
Technology Mapping Using Multi-output
Library Cells

Alessandro Tempia Calvino, Giovanni De Micheli
Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—Technology mapping transforms a technology-
independent representation into a technology-dependent one
given a library of cells. Even if technology libraries contain
multi-output cells, state-of-the-art techniques fully exploit single-
output cells only. Multi-output cells have limited support in
logic synthesis and are typically handled as white boxes once
identified. This paper presents a scalable method to increase
the support of multi-output library cells in technology mapping.
Our contributions include 1) an approach to detect multi-
output cells, 2) a fast Boolean matching methodology, and 3) a
technology mapping algorithm that supports multi-output cells.
Unlike previous work, we address the mapping problem over the
whole network. This has the advantage of optimizing area and
delay without requiring many incremental steps. The experiments
show that full adders and half adders are efficiently detected
and mapped with an average area improvement of 7.48% when
mapping for minimal delay compared to the default mapper in
ABC. Moreover, our method improves the area of the synthesis
flow in Yosys, which treats multi-output cells as white boxes, by
5% on average with a limited run time overhead.

I. INTRODUCTION

Technology mapping is one of the fundamental steps in
the realization of integrated circuits. It consists of translating
a technology-independent representation of digital hardware
into a connection of technology-specific components such as
standard cells or lookup tables (LUTs). The problem of
optimally mapping a Boolean function to a cell library is
known to be intractable. Consequently, technology mapping is
generally formulated as a series of local substitutions applied
to a simple multi-level representation of logic called the
subject graph. The objective of technology-independent logic
synthesis is to obtain a compact subject graph in terms of size
and depth.

Cell libraries, such as standard cells, define a set of pre-
designed and pre-characterized primitives that are used as
building blocks to create digital circuits. Typically, libraries
contain simple cells (e.g., a NAND2), complex cells (e.g., a
XOR3), multi-output cells (e.g., a full adder), and sequential
elements. Commonly, technology mapping algorithms effi-
ciently exploit technology libraries. However, multi-output
cells are often neglected due to the complexity of detecting
and evaluating them in the optimization loops of technology
mapping. Only a few frequent multi-output cells, such as half
adders and full adders, have partial support in industrial tools.
These common elements are generally identified in ordinary
logic blocks, such as adders, which can be extracted from a
register-transfer level (RTL) description of digital hardware
for which the mapping is known. Nevertheless, synthesis

flows often decompose these cells to meet timing constraints.
Consequently, it is crucial to re-detect and map multi-output
cells starting from a gate-level description to recover area and
power consumption. While practical solutions based on LUT
merging techniques have been proposed for FPGAs [1]–[3],
multi-output mapping for ASICs remains an open problem.

Generalized matching (GM) [4] has been introduced as
a multi-output matching technique that supports concurrent
matching to multiple single-output cells or a multi-output
cell. In [5], the authors propose an incremental remapping
technique that utilizes GM on local small windows of already
mapped logic. Their method supports multi-output cells and
evaluates substitutions symbolically by solving a minimum-
cost GM problem using binary decision diagrams (BDDs) [6]
and algebraic decision diagrams (ADDs) [7].

The tool Yosys [8], which is part of the RTL to GDSII
toolchain OpenLane, integrates a limited support of half and
full adder cells. Yosys identifies adder cells from RTL or
by performing circuit analysis. Adder cells are kept as don’t
touch white boxes during logic optimization and technology
mapping. Hence, technology mapping is oblivious of multi-
output cells resulting in a degradation of the potential delay,
power, and area of the design.

In this paper, we describe an alternative method to increase
the support of multi-output cells in the optimization loops
of a technology mapping algorithm. Primarily, we address
scalability since multi-output cells substantially increase the
complexity of mapping to an intractable level. Our contribu-
tions include a fast multi-output cell detection methodology,
an extension of Boolean matching, and a formulation of global
and local area recovery heuristics that supports multi-output
cells. In contrast to [5], we tackle the global technology
mapping problem instead of local remapping. This approach
has the advantage of selecting cells and optimizing for invert-
ers globally while meeting delay constraints without iterating
through many incremental steps. Instead of BDDs and ADDs,
we pre-compute a library to facilitate Boolean matching that
can be rapidly accessed through canonization and hashing.
Moreover, we use a cut-based method to enumerate multiple
mapping options and cell selections. In area recovery, we
employ a generalization of area flow [9], [10] and exact
area [11] to evaluate single- and multi-output cells.

Our implementation is open-source and available in the
library Mockturtle. To the best of our knowledge, this is the
first open-source implementation of a technology mapper for
standard cells that integrates the support for multi-output cells.

In the experiments, we evaluate our approach using the
ASAP7 cell library [12], which contains the half adder and
full adder cell. We compare our mapper against ABC showing
a 7.48% area reduction on average when mapping for the min-
imal delay. When the delay is not constrained, our approach
obtains a considerable area reduction of 7.42%. Furthermore,
our method reduces the area by 5% on average compared to the
method in Yosys in which adder cells are considered as white
boxes during technology mapping. Our approach demonstrates
scalability to large networks with an average run time increase
of 8%. We consider this overhead fairly limited since large
circuits are mapped in a few seconds. Finally, we discuss the
usage of other multi-output cells.

