shown in the middle
of Fig. 4. This forces both n1 and n2 to be duplicated (unless
the critical path length is to be increased) which results in
an overall cost of 5 · cgate + cbuff for the fanout nets of n, n1,
and n2. However, if we allow the locally suboptimal choice of
duplicating n, it is possible to place two copies of n in level 3.
This allows more room for fanout nets of n1 and n2 to have
buffers, resulting in the outcome shown at the bottom of Fig. 4
with an overall cost of 4·cgate+2·cbuff (which is strictly a better
cost when cgate > cbuff). As such, allowing more duplicates

MARAKKALAGE AND DE MICHELI: FANOUT-BOUNDED LOGIC SYNTHESIS FOR EMERGING TECHNOLOGIES 1423

than absolutely necessary (i.e., overduplication) can be good
if that provides more room for the fanins to have buffers and
prevents them from being duplicated.

In an improved version of our top-down approach, we
incorporate this idea of overduplication as follows. For the
fanout net of a considered node n, instead of stopping the
algorithm at the minimum possible number of trees t, we
continue increasing t and construct the corresponding buffer
forests. For each such buffer forest, we consider the overall
area incurred by the fanout net of the considered node and the
fanout nets of its fanin nodes, assuming that we do not use
overduplication for those fanin nodes. Then for node n, we
choose the buffer forest that gives the minimum overall area
computed in the above step.

There are two issues with this approach. First, due to the
top-down implementation, when considering node n, all levels
of its fanouts (including their potential copies) are known.
However, for a fanin m of n, there can be some fanouts that
are yet to be considered by the algorithm, and hence their final
levels are not known. Second, suppose that a node m has k
fanouts. For each of those fanouts, the cost of the fanout net of
m will be re-evaluated multiple times, i.e., the fanout net of m
is evaluated at least k-times. Since each evaluation also takes
time at least linear in k, the total work involved in evaluating a
node’s fanout net can be very expensive for high-fanout nodes.

To circumvent the first issue, we propose to use a proxy
level for the so-far unconsidered nodes; namely, we use their
maximum possible level (i.e., the required time) as the proxy
level. To mitigate the effects of the second issue, we set a
constant bound Fmax (e.g., 10) and ignore nodes with more
than Fmax fanouts when computing the overall area impact.

VI. PATH-BALANCED FANOUT-BOUNDED SYNTHESIS

In this section, we focus on FBS with the additional
requirement of path-balancing.

A. ILP Formulation for the Global Optimum

Recall that the path-balancing constraint states that all input-
to-output paths are of the same length. Equivalently, for a gate
in level �, all of its fanins must be in level �− 1. Thus, for a
gate or primary input n in the input network and for a level
� in the output network, it must hold the following: the total
available fanout capacity of all n-equivalent nodes in level
�−1 must be at least the total required number of n-equivalent
signals by nodes in level �. We can easily incorporate this
constraint into the ILP of Section IV by simply redefining
avl(n, �) and req(n, �) as

avl(n, �) = fbuff · bn,� + fgate · gn,�

and

req(n, �) = bn,� +
∑

m∈FO(n)

gm,�.

As discussed in Section II, the FBS with path-balancing
constraints is a generalization of splitter/buffer insertion for
AQFP technology, and AQFP technology can have different
assumptions on the need for buffers/splitters on primary inputs

and primary outputs. In particular, the requirement that all
input-to-output paths must be of the same length falls under
the assumption that both primary inputs and primary outputs
need path-balancing.

However, our ILP is versatile as it can be adapted to
different AQFP-technology-specific assumptions. For example,
we can remove the path-balancing requirement on primary
inputs by retaining the definitions of avl(n, �) and req(n, �)

from Section IV for nodes n ∈ I, i.e., the primary inputs.
Similarly, we can remove the path-balancing requirement on
primary outputs by retaining those definitions only in the
constraint avl(n, D+1)−req(n, D) ≥ kn. Moreover, if we need
to also enforce that primary inputs need splitters to support
multiple fanouts, we can add constraints dictating gn,0 = 1 and
gn,� = 0 for all n ∈ I and � > 0. (In the ILP for the general
fanout-bounded setting with no fanout limit on primary inputs,
we simply omitted these constraints. This allows the ILP solver
to place as many copies of primary inputs anywhere in the
network, which is effectively equal to assuming unbounded
fanout capacity.)

