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Abstract—The Adiabatic Quantum-Flux Parametron (AQFP)
is an energy-efficient superconducting logic family. AQFP tech-
nology requires buffer and splitting elements (B/S) to be inserted
to satisfy path-balancing and fanout-branching constraints. B/S
insertion policies and optimization strategies have been recently
proposed to minimize the number of buffers and splitters needed
in an AQFP circuit. In this work, we study the B/S insertion
and optimization methods. In particular, the paper proposes:
i) two initial B/S insertion policies based on ALAP and ASAP
scheduling that guarantee global depth optimality; ii) a new
approach for B/S optimization based on minimum register
retiming; iii) a B/S optimization flow based on (i), (ii), and existing
work. We show that our approach reduces the number of B/S
up to 20% while guaranteeing optimal depth and providing a
55x speed-up compared to the state-of-the-art.

I. INTRODUCTION

In recent years, superconducting electronics (SCE) gained
increasing interest proposing high-speed and power-efficient
solutions. Superconducting circuits are based on Josephson
Jjunctions (JJs) and operate at a few degrees Kelvin (typically
4K) where resistive effects are negligible. The switching speed
of Josephson junctions supports the realization of circuits
clocked at several tens of Gigahertz and a considerably lower
power consumption compared to CMOS. The potential of SCE
is well supported by academic and industrial projects which
address the electronic design automation (EDA) challenges of
digital SCE design [1]-[3].

The adiabatic quantum-flux parametron (AQFP) is a super-
conducting logic family that targets low-energy consumption.
In this technology, adiabatic switching operations drastically
reduce the dynamic and static power consumption compared
to other superconducting logic families [4]. AQFP circuits op-
erate at frequencies up 10 Gigahertz with a power dissipation
of two orders of magnitude lower compared to CMOS when
accounting also for the cryo-cooling energy [3].

In AQFP circuits, due to a different encoding of the informa-
tion compared to CMOS, each logic gate needs an alternating
excitation current that periodically releases the computation.
The excitation current is delivered as a clock [5]. Thus, data
at each gate must be present at specific time frames for
correct functionality. This may require the insertion of clocked
buffers such that all data paths at each gate’s fanin have the
same length. This design constraint is called path-balancing.
Logic gates also have limited driving capabilities. Branching
elements called splitters are necessary for multiple fanouts.
Splitters need a clock to operate and typically support up
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to 4 fanouts. This second design constraint is called fanout-
branching.

The path-balancing and fanout-branching requirements
complicate the design process and significantly affect area and
delay. In some applications, buffers and splitters (B/S) arrived
to occupy half of the total area even after optimization [6]-
[10]. Hence, developing EDA tools able to minimize the num-
ber of buffers and splitters is of primary importance. Existing
work considered AQFP constraints during logic optimization
to reduce imbalances and high-fanouts by modifying the
logic [8], [9], [11]. Other previous work developed techniques
to insert and minimize the number of buffers and splitters
needed in an AQFP circuit after logic synthesis [7], [10], [12].

In this paper, we tackle the B/S insertion problem for
area and delay minimization given a logic network. Similarly
to [10], we formulate the B/S insertion problem as a scheduling
problem. First, we present two linear-time algorithms to insert
B/S elements such that the resulting AQFP circuit is delay-
optimal. Minimizing the delay is beneficial for the area since it
reduces the number of buffers needed for path-balancing. None
of the previous state-of-the-art approaches guarantee global
delay optimality [7], [10], [12]. Then, we present a novel B/S
optimization method based on minimum-register retiming [13]
to reduce the number of buffers and splitters in an AQFP
circuit. In previous work, minimum-register retiming has been
applied to the rapid single-flux quantum (RSFQ) supercon-
ducting family to reduce the number of buffers [14]. However,
in RSFQ, splitters are not clocked and are not involved in
path-balancing. Consequently, the problem is much harder in
AQFP logic and retiming is used to drive a heuristic algorithm.
Finally, we propose an AQFP B/S insertion and optimization
flow based on depth-optimal B/S insertion, retiming, and the
chunk movement algorithm presented in [10].