This paper is organized as follows. Section II provides the
notation and the necessary background on logic networks and
technology mapping. Section III presents methods for com-
puting multi-output cuts and performing Boolean matching.
Section IV introduces the main contribution of this work which
is the formulation of the technology mapping algorithm sup-
porting multi-output cells. Section V shows the experimental
results and discusses this work. Finally, section VI concludes
the paper.

II. BACKGROUND

In this section, we introduce the basic notations and the
necessary background related to logic networks, technology
mapping, and equivalence classes.

A. Notations and Definitions

A Boolean network is modeled as a directed acyclic
graph (DAG) with nodes represented by Boolean functions.
The sources of the graph are the primary inputs (PIs) of the
network, the sinks are the primary outputs (POs). For any node
n, the fanins of n is a set of nodes driving n, i.e. nodes that
have an outgoing edge towards n. Similarly, the fanouts of n
is a set of nodes that are driven by node n, i.e., nodes that
have an incoming edge from n. If there is a path from node a
to node b, then a is in the transitive fanin (TFI) of b, and b is
said to be in the transitive fanout (TFO) of a. The transitive
fanin of b includes node b and the nodes in its transitive fanin,
including the PIs. The transitive fanout of b includes b and all
the nodes in its transitive fanout including the POs.

The maximum fanout free cone (MFFC) of a node n is a
subset of the transitive fanin of n such that every path from the
nodes in the MFFC to the POs passes through n. Informally,
the MFFC of a node contains the node itself and all the logic
exclusively used by the node. When a node is removed (or
substituted) the logic in the MFFC can also be removed. The
MFFC can be extended to operate on a set of nodes S such
that every path from the nodes in the MFFC to the POs passes
through at least one node in S.

A cut C of a Boolean network is a pair (n, K), where n
is a node called root, and K is a set of nodes, called leaves,
such that 1) every path from any PI to node n passes through
at least one leaf and 2) for each leaf v ∈ K, there is at least
one path from a PI to n passing through v and not through

any other leaf. The size of a cut is defined as the number
of leaves. A cut is k-feasible if its size does not exceed k.
A cut covers all the nodes encountered on the paths between
the leaves and the root, including the root and excluding the
leaves. A multi-output cut is an extension of a cut defined over
a set of roots L.

A cover of a Boolean network is a set of cuts such that
1) each node in the network is covered by at least one cut
and 2) the root of each cut in the cover is either a PO of the
network or a leaf of one or more cuts in the cover. A cover
can be extracted top-down (in reverse topological order) by
selecting cuts rooting in the POs and recurring on the leaves.

B. Technology Mapping

Technology mapping is the process of expressing a Boolean
network in terms of a set of primitives defined in a library such
as standard cells or field programmable gate arrays. Before
mapping, the Boolean network is represented as a k-bounded
network called the subject graph, which contains nodes with
a maximum fanin size of k. And-inverter graphs (AIGs) are
widely used as subject graphs.

A mapping algorithm can be summarized in three main
steps: 1) computing the k-feasible cuts using a fast enumera-
tion procedure [13], 2) matching cuts to the technology library
using Boolean matching [4] or pattern matching [14], and
3) generating a cover of the graph while minimizing a cost
function and satisfying the constraints. For details on mapping,
we refer the reader to [9], [15], [16].

A delay-oriented mapping aims to reduce the delay of the
slowest path in the cover. An area-oriented mapping aims to
minimize the total area of the cover.

C. NPN -equivalence classes

Two functions f(x1, . . . , xn) and g(x1, . . . , xn) are NPN -
equivalent if there exists an inversion of the inputs Ni :
(xi → xi), a permutation of the inputs Pi : (xixj → xjxi),
and an inversion of the output No : (f → f̄) such that f and
g can be made Boolean equivalent [4]. N -, P-, and, NP-
equivalence classes are defined similarly considering input
negations, input permutations, and both input negations and
permutations respectively.

Boolean matching is commonly defined in terms of N -, or
P-, or NP-, or NPN -equivalence classes.

III. DETECTING MULTI-OUTPUT CELLS

In this section, we present a method to identify multi-
output cells in a Boolean network. This process requires 1)
an elaboration of the cell library to be suitable for Boolean
matching, 2) a multi-output Boolean matching method, and 3)
a multi-output cut computation procedure.

A. Matching library generation

Given a cell library, we define a data structure that facilitates
fast Boolean matching called matching library. The matching
library links a Boolean function represented as a truth table to
a set of cells that implements it.

In technology mapping, delay, power, and area can be
minimized by exploiting different configurations of cells based
on the NPN -equivalence classes [16], [17]. Specifically,
permutations increase the number of matches, and negations
play a crucial role in the insertion of inverters.

For single-output library cells, the matching library is gen-
erated similarly to [17] by enumerating cell configurations
based on NP-equivalence classes. Hence, given a function
f to match, the matching library returns a set of cells in the
NP−equivalence class of f . Each one of them has attached
an NP-configuration so that its functionality matches f . Since
our implementation matches in two polarities (complemented
and uncomplemented), the output inversion is not considered
at this stage.

For multi-output cells, the procedure is more involved. The
functionality of a multi-output cell is defined through a set R
of functions, one for each output pin. Due to this higher
degree of freedom compared to single-output cells, the multi-
output matching library utilizes two additional operators No,
representing output negations, and Po, representing output per-
mutations. First, the classification of cells in NP−equivalence
classes is extended such that each configuration of input nega-
tions and permutations is applied concurrently to the functions
in R. Second, to have a fast matching, the NP−configuration
of the multi-output cell is canonized. This is achieved in two
steps. First, each individual output function is negated to be
normal, i.e., a Boolean function f is normal if f(0, 0, . . . , 0) =
0. Second, a multi-output function is canonized by sorting
output functions in lexicographical order.