In addition to supporting the different AQFP-specific
assumptions, we can also change the ILP to match the original
splitter/buffer insertion problem where duplicating gates is not
an option. To this end, we simply have to introduce a new
constraint that

∑
1≤�≤D gn,� = 1 for all gates g ∈ G.

B. Scalable Heuristic Approach

In the path-balanced setting, we need buffers not only to
support multiple fanouts but also to ensure that all input-to-
output paths are of the same length. If we naively use the
same top-down approach from the general FBS for the path-
balanced setting, it can unnecessarily increase the area due to
path-balancing buffers. To see this, suppose that we have a
gate n whose arrival time is 1, but its only fanout is determined
to be in level 3 by our top-down algorithm. In this case, the
algorithm prefers to keep n in level 2 (as opposed to 1) because
the main idea of the algorithm from Section V was to keep
gates in the highest level possible to give sufficient room for
its fanins to have buffers. Now suppose that n’s fanins have no
other fanouts, in which case, we will need two path-balancing
buffers at n’s fanins. However, if we placed n in level 1 instead,
we could only use one path-balancing buffer at n’s output. In
general, the situation can be much worse: for example, we
could have a block of logic that has k1 outputs and k2 inputs
in place of n. If k1 < k2, moving the whole logic block down
by 1 level can save k2 − k1 buffers. On the other hand, if
k2 < k1, then the algorithm’s choice to keep the logic block
in the highest possible level is meaningful.

Taking such scenarios into account, for the path-balanced
setting, we start with a top-down approach similar to Section V
to determine initial gate/buffer counts in different levels
(i.e., values for variables gn,� and bn,�), but we then perform an
additional optimization to modify these gate/buffer counts to
further reduce the area. To this end, we first identify (gate and
level)-pairs that may correspond to potential path-balancing
buffers. If all fanins of a gate are path-balancing buffers, we
can push the buffers toward the output of the gate. In general,

1424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 5. Two possibilities for a part of an AQFP netlist (a) and (b), and their
retimed version (c).

this can be done on blocks of logic whose inputs all correspond
to path-balancing buffers.

This kind of retiming techniques have already been consid-
ered in the past [16], [17], but they work on existing AQFP
netlists. Our proposed method is more general and works on
gate/buffer counts in each level, before constructing the netlist,
and hence it is able to capture more retiming opportunities.
To illustrate, consider the part of a netlist shown in Fig. 5(b),
where we assume that the splitter fanout capacity is 2 for
the sake of simplicity. The existing retiming techniques can
optimize this by moving node a one level down to obtain the
configuration in Fig. 5(c), saving one buffer in the process.
However, these algorithms fail to identify an optimization
opportunity for the configuration in Fig. 5(a) because one of
the fanins of node a is not a path-balancing buffer but a splitter.
Our approach, instead works on gate/buffer counts in each
level and hence is able to identify the optimization opportunity
in both scenarios. Namely, for each fanin x of node a, we check
if we have a potential path-balancing buffer by checking:

1) if we have x-equivalent buffers in the lower level;
2) and if we can isolate one path-balancing buffer (a buffer

with fanout one) from those.
To check the first condition for a fanin x of node a in level
�, we check if bx,�−1 > 0. For the second condition, we
check whether the remaining x-equivalent nodes in level �−1
can still satisfy the requirement of remaining fanouts of x in
level � after dedicating a single x-equivalent buffer to supply
node a’s fanin; namely, we check if avl(x, � − 1) − fbuff ≥
req(x, �)−1. After optimizing the gate/buffer counts with this
improved retiming step, we construct an AQFP netlist using
Algorithm 1. Then, we also run the state-of-the-art retiming
from [17] on the constructed circuit to further optimize buffer
counts.

In addition to the retiming, our initial top-down heuristic
has some minor differences with respect to Section V. Namely,
when computing the arrival times for signals, if the originating
gate of a signal has more than one fanout, we assume a delay
of 2 (instead of 1) accounting for an additional splitter at
the output of that gate. This is an AQFP-specific setting: in
AQFP, the gates can only support one fanout, and if we always
assume a delay of 1 for a gate, the top-down algorithm can
end up excessively duplicating gates to meet this delay bound.
However, if a gate is in the critical path, has only two fanouts,
and if its fanins will have splitters added at their outputs
(i.e., they have multiple fanouts), then it is likely that we may
be able to duplicate the gate with only a small additional cost.
So for such gates, we take the delay to be 1 when computing
the arrival time.