In the experiments, we evaluate our optimization approach
based on retiming showing that it reduces the number of
buffers and splitters of previously optimized circuits from [10]
up to 17%. Then, we show that our approach reduces the
number of buffers and splitters up to 20% compared to the
state-of-the-art algorithm [12] while providing a 55x speed-
up. Finally, we show that our approach scales up to big
benchmarks.

II. BACKGROUND

A. Adiabatic Quantum-Flux Parametron

The adiabatic quantum-flux parametron (AQFP) is an
energy-efficient superconducting technology. The main ele-



ments of AQFP circuits are the buffer cell and the branch cell.
The buffer cell is realized using Josephson junctions (JJs) and
superconductive inductors to form a two-junction SQUID [4].
The basic functional block is the majority-of-3 gate (MAJ3)
that can be realized using three buffers and a 3-to-1 branch
cell at their outputs. By modifying a buffer cell of the MAJ3 to
produce a constant zero or one output, the MAJ3 implements
the AND2 or the OR2 cell. Inverters can be implemented in
a buffer without additional cost by using a negative mutual
inductance instead of a positive one [15]. Since the AQFP
logic is inherently majority-based, the functionality of an
AQPFP circuit can be represented by a majority-inverter graph
MIG) [16].

AQFP gates need an AC excitation current to operate.
This signal also serves as a clock used to synchronize the
computation at the output of the gates. Consequently, data at
the inputs of a gate must be available in the same clock cycle
to perform the correct operation. Hence, fast signals need to be
delayed by inserting clocked buffers as delay elements. This
problem is called path-balancing. AQFP circuits also have
limited driving capabilities. Branching elements composed of
a buffer cell and a branch cell are necessary whenever a gate
needs to drive more than one output. These elements are called
splitters. This constraint is called fanout-branching. Typically,
splitters have a maximum driving capacity of 3 or 4 and are
clocked cells. Hence, splitters affect path-balancing.

Different technology assumptions have been proposed
to approach the path-balancing and fanout-branching prob-
lems [10]. In particular, these assumptions consider the cases
in which primary inputs (Pls) and primary outputs (POs)
need to be branched and balanced or not. In this paper, we
assume that PIs and POs need to be balanced and branched.
Nevertheless, our work is easily adaptable to support all the
other assumptions.

The area and delay in an AQFP technology are commonly
evaluated in terms of Josephson junctions (JJs). The area cost
of a buffer or splitter cell is 2 JJs, while the area cost of a
MAJ3, AND, and OR gates is 6 JJs. Each cell has a JJ depth
of one. Hence, we describe the delay of an AQFP circuit in
terms of JJ depth.

B. Notation

A Boolean network N is modeled as a direct acyclic graph
defined by the pair (V, E') where V represents the set of nodes
and E represents the set of directed edges. In this paper, we
use Boolean network and circuit interchangeably.

For any node v, the fanins of v, denoted as FI(v), is a set
of nodes driving node v, i.e., nodes that have an outgoing edge
towards v. Similarly, the fanouts of v, denoted as FO(v), is a
set of nodes which are driven by node v, i.e., nodes that have
an incoming edge from v. The set of primary inputs (PIs)
is a subset of nodes without fanin in the network. The set of
primary outputs (POs) O is a subset of nodes without fanout
in the network. The set of logic gates G is a subset of nodes
from a predefined gate library. Each node in V is either in
I, O, or G. In this paper, each gate in an AQFP-compatible
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network is either an AND2, OR2, or MAJ3 with optional input
negations.