Let us consider a canonization example on a half adder
cell described by the functionality set R = {“0110”, “1000”}
which is composed of a XOR2 and an AND2 function and
is represented using truth tables1. Let us select a config-
uration of the cell composed of negations over the input
variables Ni = {x0x1 → x0x1} and no permutations Pi.
After applying the input NP operators, the resulting function
is {“1001”, “0100”}. Finally, the configuration is canonized
leading to the multi-output function {“0100”, “0110”} where
the XOR2 has been normalized and the outputs have been
permuted in lexicographical order. The corresponding output
operators are No = {o0o1 → o0o1} and Po = {o0o1 → o1o0}
(the negation is applied before the permutation).

Multi-output cells are represented as a set of single-output
cells each corresponding to an individual output pin. In this
paper, we define to these cells as virtual output-pin (VOP)
cells. VOP cells describe the pin-to-pin delay relation and the
functionality of each output pin.

B. Multi-output Boolean matching

Boolean matching assigns to a function a set of gates that
can implement it. In technology mapping, Boolean matching
is performed on local regions of a network defined by cuts. For
single-output cells, matching consists of a simple look-up of

1Truth tables are reported as bit-strings b2n−1 . . . b1b0 where b2n−1 (b0)
represents the output when all the inputs take value 1 (0).

Algorithm 1: Multi-output cells detection
1 Input : Subject graph N , Maximum k, Maximum l,

Matching library lib
2 Output: Set of multi-output cuts multi cuts
3 cuts ← enumerate cuts(N , k);
4 /* filter cuts based on individual multi-output cells */
5 cuts ← filter match cuts(cuts, lib);
6 /* hash the cuts based on the leaves */
7 cuts h ← hash cuts(cuts);
8 /* combine cuts sharing the same leaves and match */
9 multi cuts ← combine cuts(cuts h, l, lib);

10 /* remove incompatible kl-cuts */
11 multi cuts ← filter multi cuts(multi cuts);
12 return multi cuts;

the cut function in the matching library. Similarly to [16], [17],
our approach matches while considering two polarities for
each gate (uncomplemented, complemented) to enable better
logic sharing of inverters or avoid additional inverter delay
costs.

For multi-output cells, matching assigns a multi-output cut
to a set of VOP cells. The matching is achieved in two
steps. First, the functions of the cut roots are normalized and
permuted to be canonical according to the matching library
rules. Second, the canonical function is looked up in the
matching library. The output negations and permutations are
then reverted to reassign the individual VOP cells to the
corresponding cut roots.

C. Multi-output cut computation

The multi-output cut computation may require significant
run time since the number of cuts grows significantly with
respect to the number of nodes in a Boolean network. KL-
cuts [3] is an algorithm that can be used to generate generic
multi-output cuts. However, some specific cells, such as adder
cells, can be identified using a much simpler methodology.
Hence, in this section, we propose a multi-output cut enumer-
ation that considers a class of cells in which each output has
all the cut leaves in its support. These cuts describe cells such
as half adder and full adder and can be extracted very rapidly
throughout a Boolean network.

Algorithm 1 presents a high-level view of the steps to enu-
merate and match multi-output cuts. The inputs are a subject
graph N , a maximum cut size k, a maximum cut merging
value l, and the matching library lib. First, k-feasible cuts are
enumerated for every node of the network and the associated
function is computed. Second, filtering rules are applied to
reduce the number of cuts to combine. Specifically, we select
only cuts whose function is NPN -equivalent to a VOP cell
function, i.e., the cut may be part of a matchable multi-output
cut. Next, cuts are arranged in groups such that each cut in
a group shares the same leaves. This is achieved using a fast
algorithm that hashes the leaves of cuts. Then, cuts in each
group are combined up to l outputs and directly matched.
Matched multi-output cuts are added to a list. Alternatively to
cut hashing, kl-cuts [3] can be used to generate multi-output
cuts.

a b c d

C0

C1

C2

Fig. 1: Example of compatible and incompatible cuts

While combining cuts, filtering rules are employed to
remove partially dangling multi-output cuts. Specifically, a
multi-output cut with a set of roots L is partially dangling if
∃n ∈ L s.t. n ∈ MFFC(L\n). Informally, a partially dangling
multi-output cut has an output pin that cannot be connected
externally since it is only used internally in the cut.

The last step of Algorithm 1 further filters cuts to be
compatible. Two multi-output cuts Ci and Cj having the set
of roots Li and Lj are incompatible if Li ∩ Lj 6= ∅ and
Li 6= Lj . This filtering rule selects multi-output cells making
sure they do not overlap if they do not share the same outputs.
This constraint is crucial to limit the run time of technology
mapping, which would require undoing and re-evaluating
many mapping choices with an exponential increase. Figure 1
shows three multi-output cuts C0, C1, and C2 with outputs
L0 = {a, b}, L1 = {b, c}, and L2 = {c, d}. Cuts C0 and C2

are compatible since L0 ∩ L2 = ∅. Cuts C0 and C1 (C1 and
C2) are instead incompatible. Hence, our algorithm removes,
for instance, C1 from the list of multi-output cuts.