VII. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
from our ILP formulations and heuristic FBS algorithms
for both the general and path-balanced settings. All our
experiments were run on a MacBook Pro M1 with 10 cores
of CPU, 16 cores of GPU, and 32 GB of RAM.

Note that in all our experiments for the general FBS setting,
the benchmarks are preprocessed with a single round of resyn2
command in ABC [19], to do a fair comparison with prior
work [12]. No such preprocessing was done in experiments
for the path-balanced FBS setting.

A. Global Optimum for General Fanout-Bounded Synthesis

First, for a set of small benchmarks, we use the ILP to
find the global optimum solutions; namely, using the minimum
possible circuit delay as the delay bound, we write the ILP
introduced in Section IV, and then solve it using the Gurobi
optimizer [36]. In the ILP formulation, we use the same setting
as [12] where we have fanout capacity 2 and unit-area for both
AND gates and buffers.

The results are shown in Table I where the first eight
benchmarks are from the EPFL logic synthesis benchmarks
suite [14] and the rest of the benchmarks are a subset of those
used in [15].

B. Heuristics for General Fanout-Bounded Synthesis

Next, we evaluate our top-down FBS approaches on the
benchmarks of [15] and on EPFL benchmarks [14].

For benchmarks of [15], we present the results in Table II.
As we see, our initial top-down approach already achieves
the optimum on several benchmarks. Our top-down approach
with overduplication performs even better and achieves results
that are optimum or closer to optimum on some additional
benchmarks. We recall that both our approaches do not
increase the number of logic levels of the input network
(computed with no restrictions on the fanout capacity of gates).

For EPFL benchmarks, we present the results in Table III
together with the results of [12] for a comparison. We
remark that the measure of quality of results (QoR) used
in [12] is slightly different, and if we were to use their QoR
measure on our results, our approach would score even higher.

MARAKKALAGE AND DE MICHELI: FANOUT-BOUNDED LOGIC SYNTHESIS FOR EMERGING TECHNOLOGIES 1425

TABLE I
GLOBAL OPTIMUMS FOR GENERAL FBS

TABLE II
RESULTS OF THE TOP-DOWN FBS ON BENCHMARKS OF [15]

Namely, the QoR measure used in [12] is size(G)/size(G′)+
depth(G)/depth(G′), where G is the original input network and
G′ is the fanout-bounded version produced by the algorithm.
In our approach, the depths of G and G′ are always equal,
whereas in [12], depth(G) ≤ depth(G′) with strict inequality
for some benchmarks (e.g., see the results for benchmark
“sqrt”).

In our top-down approach without overduplication, the
average improvement over all standard EPFL benchmarks is
10.93%. However, for the benchmark “bar,” our algorithm’s
result is 12.2% worse. Remarkably, combining the top-down
algorithm with the overduplication step from Section V-A
achieves the same results as [12] for that benchmark,
while increasing the average improvement over all EPFL
benchmarks to 11.82%. Notably, our method results in fanout-
bounded circuits that are much closer to the optimum results
on several benchmarks (e.g., adder, cavlc, int2float, and
router).

C. Global Optimum Splitter/Buffer Insertion for AQFP

In this section, we present the results of our ILP-based
global optimization algorithm for the FBS in the path-balanced
setting targeting the AQFP technology. To this end, we set
fbuff = 4 and fgate = 1 to capture the fanout constraints
commonly used in prior work on the AQFP technology. We
use the number of JJs as the area cost, and hence we set
cgate = 6 and cbuff = 2. Recall that, according to the ILP
formulation, the global optimum means the minimum area for
a fixed depth.

In our experiments, we consider two scenarios: one without
gate duplications and one with gate duplications. To the best
of our knowledge, no prior work on AQFP splitter/buffer
insertion considers gate duplications.

In Table IV, we present our optimum results on the same
benchmarks used by [15] for the case with no gate duplicates
and compare them with the results of four prior work [15],
[16], [17], [18] in the same setting. In this experiment, we
use the minimum achievable delay without duplicating gates
as the target depth bound. In the table, the optimum area
for the target depth is shown in blue. The term “opt” in
the last columns means that the ILP solver was able to find
the optimum solution. On the other hand, the term “tle”
(time-limit-exceeded) means that the solver failed to find the
optimum solution within a given time limit of 300 s, so
the presented results for “tle” rows are based on a tentative
feasible solution found by the solver. Note that having the
global optimum results in this setting allows for an objective
evaluation of other heuristic algorithms.