A mapped network M representing an AQFP circuit extends
a Boolean network with a gate element splitfer and a gate
element buffer. A splitter is a gate with a fanin size of 1 and
fanout size of s, where s;, is the splitting capacity. A buffer
is a special case of splitter with a fanout size of 1. A splitter
tree of a node v, denoted by ST (v), is a set of splitters and
buffers reachable from the fanout of v such that every path
from v to a B/S element s € ST'(v) traverses only buffers and
splitters. A splitter tree is said to be irredundant if each B/S
element has at least one fanout and there is not a pair (s,
52) such that their incoming edges are connected to the same
node and they both have fanout size smaller than s; [10].

A schedule of a network is a function d : V' — Ny that
assigns each node in the network to a non-negative integer
level. The depth of a network d(N) is defined as d(N) =
maxX,co d(0). A schedule of the network is valid if and only
if a mapping function f : (N, d) — M exists such that buffers
and splitters can be inserted respecting the path-balancing and
fanout-branching constraints.

C. Minimum Register Retiming

Minimum register retiming is the problem of relocating the
registers in a circuit in order to minimize their number while
preserving the functionality [13]. The repositioning is captured
by the integer-valued retiming lag function r(v) : V — Z
that describes the number of registers moved backward over
node v, from its fanout to the fanin. Given a circuit where
w(e) is the initial number of registers on an edge e, the
minimum register retiming problem can be formulated as a
linear problem as follows:

min Z r(v) — r(u) st (D)
Ve=(u,v) € E
r(u) —r) <w(e) Ve = (u,v)  (2)

This linear problem is dual to the minimum-cost flow
problem [13] for which many algorithms exist. For instance,
using the Goldberg and Tarjan algorithm [17] the problem is
solvable in O(|V||E|log(|V])log(|V'|?/|E|) time.

III. DEPTH-OPTIMAL BUFFER AND SPLITTER INSERTION

In this section, we present a depth-optimal B/S insertion
policy formulating the AQFP mapping problem as a schedul-
ing problem similarly to [10]. Then, we propose two depth-
optimal initial scheduling assignment using the as-late-as-
possible (ALAP) and as-soon-as-possible (ASAP) scheduling.
These two schedules can be used as a starting point to carry
the B/S size optimization.

The depth-optimal B/S insertion problem for a Boolean
network N consists of finding splitter tree configurations such
that the resulting circuit depth is minimal. Finding an optimal-
depth AQFP circuit is not only beneficial for the delay but
also for the area. The area of an AQFP circuit is related to
its depth because of path-balancing. Intuitively, longer critical



Algorithm 1: ALAP node scheduling

Input : node n, partial scheduling d
Output: level of node n in the schedule
L+ {(v,d))|veFOM)}

ligst < max [
(v,l) € L

edges + 0;

foreach (v, [) € L in descending order of | do
splitters < [Sfl‘jztefl 1
edges splittlérs +1;
llast — l,

end

llast — llast - 11

while edges # 1 do
edges < fe—ds?w;
llast <~ lla,st - 1;

end

return l;,s:;

1
2
3
4

s

paths (considering B/S elements) would potentially require to
insert more buffers due to longer paths to balance.

Claim 1. Given a Boolean network, the optimal depth of an
AQFP circuit and a valid scheduling assignment that satisfies
the requirements of path-balancing and fanout-branching can
be found using an as-late-as-possible (ALAP) scheduling.

To verify this claim, we first define our B/S insertion policy
for a single node n given a partial schedule d. Lee et al. [10]
presented an irredundant algorithm for B/S insertion on a
single node given the relative depths of the fanout. Their
approach applied to a pre-scheduled network finds an AQFP
circuit in linear time. In this paper, we modify that algorithm
to find the minimum-height irredundant splitter tree of a node
given a level assignment of its fanout. The algorithm is shown
in Algorithm 1.