Since cells that can be matched to incompatible cuts are
not very common in designs for typical cell libraries (that
contain very few multi-output cells), we argue that the loss
in quality deriving this filtering rule is limited. On the other
hand, if we extend cell libraries to contain multi-output cells
derived from the compression of random logic, the presented
methodology would remove many possible matches affecting
the potential quality. However, when multi-output mapping is
used for re-mapping a small window of logic, the incompatible
multi-output cell choices can be enumerated with a limited run
time overhead.

IV. MULTI-OUTPUT CELLS SUPPORT IN TECHNOLOGY
MAPPING

In this section, we present how a technology mapping
algorithm can be extended to support multi-output cells.
Specifically, our method maps to multi-output cells only when
the design cost improves compared to using single-output
cells. Moreover, it handles the optimization of inverter cells
across multi-output gates and delay minimization.

Algorithm 2 shows the high-level pseudo-code of the map-
per. All the steps are analyzed in detail in this section. First,
the multi-output cuts are computed and matched using Algo-
rithm 1. If multi-output cells have been already detected, e.g.,

Algorithm 2: Technology mapping algorithm
1 Input : Subject graph N , Maximum k, Maximum l,

Matching library lib, cost function C
2 Output: Mapped network M
3 /* enumerate and match multi-output cuts */
4 multi cuts ← compute multioutput cuts(N , k, l lib);
5 /* compute the constrained topological order */
6 topo order ← constrained topo order(N , multi cuts);
7 /* compute and match single-output cuts */
8 cuts ← compute cuts(N , k, lib, multi cuts, C);
9 /* cover the network and refine the mapping */

10 M ← cover(N , topo order, cuts, multi cuts, lib, C);
11 return M ;

they have been extracted from a register-transfer level (RTL)
hardware description, they can be added at this step as multi-
output cell choices for the mapper. Next, the network is sorted
in a specific topological order guided by multi-output cuts.
This is necessary to map the whole network in one forward
and backward pass. Then, single-output cuts are computed
using priority cuts [18]. At this step, our algorithm checks
that the enumerated cuts contain also the single-output sub-
cuts of the multi-output ones. This is desirable in some cases
to reduce the impact of unmapping multi-output cells (a trivial
decomposition can be used). Finally, the mapper covers the
network by selecting a subset of cuts and associated cells.

Technology mapping consists of several iterations of map-
ping and covering. A mapping pass selects a candidate cell
based on a cost function at each node. Covering extracts a
complete mapping solution selecting a reachable subset of
the cells starting from the POs. First, our implementation
performs a round of delay-oriented mapping that selects for
each node in topological order the cell with the smallest
arrival time. This round finds the worst-case delay at the
outputs and identifies critical paths. Following iterations have
the objective of reducing area and/or power subjected to the
delay constraints. In our technology mapper, we employ area
flow [9] to globally optimize for the area and exact area [11]
to locally refine the cover for area or power. While delay and
area flow rounds are carried bottom-up (in topological order),
exact area is carried top-down (in reverse topological order).
Instead of propagating arrival times forward, exact area rounds
propagate required times backward to select the candidate
cells.

A. Constrained topological order

Technology mapping is generally a fast algorithm with a
time complexity that is linear with respect to the number
of nodes in the network. Ideally, we want to maintain the
same complexity also when mapping multi-output gates. In
technology mapping, as for many other synthesis algorithms,
networks are stored in topological order to guarantee that when
a node is processed, the nodes in its transitive fanin (TFI) have
already been processed. For instance, this supports efficient
propagation of arrival times while mapping. Our algorithm,
presented in the next sub-section, follows this practice, i.e.,

nodes are mapped in topological and reversed topological
order.

Let us consider a network and a topological order T .
Let us select three arbitrary nodes p, q, and t in T =
{0, . . . , p, . . . , q, . . . , t, . . . ,m} such that p ∈ TFI(q), q /∈
TFI(t), and there is a 2-output cell that can implement p and
t. Initially, all the nodes preceding t in the topological order,
including p and q, are mapped using single-output cells. Next,
p and t are mapped using the 2-output cell. Consequently, the
arrival time computed at q may be invalid since node p in q’s
TFI changed the mapping. Moreover, the new mapping may
unlock a different and more suitable mapping choice at node
q. Thus, an algorithm that maps to multi-output gates might
have to re-map some of the nodes between roots of multi-
output cells in the topological order. However, we could avoid
to re-process node q by picking a different topological order
T = {0, . . . , p, . . . , t, . . . , q, . . . ,m} where t precedes q. Our
algorithm performs the topological ordering by positioning
multi-output roots “close” to each other. In particular, given
two roots p and t of a multi-output cut with t > p in
the topological order, it is always possible to have them
topologically next to each other if p /∈ TFI(t) or p ∈ fanins(t).
Informally, if there is a path longer than 1 that connects two
roots, there is at least a node that is between p and t in the
topological order. In our topological sorting algorithm, when
a node is a root of a multi-output cut, first the TFI of all the
roots is visited, then the roots are stored close to each other.
This algorithm has the same computational complexity as a
depth-first search.

B. Node mapping

Typically, technology mapping is carried out for several
rounds to refine the cover according to specific cost functions.
The first round is usually delay oriented with the objective of
identifying the worst-case delay and critical paths. Following
rounds optimize for area and/or power and are constrained on
the maximum allowed delay. Commonly, mapping passes are
carried bottom-up, while the cover selection and the required
time propagation are carried top-down.