In Table V, we present the optimum results obtained consid-
ering different target logic depths on the same benchmarks for
the setting with gate duplicates, which can be used to evaluate
future algorithms in this setting. To obtain these results,
we start with the minimum delay achievable without gate
duplications as the target delay and proceed with gradually
decreasing the target delay. In the table, for each benchmark,
the minimum observed is shown in blue where the ties are
broken using the overall delay. Note that these results serve as
a proof of concept that allowing gates duplications can help
improve both the area and delay in AQFP synthesis.

D. Heuristic Splitter/Buffer Insertion for AQFP

Finally, we run our scalable heuristic algorithm for path-
balanced FBS on the same benchmarks used by [15] and
compare our results with the latest scalable algorithm for

1426 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

TABLE III
RESULTS OF THE TOP-DOWN FBS ALGORITHM ON EPFL BENCHMARKS

TABLE IV
RESULTS OF AQFP SPLITTER/BUFFER INSERTION WITHOUT GATE DUPLICATION

AQFP splitter/buffer insertion [17] in Table VI. For all
benchmarks, our approach achieves the same or significantly
better delays as compared to the optimum delay achieved by
the method in [17]. For some benchmarks with significant
delay improvements, there is a considerable area overhead
which is likely caused by duplicated gates. However, some
other benchmarks with higher delay improvements show con-
siderable area improvements as well, which can be attributed
to the decrease in path-balancing buffers. The average delay
improvement of our approach is 8.76% while the average
area improvement is 0.5%. Notably, our heuristic algorithm

achieves more than 17% delay improvements on several
benchmarks.

VIII. CONCLUSION

In this work, we took a rigorous approach for the FBS of
circuits in the unit-delay model. To this end, we formulated the
problem of FBS for fixed target delay as an ILP and obtained
the global optimum solutions for a number of benchmarks.
We then showed how to find a feasible solution to the ILP
using a scalable top-down approach while mitigating some

MARAKKALAGE AND DE MICHELI: FANOUT-BOUNDED LOGIC SYNTHESIS FOR EMERGING TECHNOLOGIES 1427

TABLE V
RESULTS OF AQFP SPLITTER/BUFFER INSERTION

WITH GATE DUPLICATION

shortcomings of earlier work. As compared to the known best
results for this problem, our algorithm produced an 11.82%
improved area while achieving matching or better delays.

As we see in Section VII, the overduplication heuristic with
a local cost function improved the area reduction. It will be
interesting to find a more elaborate but efficiently computable
cost function for evaluating heuristic choices such as the one

TABLE VI
RESULTS OF SCALABLE HEURISTIC APPROACH FOR AQFP

we introduced in Section V-A. We also believe that a deeper
analysis of the benchmark “bar” might hint at what kind of
real-world circuit patterns benefit more from such heuristics.

We extended both our optimum and heuristic approaches to
the setting with path-balancing constraints and demonstrated
their effectiveness considering the splitter/buffer insertion
problem in the AQFP technology. Our globally optimum
results considering different target depths for the setting with
gate duplications show that there exists a large gap in existing
AQFP splitter/buffer insertion techniques. Remarkably, our
scalable heuristic algorithm for this setting was able to exploit
many optimization opportunities by considering the duplica-
tion of gates on critical paths. In particular, several benchmarks
showed over 17% delay improvements under our method
including two benchmarks (adder8 and alu32) that also showed
over 10% area improvements. However, comparing the results
of our heuristic with the globally optimum solutions, it is clear
that there are many opportunities for further improvements.

Considering these promising findings, we envision that
FBS will have a bigger role to play in logic synthesis for
emerging technologies with unconventional design constraints,
and we hope that our work will motivate more research in this
direction that would ultimately lead to better heuristics. The
globally optimum solutions presented in this work can serve
as the ground truth for evaluating such heuristics.

REFERENCES

[1] R. Murgai, “On the global fanout optimization problem,” in Proc. Int.
Conf. Comput.-Aided Design, 1999, pp. 511–515.