Algorithm 1 fits a minimum height splitter tree for a node
n given the level assignment of its fanout in a partial schedule
d and returns a level assignment for node n. First, the pairs
composed of nodes and scheduled levels in the fanout of n are
saved in L (line 3). Then, the highest level in L is saved in l;,s¢
(line 4). In the main loop (lines 6 to 10), for each node-level
pair in L in descending order, edges is updated. Variable edges
tracks the number of nodes including B/S elements needed to

=38 O edges = [9]+3=3
=7 edges = [3]+1=3
l=6 edges = [3] =2
=5 edges = [3] =1
=4

Fig. 1: Example to illustrate Algorithm 1
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be connected at level [ (line 8). Every time [, is decreased,
the number of buffers and splitters needed to connect to higher
levels nodes is computed (line 7). Once every fanout of n has
been processed, the algorithm finds the highest level where n
can be scheduled (lines 12 to 15). This level corresponds to the
first position where edges is equal to one. Figure 1 illustrates
an example for a node n with four fanout nodes to better
understand Algorithm 1. Figure 1 also shows the generated
minimum-height splitter tree. Logic gates are represented by
circles while B/S elements by squares. The splitting capacity
is sy = 2. The variable edges keeps track of the number of
nodes and B/S elements for each level. Gate n is inserted as
soon as edges = 1. It follows that:

Lemma 2. Algorithm 1 finds an irredundant minimum-height
splitter tree for a node given a partial schedule.

Proof. Algorithm 1 inserts the minimum number of B/S
elements per level. Hence, it also generates a minimum-height
splitter tree. ]

Since algorithm 1 finds a level assignment that satisfies the
path-balancing and fanout-branching constraints for a node
based on its fanout, it can be used as a scheduling function in
an ALAP schedule. An ALAP scheduling algorithm schedules
all the POs of a network to a bound A and applies a scheduling
function for each node in reverse topological order.

Proposition 3. Let )\ be a sufficiently large bound to obtain
a legal ALAP schedule. Let 1., = min;ey d(i) be the lowest
level of a scheduled node in the network. Then, the depth of
the AQFP circuit is X — lyin.

Proof. By definition, the ALAP scheduling bound ) is relaxed
such that A > d(N). Since there are not scheduled nodes from
level zero to l,,;, — 1, we could reduce A\ by l,,,;,, to removed
unassigned levels. ]

From Proposition 3, it follows that the scheduling objective
for minimizing the depth is to maximize the level of PIs in the
ALAP schedule since d(N) = A — l,,;, where X is constant.

Lemma 4. The global optimal-depth buffer and splitter in-
sertion problem is solvable using dynamic programming by
inserting minimum-height splitter trees in reverse topological
order.

Proof. An ALAP scheduling algorithm assigns all the POs to
the bound A that is the maximum possible level. Given a node
n and its already scheduled fanout, a minimum-height splitter
tree can be inserted using Algorithm 1. Thus, n is scheduled
to its maximum level. By induction, the algorithm maximizes
the level of each node and thus the resulting AQFP circuit is
depth-optimal. |

Using Lemma 2, Proposition 3, and Lemma 4, we verified
Claim 1.

Algorithm 2 shows an algorithm to construct the depth-
optimal ALAP schedule. We assume that each PI and PO
needs balancing and branching. The algorithm first computes a



Algorithm 2: Depth-optimal ALAP scheduling

Algorithm 3: ASAP node scheduling

Input : network N = (JUGUO, E)
Output: schedule d
A < depth(N) X (14 [log(FOmaz)/log(ss)]);
d <+ 0;
foreach o € O do
| d(o) « X
end
lmin < 005
foreach n € I U G in reverse topological order do
d(n) < schedule_node(n, d);
lnLin — min(l'rni7u d(n))s
end
foreach i € [ do
| d(i) < 0;
end
foreach n € GU O do
| d(n) < d(n) —
end
return d;

o X N R W N =

e L T
N7 N CR S ey~

lmin;

— e
e 3

higher bound )\ for the ALAP scheduling (line 3). This bound
is computed assuming that every node in the critical path
needs a splitter tree whose height is the one of a balanced
tree of the highest fanout in the network. Alternatively, any
number sufficiently high can be used for this assignment.
Then, every PO is scheduled to the bound (lines 5 to 7). The
algorithm continues by scheduling in reverse topological order
each node in the network using Algorithm 1 (line 10). The
reverse topological ordering guarantees that each fanout has
been already visited. Hence, an irredundant minimum-height
splitter tree is inserted. Meanwhile, the minimum assigned
level is saved (line 11). Finally, the PIs are scheduled to level
zero (lines 13 to 15) and the rest of the nodes are lowered by
the minimum assigned level /,,,;,, (lines 16 to 18).