Algorithm 3 shows a forward pass to map nodes that
can be found in a delay or area flow round. First, required
times at each node are computed from the previous round if
available. Then, each node is mapped in topological order.
Node mapping works by initially covering the two polari-
ties (complemented and uncomplemented) using single-output
cuts. The best-fitting cell is chosen based on the selected
cost function (e.g., delay) and the required time. If the latter
allows it, only one polarity is implemented and the other is
realized through an output inverter. Finally, multi-output-cell
mapping is performed on the nodes that belong to a multi-
output cut. However, multi-output mapping is evaluated for
all the roots only when the highest-index root (with respect
to the topological order) is processed. In this way, we ensure
that all the roots of the cut have previously been mapped using
single-output cells. This is necessary to compute accurate costs
by comparing multi-output cell implementations to single-

Algorithm 3: Node mapping pass
1 Input : Subject graph N , Mapping M , Topological order

topo order, Cuts cuts, Multi-output cuts multi cuts,
Matching library lib, cost function C

2 Output: New mapping M ′

3 /* compute the required time */
4 req ← compute required(N , M , lib);
5 M ′ ← empty mapping(N);
6 foreach Node n ∈ topo order do
7 /* map node using single-output cells */
8 map positive polarity(M ′, n, cuts(n), lib, C, req);
9 map negative polarity(M ′, n, cuts(n), lib, C, req);

10 /* try to drop one polarity if there is enough slack */
11 select polarity(M ′, n, req);
12 /* highest index output-pin of a multi-output cut */
13 if multioutput root(n) then
14 map multioutput(M ′, n, multi cuts, cuts, lib, C,

req);
15 remap conflicts(N , M ′, n, cuts, lib, C, req);
16 end
17 end
18 return extract cover(M ′);

output ones. A multi-output cell is selected if it improves
the cost function. If the multi-output mapping is successful,
some nodes in the topological order among the roots of the
multi-output cut might need to be remapped. This is to ensure
that correct arrival times are propagated and that the best cell
choices are made. Anyway, this step is often unnecessary if
the multi-output roots are not leaves of a selected cut in the
current mapping. Finally, a cover is extracted starting from the
POs in reverse topological order and the mapping is returned.

During delay and area flow rounds, the mapping is improved
by picking the best cell implementation at each node according
to the selected cost function. The cover is only known after
a top-down computation that selects the best cuts starting
from the POs and recurs on the leaves. Consequently, after
a bottom-up round not all the outputs of the multi-output
cells are guaranteed to be used in the cover. This issue is not
addressed during these iterations. Nevertheless, during exact
area rounds the cover is known and is locally improved to
guarantee that all the output pins of the selected cells are used,
else nodes are re-mapped for a more suitable single-output
cell implementation. Moreover, exact area rounds are carried
out in reverse topological order to increase the likelihood of
connecting all the output pins of multi-output cells. Contrarily
to Algorithm 3, for exact area rounds, multioutput root(n) is
true for the lowest index output-pin of a multi-output cut.

The node mapping complexity is generally linear with
respect to the number of nodes in the network. However,
conflicts (line 15 of Algorithm 3) increase the complexity
by having to re-process some nodes in the topological order
among the multiple outputs. Anyhow, in practice no more
than 0.5% of the nodes are ever re-mapped over the EPFL
benchmarks [19].

Algorithm 4: Map to multi-output cells
1 Input : Mapping M , Root n, Multi-output cuts multi cuts,

Cuts cuts, Matching library lib, cost function C, Required
time req

2 Output: Modified mapping M
3 foreach Multi-output cut L ∈ multi cuts(n) do
4 foreach Cell configuration G ∈ lib(L) do
5 /* Evaluate multi-output cell */
6 next cell ← false;
7 foreach Root p ∈ L.roots do
8 if compute arrival(M , L, G(p)) > req(p) then
9 next cell ← true;

10 break;
11 end
12 end
13 if next cell then
14 continue;
15 end
16 /* Evaluate improvement: area flow and delay */
17 if improvement(M , G, L, C) then
18 commit cell(M , G, L);
19 end
20 end
21 end
22 return M ;

C. Multi-output mapping evaluation

We evaluate multi-output cells by re-mapping simultane-
ously roots of a multi-output cut. The pseudo-code during an
area flow round is shown in Algorithm 4. Initially, all the roots
are assigned to single-output cells. We evaluate a multi-output
cell G by assigning to each root p the corresponding VOP
cell (G(p)) and individually evaluating them. In particular,
the arrival time is checked against the required time. After
the arrival time is checked, delay and area flow are used to
evaluate the improvement and commit a multi-output cell if it
has a better cost. A commit assigns VOP cells to each root.
This process is repeated for all available cuts and cells.

The area flow (AF) of a node n involved in a multi-output
cell G and a multi-output cut L is generalized as follows:

AF (n) =
Area(G) + |L.roots| ×

∑
l∈L.leaves AF (l)∑

p∈L.roots Refs(p)

where Refs represent the estimated references of nodes in the
cover. Initially, during the first round of the mapper, Refs(n)
takes the fanout count of node n. Every following round it
is updated using a linear combination of the previous value
and the actual referencing in the cover. Note that if the
generalized area flow formula is applied to a single-output
gate, the equation reduces to the known formulation. In our
implementation, each root of a multi-output cut references
the leaves. This is why the area flow of a multi-output cut
is multiplied by the number of roots. If AF is computed and
exact references are known, the sum of AF over the POs gives
the area of the cover.