[2] A. Srivastava, R. Kastner, and M. Sarrafzadeh, “Timing driven gate
duplication: Complexity issues and algorithms,” in Proc. Int. Conf.
Comput.-Aided Design, 2000, pp. 447–450.

[3] D. Baneres, J. Cortadella, and M. Kishinevsky, “Layout-aware gate
duplication and buffer insertion,” in Proc. Design, Autom. Test Eur. Conf.
Exhibit., 2007, pp. 1–6.

1428 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

[4] Z. Li et al., “Ultra-fast interconnect driven cell cloning for Minimizing
critical path delay,” in Proc. 19th Int. Symp. Phys. Design, New York,
NY, USA, 2010, pp. 75–82.

[5] D. A. Papa, and I. L. Markov, “Physically-driven logic restructuring,” in
Multi-Objective Optimization Physical Synthesis of Integrated Circuits.
New York, NY, USA: Springer, 2013, pp. 83–103.

[6] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analysis
driven post-silicon-tunable clock-tree synthesis,” in Proc. Int. Conf.
Comput.-Aided Design, 2005, pp. 575–581.

[7] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adi-
abatic quantum flux parametron as an ultra-low-power logic device,”
Superconduct. Sci. Technol., vol. 26, no. 3, 2013, Art. no. 035010.

[8] A. L. Braun and D. C. Harms, “RQL majority gates, and gates, and or
gates,” U.S. Patent 10 084 454, Feb. 1, 2019.

[9] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A
new Josephson-junction technology for sub-terahertz-clock-frequency
digital systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3–28,
Mar. 1991.

[10] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum
cellular automata,” Nanotechnology, vol. 4, no. 1, p. 49, 1993.

[11] V. Calayir, D. E. Nikonov, S. Manipatruni, and I. A. Young, “Static
and clocked spintronic circuit design and simulation with performance
analysis relative to CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 61, no. 2, pp. 393–406, Feb. 2014.

[12] H.-T. Zhang and J.-H. R. Jiang, “SFO: A scalable approach to Fanout-
bounded logic synthesis for emerging technologies,” in Proc. Design
Autom. Conf., 2020, pp. 1–6.

[13] D. S. Marakkalage and G. De Micheli, “Fanout-bounded logic synthesis
for emerging technologies - a top-down approach,” in Proc. Design,
Autom. Test Eur. Conf. Exhibit., 2023, pp. 1–6.

[14] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL combi-
national benchmark suite,” in Proc. 24th Int. Workshop Logic Synth.
(IWLS), 2015, pp. 1–5.

[15] C.-Y. Huang, Y.-C. Chang, M.-J. Tsai, and T.-Y. Ho, “An optimal
algorithm for splitter and buffer insertion in adiabatic quantum-flux-
parametron circuits,” in Proc. Int. Conf. Comput.-Aided Design, 2021,
pp. 1–8.

[16] S.-Y. Lee, H. Riener, and G. De Micheli, “Beyond local optimality of
buffer and splitter insertion for AQFP circuits,” in Proc. Design Autom.
Conf., 2022, pp. 445–450.

[17] A. T. Calvino and G. De Micheli, “Depth-optimal buffer and splitter
insertion and optimization in AQFP circuits,” in Proc. Asia South Pac.
Design Autom. Conf., 2023, pp. 152–158.

[18] R. Fu, M. Wang, Y. Kan, N. Yoshikawa, T.-Y. Ho, and O. Chen, “A
global optimization algorithm for buffer and splitter insertion in adiabatic
quantum-flux-Parametron circuits,” in Proc. Asia South Pac. Design
Autom. Conf., 2023, pp. 769–774.

[19] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. Comput. Aided Verif., 2010, pp. 24–40.

[20] M. Soeken et al., “The EPFL logic synthesis libraries,” 2018,
arXiv:1805.05121.

[21] S. B. Akers, “Synthesis of combinational logic using three-input majority
gates,” in Proc. 3rd Annu. Symp. Switch. Circuit Theory Logic. Design,
1962, pp. 149–158.

[22] H. S. Miller and R. O. Winder, “Majority-logic synthesis by geometric
methods,” IRE Trans. Electron. Comput., vol. EC-11, no. 1, pp. 89–90,
Feb. 1962.

[23] S. Amarel, G. Cooke, and R. O. Winder, “Majority gate networks,” IEEE
Trans. Electron. Comput., vol. EC-13, no. 1, pp. 4–13, Feb. 1964.