The depth-optimal ALAP scheduling algorithm runs in
linear time to the number of nodes in the network with
a complexity of O(|V|FOmaz 10g(FOmmaz)) where FO,pp 0y
is the maximum fanout size in the network. The ALAP
scheduling in Algorithm 2 can be used as an initial scheduling
assignment to generate an AQFP circuit. The resulting AQFP
circuit is depth-optimal.

While we mainly focused on delay, another optimization
objective is area. Minimizing area consists of maximizing
the sharing of B/S elements. The initial B/S configuration
could affect the area results even after optimization. Moreover,
different technology assumptions [10] amplify this difference,
e.g., an ASAP configuration is generally beneficial if POs do
not need balancing. Hence, we present another depth-optimal
alternative that may have a better size for some circuits or
assumptions. This method is based on the ASAP scheduling
algorithm. Both ASAP and ALAP can be used as a starting
point to carry the buffer and splitter optimizations described
in Section IV and V.

An ASAP scheduling algorithm schedules each node in
topological order. We use the previously defined ALAP sched-
ule in our ASAP method to compute a mobility number for

Input : node n, mobility u, scheduling d
d(n) + d(n) — p(n):
L+ {(v,d))|veFOn)}
T < empty map;
foreach v € FO(n) do
| T[v] « 0;
end

liast < max I;
(v,0) € L

9 edges + 0;

10 foreach (v, l) € L in descending order of | do
11 mobility < 0;

12 for j < 110 ljgst — 1 do

13 if edges =1 then

14 | mobility < mobility + 1;
15 end

16 edges + (6‘1%1;

17 end

18 foreach (v', I') € L such that ' > 1 do
19 | T[]« T[v'] + mobility;

20 end

21 liast < 1;

22 edges < edges + 1;

23 end

24 mobility < 0;

25 for j < d(n) 10 liast — 2 do

26 if edges =1 then

27 | mobility < mobility + 1;

28 end

29 edges [Eds%};

30 end

31 foreach v € FO(n) do

2 | pfv] < min(uv], T[v] + mobility);
33 end

34 return;

® N R W N =

each node which is captured by p : V' — Ny. The mobility
is used by ASAP to lower the nodes towards the PIs. The
algorithm works as follows. First, it initializes the mobility p
to infinite for each node. Then, it assigns PIs to level zero.
Finally, it schedules each gate using Algorithm 3.

Algorithm 3 computes a lower bound on the mobility of
each node in the fanout of a node n. First, node n is scheduled
to a new position by decreasing the ALAP level by the
mobility (line 2). Then, the fanout levels are saved in L (line
3). Next, a map 7T stores the temporary mobility of each fanout
of n. Mobilities are initialized to zero (lines 4 to 7). The main
loop (lines 10 to 23) is similar to the one in Algorithm 1. Line
7 in Algorithm 1 is unrolled to compute the local mobility
(lines 12 to 17). The local mobility is the number of buffers
needed to balance the splitter tree from level [, to [. The
local mobility is added to all the previously visited nodes in
the loop (lines 18 to 20). The same reasoning applies from
line 25 to 30. Finally, i is updated using the mobility of each
node in the current splitter tree of n. Nodes are scheduled
according to the worst mobility to guarantee a valid schedule.
The mobility computation is conservative but works well in
practice.

In this section, we presented the ALAP and ASAP algo-
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rithms assuming that PIs and POs need to be balanced and
branched. Nevertheless, these algorithms can be easily mod-
ified to support other assumptions without higher complexity
costs.