In an exact area iteration, the cover is known from previous
passes and it is locally improved. Specifically, for each node
in the cover exact area chooses a cell such that the area in the

MFFC of the node is minimized. This measure is extracted
using a recursive cut referencing/dereferencing algorithm [11].

In exact area passes, a multi-output cut is evaluated only if
all the output pins are referenced in the cover. This removes
partially-connected multi-output cells originating from area
flow iterations. Initially, all the roots of a multi-output cut are
assigned to single-output cells. The roots are then recursively
dereferenced to measure the exact area of the roots and remove
them from the current mapping. A multi-output cell is then
evaluated by checking the delay against the required time and
measuring its MFFC area. If the cell replacement is accepted,
the multi-output cut is referenced for each root, or else the
previous implementation is restored.

V. EXPERIMENTS

In this section, we present experimental results on using
multi-output cells during technology mapping. We evaluate
our method using the ASAP7 cell library [12], which defines
two multi-output cells, namely the half adder and full adder
with inverted outputs. For our experiments, we use the EPFL
combinational benchmark suite [19] containing several circuits
provided as and-inverter graphs (AIGs). The baseline has
been obtained by applying the area-driven balancing algorithm
available in Mockturtle2 [20].

The mapper has been implemented in C++17 in the open-
source logic synthesis framework Mockturtle as a command
emap. The experiments have been conducted on an Intel i5
quad-core 2GHz on MacOS. All the results were verified using
the combinational equivalent checker in ABC3.

A. Comparing against ABC

In this experiment, we test emap for delay-oriented mapping
against the default technology mapper in ABC (command &nf
-p). We enable the use of multi-output cells in our mapper. We
use the same settings for cut size and cut limit per node for
both mappers.

Table I shows the results. We evaluate our mapper in terms
of the area reduction and the geometric mean of the area and
delay with respect to ABC. Our implementation effectively
finds multi-output cells. Specifically, our mapper selects multi-
output gates over non-critical paths to guarantee the minimal
arrival time found during the first delay pass. Yosys and
state-of-the-art mappers do not support this feature. In some
benchmarks such as adder, no multi-output cells are used due
to the delay constraints. In fact, multi-output cells have a
higher delay than individual single-output cells in the ASAP7
library. While having a similar or better delay than ABC, our
mapper has an average area reduction of 7.48%. For the hyp
and square benchmarks, our mapper improves the area result
of ABC by 20%. Our mapper has worse results than ABC for
only the bar benchmark. This is mainly due to worse cuts at
the nodes. In fact, the benchmark does not contain any multi-
output cells defined in the ASAP7 cell library. The experiment
shows a 16.92% run time overhead compared to ABC which

2Available at: https://github.com/lsils/mockturtle
3Available at: https://github.com/berkeley-abc/abc

is reasonable considering that our implementation is generally
9% slower than ABC even when multi-output cell mapping is
disabled.

B. Comparing to a two steps approach

In this experiment, we consider area-oriented mapping with-
out delay constraints. We propose three flows. The first one
performs a vanilla area-oriented mapping without mapping to
multi-output cells. The second one emulates the approach in
Yosys4. It is a two steps approach that detects full adders
and half adders (command extract fa), saves them as don’t
touch white boxes, and then maps the rest of the logic.
We re-implemented the Yosys extraction algorithm following
the detection algorithm presented in Section III which offers
significantly better run time, scalability to large designs, and
comparable results. Additionally, we use our mapper instead
of ABC since our implementation typically provides 7% better
area compared to map -a in ABC for area-oriented mapping.
The third flow integrates multi-output detection and selection
in technology mapping. We show that managing multi-output
cells in a global technology mapping algorithm outperforms
the two steps approach.

Table II shows the results. We use the same baseline as
Table I to carry out the experiments. We evaluate the flows
in terms of area and delay reduction with respect to the
vanilla implementation. The two steps approach reduces the
area of the vanilla implementation by 2.41% on average.
This method is particularly run time efficient since technology
mapping is decomposed into two independent steps. The
multi-output approach is the best one with an average area
reduction of 7.42%, outperforming the two steps approach.
The total run time increase is about 8% compared to the
vanilla implementation which is reasonable considering the
improvement in quality. Furthermore, if we consider only the
arithmetic benchmarks (the first 10), our mapper improves the
area by 12.7% against the 4.42% of the two steps approach.

While outperforming the two steps approach, the multi-
output mapping generally uses fewer multi-output cells. Our
implementation effectively leverages mapping heuristics to
select the proper cells based on the global context. Moreover,
even if the delay is not constrained, our approach often finds
solutions with both better area and delay. Only the sqrt bench-
mark has 3.4% worse area when mapping using multi-output
gates. Nevertheless, this is due to area recovery heuristics.
Specifically, the multi-output mapper has 5.2% better area
until the end of area flow rounds. However, following local
rounds using exact area are considerably more effective on
the vanilla flow (with a 13.37% area reduction) resulting
in the mentioned quality difference. An interesting result is
obtained on the adder benchmark. Although the two multi-
output flows use the same number of multi-output cells, our
proposed method achieves better area and delay by selecting
different configurations of the multi-output cells (input and

4Available at: https://github.com/YosysHQ/yosys

output negations) such that the number of inverters is globally
minimized (192 instead of 256).