[24] L. Amarù, P. Gaillardon, and G. De Micheli, “Majority-inverter graph: A
new paradigm for logic optimization,” IEEE Trans. CAD Integr. Circuits
Syst., vol. 35, no. 5, pp. 806–819, May 2016.

[25] L. Amarù, P. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Proc. Design Autom. Conf., 2014, pp. 1–6.

[26] G. L. Smith, R. J. Bahnsen, and H. Halliwell, “Boolean comparison
of hardware and flowcharts,” IBM J. Res. Develop., vol. 26, no. 1,
pp. 106–116, Jan. 1982.

[27] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-
efficient superconducting computing—Power budgets and requirements,”
IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1701610–1701610,
Jun. 2013.

[28] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-
flux-parametron cell library adopting minimalist design,” J. Appl. Phys.,
vol. 117, no. 17, 2015, Art. no. 173912.

[29] R. Cai et al., “A majority logic synthesis framework for adiabatic
quantum-flux-parametron superconducting circuits,” in Proc. ACM Great
Lakes Symp. VLSI, 2019, pp. 189–194.

[30] R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa, and Y. Wang, “A buffer
and splitter insertion framework for adiabatic quantum-flux-parametron
superconducting circuits,” in Proc. Int. Conf. Comput. Design, 2019,
pp. 429–436.

[31] R. Saito, C. L. Ayala, and N. Yoshikawa, “Buffer reduction via N-phase
clocking in adiabatic quantum-flux-parametron benchmark circuits,”
IEEE Trans. Appl. Supercond., vol. 31, no. 6, pp. 1–8, Sep. 2021.

[32] R. Saito, C. L. Ayala, O. Chen, T. Tanaka, T. Tamura, and N. Yoshikawa,
“Logic synthesis of sequential logic circuits for adiabatic quantum-flux-
Parametron logic,” IEEE Trans. Appl. Supercond., vol. 31, no. 5, pp. 1–5,
Aug. 2021.

[33] H. J. Hoover, M. M. Klawe, and N. J. Pippenger, “Bounding fan-out in
logical networks,” J. Assoc. Comput. Mach., vol. 31, no. 1, pp. 13–18,
1984.

[34] M. Golumbic, “Combinatorial merging,” IEEE Trans. Comput.,
vol. C-25, no. 11, pp. 1164–1167, Nov. 1976.

[35] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” in Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[36] Gurobi Optimization, “Gurobi optimizer reference manual,” Limited
Liability Co., Dayton, OH, USA, 2022. [Online]. Available: https://www.
gurobi.com

Dewmini Sudara Marakkalage (Graduate Student
Member, IEEE) received the B.Sc. degree in
engineering from the Department of Electronic
and Telecommunication Engineering, University of
Moratuwa, Moratuwa, Sri Lanka, in 2016, and the
M.Sc. degree in computer science from the School
of Computer and Communication Sciences, Swiss
Federal Institute of Technology Lausanne (EPFL),
Lausanne, Switzerland, in 2020, where she is cur-
rently pursuing the Ph.D. degree with the Integrated
Systems Laboratory.

Her research interests include logic synthesis and design automation for
emerging technologies.

Giovanni De Micheli (Life Fellow, IEEE) is a
research scientist of electronics and computer sci-
ence. He is credited for the invention of the
network-on-chip design automation paradigm and
for the creation of algorithms and design tools
for Electronic Design Automation (EDA). He is a
Professor and the Director of the Integrated Systems
Laboratory, Swiss Federal Institute of Technology
Lausanne (EPFL), Lausanne, Switzerland. He is the
author of Synthesis and Optimization of Digital
Circuits (McGraw-Hill, 1994), the coauthor and/or

co-editor of ten other books, and of over 900 technical publications. His
citation H-index is above 100 according to Google Scholar. His current
research interests include several aspects of design technologies for integrated
circuits and systems, such as synthesis for emerging technologies.

Prof. De Micheli is the recipient of the 2022 ESDA-IEEE/CEDA Phil
Kaufman Award, the 2019 ACM/SIGDA Pioneering Achievement Award, and
several other awards. He is a Fellow of ACM and AAAS, a member of the
Academia Europaea, and an International Honorary Member of the American
Academy of Arts and Sciences. He is a member of the Scientific Advisory
Board of IMEC, Leuven, Belgium, and STMicroelectronics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