IV. RETIMING-BASED BUFFER AND SPLITTER
OPTIMIZATION

In this section, we present an algorithm based on minimum
register retiming to globally minimize the numbers of buffers
and splitters in an AQFP network. Previous work applied a
retiming-like optimization to AQFP logic [6], [7]. However,
their approach does not perform retiming but moves buffers lo-
cally from the output of splitters to the input. This optimization
is included in our depth-optimal scheduling algorithms since
our scheduling approach creates irredundant splitter trees.

Buffers and splitters are used in AQFP circuits to meet
the circuit constraints of path-balancing and fanout-branching.
Minimizing the number of B/S elements consists of max-
imizing the sharing of B/S elements. Without accounting
for fanout-branching, e.g., assuming that buffers have an
infinite driving capability, the minimum number of buffers
is achievable in polynomial time using a minimum regis-
ter retiming algorithm considering each buffer as a register.
Retiming preserves the path-balancing constraint since each
path traverses the same number of registers before and after
retiming. Existing work applied this idea to Rapid Single-
Flux Quantum (RSFQ) superconducting logic [14]. When
considering fanout limitations, splitters cannot be relocated
freely since their movement is conditional on preserving the
fanout constraints. Hence, retiming can be only used as a
heuristic for B/S optimization. Figure 2 shows a splitter tree
where a gate is represented by a circle and a B/S element is
represented by a rectangle. Let us suppose that the maximum
splitting capacity is s, = 3. In this example, splitter sy cannot
be selected for retiming since its movement would increase
the fanout of gy to 2 not satisfying the fanout constraint of
a gate. Splitters s; and sy are only mutually selectable for
retiming since the movement of both of them would increase
the fanout of sy to 4 not satisfying the fanout constraint s.
Note that the latter case may happen only in redundant splitter
trees, as in Figure 2. Moreover, retiming optimization of the
splitters s; and sy may depend on different fanout grouping
such as FO(s1) = {fo, fo}, FO(s2) = {f1,[fs} instead
of the current FO(s1) = {fo, fri}, FO(s2) = {fo, f3}.
Some groupings may unlock a B/S minimization that is not
achievable in others.

The B/S retiming algorithm is shown in Algorithm 4. The
algorithm receives a valid AQFP circuit, the technologies
assumptions, and a direction as input. Since the retiming
problem is solved as a maximum flow problem similarly
to [18], the flow computation is separated in the forward and
backward directions. The input dir defines which direction to
execute first. Generally, forward is the preferred first direction
if the circuit has an ALAP configuration since most of the
registers would be placed closer to the PIs. Backward is
instead a better first direction on an ASAP configuration. The
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Algorithm 4: B/S retiming

1 Input : AQFP circuit M, technology assumptions ps, start
retiming direction dir

while improvement do

select_retimeable_elements(M, ps);

set up retiming direction according to dir

maximum_flow(M);

get_minimum_cut(M);

move_retimed_elements(M);

)

end

invert direction dir;

while improvement do
select_retimeable_elements(M, ps);

set up retiming direction according to dir
maximum_flow(M);
get_minimum_cut(M);
move_retimed_elements(M);

LB I B 7 NN

o
=

s

-
LT

s
n

end
reconstruct_splitter_trees(M, ps);
return;

—
e 9

algorithm performs two optimization loops in both directions.
A loop starts by selecting the elements to be retimed (line 3 or
11). Those are the splitters and buffers that can be relocated
without exceeding the driving capacity of the fanin gate or
the B/S element. In the case of mutually exclusive selections,
one is picked using a deterministic random function. Each
selected B/S element is a source and a sink of a unitary
flow. Next, the algorithm proceeds by selecting the retiming
direction, computing the maximum flow, getting the minimum
cut, and moving the selected elements to the new position
if there is an improvement. Since retiming movements could
create redundant splitter trees, the algorithm terminates by
reconstructing each splitter tree to be irredundant (line 17).
At this step, also possible buffer chains at PIs and POs are
removed such that if each PI (PO) is connected to at least x
buffers, those z buffers can be removed. This latter condition
may only occur if an AQFP circuit is not depth-optimal.