In this experiment, we have not constrained the delay during
mapping for two reasons: 1) Yosys’ method does not support
effective delay minimization when adder cells are used (since
they are considered as white boxes); 2) we want to test how
much additional area is recovered with the proposed method
against the state-of-the-art approach and Yosys. In addition,
multi-output cells have higher propagation delay compared to
single-output cell realizations. Hence, compared to the vanilla
flow, delay increase is justified.

C. Discussion

In this section, we showed the potential of supporting multi-
output cells in a technology mapper. Our method effectively
maps to multi-output gates when convenient achieving a
substantial area reduction both in area-oriented and delay-
oriented mapping. However, the ASAP7 technology library,
as other open source libraries such as SKY130, contains only
half and full adders. We predict that by notably increasing
the number of multi-output cells, the mapper would be less
efficient at handling them. This is mainly due to a very
large number of matches and incompatible cuts (explained
in Section III-C) that must be filtered to achieve scalability
to large designs. We verified this statement by crafting 120
multi-output cells obtained by merging single-output cells
included in the ASAP7 library assuming they occupy 20%
less area. Our mapper correctly matches many multi-output
cells. However, due to cut filters and the algorithm design
for scalability, the proposed approach does not effectively
exploit the benefits of that many matches leading to limited
area reduction compared to using only half and full adders.
This is a trade-off between run time and potential quality. In
this work, we addressed scalability primarily. In particular, we
obtained a quick algorithm with a similar run time to state-of-
the-art mappers. Additionally, the majority of the multi-output
cells in the crafted test library represent the compression of
random logic. As such, these cells do not lead to any structural
advantage during global technology mapping.

To mitigate the decrease in quality when many multi-output
cells are defined, we propose to limit the number of cells
handled by a global technology mapper. The selected ones
should have specific regular structures able to affect the global
mapping. In the experiments we showed the potential of
integrating half and full adders. Additionally, we noticed that it
is much more effective to handle cells that compress random
logic later in the flow through incremental local remapping
steps as performed in [5].

Despite these findings, the algorithms presented in this paper
can support multiple multi-output cells and are not restricted
to only half adders or full adders. If we limit the mapper
to work on a small logic cone (e.g., in the order of tens
of nodes), cut filters can be relaxed to include incompatible
cuts. KL-cuts [3] can be also used to enumerate more multi-
output cuts. Conflicting configurations of multi-output cells
can be enumerated and mapping can be rapidly performed for

TABLE I: Comparing our mapper against ABC for minimal delay

Benchmark Baseline ABC command &nf -p Multi-output mapping
Size Depth Area Delay Time (s) Area Delay Multi-output Time (s)

adder 1020 255 1087.54 2520.72 0.06 1052.78 2514.41 0 0.03
bar 3336 12 2512.67 147.76 0.11 2835.74 151.76 0 0.08
div 45050 4405 46156.14 42422.38 1.82 41191.66 41964.47 4 2.11
hyp 214335 24801 197464.66 176397.09 8.16 157949.52 175299.08 12335 14.28
log2 31881 410 21997.83 3589.91 6.46 21612.64 3567.67 507 4.27
max 2865 229 2382.70 2114.45 0.19 2361.95 2106.08 0 0.11
multiplier 26943 266 24013.34 2596.60 1.04 19935.90 2576.03 652 1.56
sin 5383 186 5127.26 1614.09 0.71 5085.07 1583.31 49 0.74
sqrt 18372 6049 20576.44 43721.45 0.60 18066.04 43010.26 513 1.27
square 18264 250 13670.21 2446.85 0.64 10794.21 2440.58 1178 1.06

Improvement -7.48% -0.48% +16.92%
Geomean 7614.05 7284.50

TABLE II: Area-oriented mapping in different settings

Benchmark Vanilla mapping Multi-output detection + mapping Multi-output mapping
Area Delay Time (s) Area Delay Multi-output Time (s) Area Delay Multi-output Time (s)

adder 743.92 3910.79 0.03 596.02 7046.61 128 0.01 551.23 5376.32 128 0.03
bar 2062.66 209.60 0.08 2062.66 209.60 0 0.17 2062.66 209.60 0 0.10
div 29346.85 45188.06 1.91 28251.16 112512.28 3911 1.16 24486.23 90780.33 3904 2.02
hyp 157306.39 225518.08 11.73 156490.92 360506.91 20927 7.93 134586.34 218205.08 15853 13.65
log2 19031.21 4742.11 4.25 17561.92 8680.94 1461 4.34 15915.06 7393.68 1359 4.31
max 1860.41 2410.55 0.38 1860.41 2410.55 0 0.44 1860.41 2410.55 0 0.38
multiplier 16760.62 3638.24 1.68 15009.51 7701.35 1511 1.35 13219.61 6724.49 1467 1.66
sin 3585.97 2410.42 0.94 3361.07 3636.69 265 0.85 3132.99 3194.23 204 0.88
sqrt 12676.20 55493.75 1.42 14564.95 86093.17 1830 1.53 13107.36 64646.94 804 1.71
square 12966.38 3065.54 1.06 11600.65 7304.42 1471 0.56 9940.72 6974.56 1322 1.06
arbiter 7401.25 923.08 2.27 7401.25 923.08 0 2.80 7401.25 923.08 0 2.35
cavlc 441.37 221.24 0.03 446.03 217.10 7 0.04 446.50 223.54 2 0.02
ctrl 99.84 115.60 0.00 101.01 130.63 1 0.01 100.78 115.60 0 0.00
dec 289.26 56.63 0.16 289.26 56.63 0 0.18 289.26 56.63 0 0.16
i2c 911.19 210.04 0.09 911.42 210.04 2 0.12 911.19 210.04 0 0.10
int2float 146.50 187.80 0.01 146.50 187.80 1 0.01 146.50 187.80 0 0.01
mem ctrl 30658.97 1530.06 3.23 30650.35 1512.75 45 5.27 30598.68 1512.75 5 3.47
priority 661.11 2475.18 0.07 661.11 2475.18 0 0.08 661.11 2475.18 0 0.07
router 171.69 374.68 0.09 178.22 708.09 38 0.02 171.21 522.58 15 0.07
voter 7190.60 895.47 0.59 6468.51 1372.72 1257 0.13 5534.16 1197.18 1183 0.62