An example of a forward retiming iteration is depicted
in Figure 3. Figure 3a shows an initial configuration of the
AQFP circuit where circles represent gates, rectangles repre-
sent buffers and splitters, and arrows represent connections.
In this example, the splitter capacity is s, = 3. The algorithm
selects the B/S elements in orange to perform retiming as they
satisfy all the conditions. Figure 3b shows the configuration
after retiming. Two new buffers are inserted (in green). The

Fig. 2: Example of splitter selection due to fanout limitations.
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(a) Initial configuration

]

b

Fig. 3: Example of forward retiming of buffers and splitters.

(b) Configuration after retiming

B/S elements have been reduced from 6 to 5.

V. OPTIMIZATION FLOW

In this section, we present a flow for AQFP mapping
consisting of B/S insertion followed by B/S optimization. The
optimization flow is shown in Algorithm 5.

The mapping algorithm takes a MIG as an input expressing
the AQFP circuit functionality. Then, the circuit is scheduled
both in ALAP and ASAP using the algorithms in Section III.
The circuit with fewer B/S elements is selected for generating
the AQFP circuit. This choice reduces the run time of the
optimization flow since the starting AQFP circuit would con-
tain less B/S elements. The best choice for quality of results
is instead to proceed with a portfolio approach consisting of
carrying the optimization with both the ALAP and ASAP
schedules and picking the best final result. Then, the algorithm
starts the optimization phase. It first performs an initial B/S
retiming. Next, an optimization loop applies one pass of the
chunk movement algorithm in [10], retiming, and deterministic
randomization. The latter function picks a different topological
ordering to escape local minima and find different fanout
groupings when constructing splitter trees. The loop is iterated
until no further improvement or iteration limit is reached.
Finally, the mapped and optimized AQFP circuit is returned.

VI. EXPERIMENTS

The optimization framework has been implemented in C++
17 in the logic synthesis framework Mockturtle' [19]. The

! Available at: https://github.com/Isils/mockturtle
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Algorithm 5: Splitters and buffers insertion method

Input : MIG network N4, technology assumptions ps
Output: AQFP circuit M

M < empty network;

dapap < ALAP(Nmig, ps);

dasap < ASAP(Nmig, ps, darap);

if num_bs(dapap) < num_bs(dasap) then

M < dump_circuit(Nymig, darap, pS);

dir < forward;

E-I-CREEN B Y N L

else

[
<

M < dump_circuit(Nmig, dasap, ps);
11 dir < backward;

end

bs_retiming(M, ps, dir);
while improvement do
chunk_movement(M, ps);
bs_retiming(M, ps, dir);
det_randomize(M);

end
return M

experiments have been conducted on an Intel i5 quad-core
2GHz on MacOS. All the results were verified to fulfill the
path-balancing and fanout-branching assumptions.

A. Evaluation of the Retiming Algorithm

In this experiment, we evaluate the retiming-based optimiza-
tion algorithm. The benchmarks have been obtained from the
MCNC benchmark suite [20]. To show the potential of our
B/S retiming optimization over other approaches, we apply
our method to already optimized AQFP circuits. Those circuits
have been generated using the scheduling-based optimization
in [10], which is available in the library Mockturtle, until
convergence. In this experiment, the splitting factor is s, = 3.
We assume that PIs and POs need to be balanced and branched.

Table I shows the results of our retiming-based optimization
(Algorithm 4). The retiming-based algorithm reduces the num-
ber of B/S elements up to 17.1%. Since the approach in [10]
does not guarantee depth-optimality, our retiming approach
also reduces the depth up to 17.8%.

B. Comparison Against the State of the Art

In this experiment, we compare our approach to the state-
of-the-art method [12]. The benchmarks have been obtained
from the authors of the paper’. We use the same settings by
balancing and branching PIs and POs using a splitting capacity
of Sp = 4.