Improvement -2.41% +44.02% -7.42% +26.27%
Total 30.02 32855 27.00 26246 32.67

each one of them, also in parallel. Then, the best solution
is committed. This method would be a part of a re-mapping
engine that extracts windows of mapped logic and re-maps
them using a better implementation. Moreover, this approach
would extend the remapping algorithm in [5] that focuses only
on one multi-output cell at the time. The integration of this
mapper in a remapping engine is out of the scope of this paper
and will be addressed in future work.

VI. CONCLUSION

In this paper, we proposed a scalable technique to increase
the support of multi-output library cells in technology map-
ping. To the best of our knowledge, this is the first open-source
implementation of a technology mapper that supports multi-
output gates. In contrast to existing work on remapping [5],
we addressed the mapping problem globally over the whole
network. First, we proposed a method to identify multi-
output cells by enumerating multi-output cuts and employing
multi-output Boolean matching. Second, we generalized area

recovery heuristics to support multi-output cells in the cost
computation. Last, we developed an enhanced technology
mapping algorithm integrating multi-output cell detection and
selection. Experimental results showed that half and full adders
are efficiently used, notably improving the area in delay- and
area-oriented mapping by more than 7% on average with a
limited run time overhead. Moreover, we showed that our
approach outperforms the method implemented in Yosys.

ACKNOWLEDGMENTS

This research was supported by the SNF grant “Supercool:
Design methods and tools for superconducting electronics”,
200021 1920981, and Synopsys Inc.

REFERENCES

[1] J.-D. Huang, J.-Y. Jou, and W.-Z. Shen, “Compatible class encoding
in Roth-Karp decomposition for two-output LUT architecture,” in Proc.
ICCAD, pp. 359–363, 1995.

[2] F. Wang, L. Zhu, J. Zhang, L. Li, Y. Zhang, and G. Luo, “Dual-output
LUT merging during FPGA technology mapping,” in Proc. ICCAD,
2020.

[3] O. Martinello, F. S. Marques, R. P. Ribas, and A. I. Reis, “KL-cuts: A
new approach for logic synthesis targeting multiple output blocks,” in
Proc. DATE, pp. 777–782, 2010.

[4] L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electr. Syst., July 1997.

[5] L. Benini, P. Vuillod, and G. De Micheli, “Iterative remapping for logic
circuits,” Proc. IEEE Trans, CAD, vol. 17, no. 10, pp. 948–964, 1998.

[6] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Trans. on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[7] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and
F. Somenzi, “Algebraic decision diagrams and their applications,” in
Proc. ICCAD, pp. 188–191, 1993.

[8] C. Wolf, “Yosys open synthesis suite.” https://yosyshq.net/yosys/.
[9] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area

minimization in LUT-based FPGA technology mapping,” IEEE Trans.
CAD, 2006.

[10] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[11] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Trans. CAD, 2007.

[12] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive

process design kit,” Microelectronics Journal, 2016.
[13] P. Pan and C.-C. Lin, “A new retiming-based technology mapping algo-

rithm for LUT-based FPGAs,” in Proc. ACM/SIGDA Sixth International
Symposium on FPGA, 1998.

[14] L. Stok, M. Iyer, and A. Sullivan, “Wavefront technology mapping,” in
Proc. DATE, pp. 531–536, 1999.

[15] D. Chen and J. Cong, “DAOmap: a depth-optimal area optimization
mapping algorithm for FPGA designs,” in Proc. ICCAD, 2004.

[16] S. Chatterjee, On Algorithms for Technology Mapping. PhD thesis,
EECS Department, University of California, Berkeley, Aug 2007.

[17] A. T. Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli,
“A versatile mapping approach for technology mapping and graph
optimization,” in ASP-DAC, 2022.

[18] A. Mishchenko, Sungmin Cho, Satrajit Chatterjee, and R. Brayton,
“Combinational and sequential mapping with priority cuts,” in Proc.
ICCAD, 2007.

[19] L. Amarù, P.-E. Gaillardon, and G. D. Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

[20] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. T. Calvino, D. S. Marakkalage, and
G. D. Micheli, “The EPFL logic synthesis libraries,” CoRR,
vol. arXiv:1805.05121v3, 2022.