Table II shows the results of the comparison. Our ap-
proach (Algorithm 5) performs significantly better in almost
every benchmark reducing the number of B/S elements up to
20% with a 55x speed-up compared to the state-of-the-art
approach. Our results improve even more using a portfolio
approach®. The portfolio approach reduces the total number
of B/S elements to 50002 while maintaining a 19X speed-up.

>The benchmarks contained redundant gates and inverter cells. Since
the Mockturtle framework automatically applies structural hashing to the
networks, the starting points of the experiments are slightly different.
3Results are not included in the table for space reasons.



TABLE I: Evaluation of the retiming-based optimization

Benchmarks Initial circuit Scheduling-based opt. [10] Retiming optimization
Size  Depth #B/S #1Js 1] Depth #B/S #1Js 1] Depth
c1908 381 38 2820 7926 64 2591 7468 60
c432 174 44 2220 5484 68 2100 5244 64
c5315 1270 33 9457 26534 60 9247 26114 60
c880 300 28 2159 6118 42 2060 5920 42
chkn 421 28 1241 5008 38 1126 4778 34
count 119 18 766 2246 29 635 1984 24
dist 535 16 809 4828 28 770 4750 23
in5 443 19 1042 4742 30 972 4602 27
in6 370 17 884 3988 23 884 3988 23
k2 1955 25 4171 20072 43 4167 20064 43
m3 411 13 620 3706 22 620 3706 22
max512 713 17 1078 6434 28 1078 6434 28
misex3 1532 24 2879 14950 38 2879 14950 38
mlp4 462 16 653 4078 26 653 4078 26
prom2 3477 22 5300 31462 33 5300 31462 33
sqr6 138 13 246 1320 20 246 1320 20
xldn 152 14 428 1768 22 378 1668 20
Total 36773 150664 614 35706 148530 587

The higher JJ depth of our method in benchmark ¢2670 is due
to the structural hashing pre-processing.

C. Results on the EPFL Benchmark suite

In this experiment, we applied our B/S insertion and op-
timization method (Algorithm 5) to the EPFL benchmark
suite* [21] to demonstrate its scalability. The baseline has been
obtained by mapping the benchmarks into MIGs using the
graph mapper in [22] in the delay mode. In this experiment,
PIs and POs are balanced and branched, and the splitting
capacity s, = 4. To decrease the run time, we limited the
retiming iterations to 250, the size of the chunks to 100, and
we executed the main optimization loop once. Moreover, we
limited the execution run time budget to 300 seconds.

Table IIT shows the experimental results after depth-optimal
B/S insertion and after carrying the optimization in Algo-
rithm 5. The B/S insertion algorithm scales very well with
limited run time for all the benchmarks. The B/S optimization
reduces the number of splitters up to 37.83% and the total
area up to 24.04%.

VII. CONCLUSION

In this work, we studied the buffer and splitter insertion
problem in AQFP circuits. While existing work focused only
on area [7], [10], [12], in this paper we stated the importance
of delay reduction to minimize the path-balancing costs and
consequently benefit the area. We demonstrated that there
exists a linear time algorithm based on ALAP scheduling
to insert buffers and splitters such that the resulting AQFP
circuit is globally depth-optimal. In this regard, we proposed
two depth-optimal B/S insertion policies based on ALAP and
ASAP scheduling that run in linear time to the number of
logic gates in the circuit. Next, we presented a novel algorithm
to minimize buffers and splitters based on minimum register
retiming. We showed that this method improves up to 17%

4Available at: https://github.com/Isils/benchmarks

previously optimized AQFP circuits. Finally, we proposed a
B/S insertion and optimization flow based on the algorithms
in this paper and the chunk movement algorithm in [10]. Our
approach reduces the number of B/S elements up to 20% while
guaranteeing optimal depth and providing a speed-up of 55x
compared to the state-of-the-art method.
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