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A B S T R A C T

We present a new method for electrochemical sensing, which compensates the fouling effect of propofol
through machine learning (ML) model. Direct and continuous monitoring of propofol is crucial in the
development of automatic systems for control of drug infusion in anaesthesiology. The fouling effect on
electrodes discourages the possibility of continuous online monitoring of propofol since polymerization of
the surface produces sensor drift. Several approaches have been proposed to limit the phenomenon at the
biochemical interface; instead, here, we present a novel ML-based calibration procedure. In this paper, we
analyse a dataset of 600 samples acquired through staircase cyclic voltammetry (SCV), resembling the scenario
of continuous monitoring of propofol, both in PBS and in undiluted human serum, to demonstrate that ML-
based model solves electrode fouling of anaesthetics. The proposed calibration approach is based on Gaussian
radial basis function support vector classifier (RBF-SVC) that achieves classification accuracy of 98.9% in PBS,
and 100% in undiluted human serum. The results prove the ability of the ML-based model to correctly classify
propofol concentration in the therapeutic range between 1μM and 60μM with levels of 10μM, continuously up
to ten minutes, with one sample every 30s.
. Introduction

Continuous Therapeutic Drug Monitoring (TDM) is the clinical prac-
ice of constantly measuring the drug concentration in the effort of
ptimizing the drug dosage to each patient. Real-time monitoring of
edative drug concentrations (such as midazolam and sufentanil) was
roved to be beneficial to avoid inadequate sedation and its complica-
ions in intensive care units for mechanically ventilated patients (Nies
t al., 2018). In general intravenous anaesthesia, the optimal therapy
equires the continuous monitoring of the concentration of the anaes-
hetic to maintain a certain level of sedation during the surgery, which
s essential to avoid useless deep states and prolonged chemical coma.
ropofol (2,6-diisopropyl phenol) is the most commonly used intra-
enous anaesthetic (Sahinovic et al., 2018). However, high concentra-
ions of propofol are dangerous: common side effects include irregular
eart rate, low blood pressure, addiction and stopping of breathing.
n particular, propofol infusion syndrome is a rare complication of
ropofol administration presenting a high death rate, requiring an
ccurate prevention (Mirrakhimov et al., 2015). A real-time feedback-
ontrolled algorithm that uses as input the continuously monitored
oncentration of propofol ensures both more precise and safer sedation

∗ Corresponding author at: Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy.

than what is currently achieved without closed-loop system (Simalatsar
et al., 2018).

Biosensors are playing a relevant role in numerous fields of appli-
cation including healthcare, environment, and food industries (Kumar
et al., 2019) and may be used for point-of-care diagnostics (Mahato
et al., 2018). Electrochemical sensors have taken high relevance for
propofol monitoring (Kivlehan et al., 2015; Stradolini et al., 2018a),
especially, cyclic voltammetry (CV) techniques (Aiassa et al., 2019a).
With this approach, some electronic systems were proposed for the
monitoring of anaesthetics, e.g., propofol and paracetamol (Stradolini
et al., 2018c; Aiassa et al., 2019b). The sensor is a three electrodes
electrochemical cell consisting of a reference electrode (RE), a counter
electrode (CE) and a working electrode (WE). A potentiostat applies
a voltage sweep to the electrochemical cell, and then it samples the
current produced by the induced redox. By analysing the shape of the
so-called voltammogram (current upon the voltage), it is possible to
extract the concentration of the drug in the sample.

Although numerous sensors have been proposed for detecting and
measuring propofol, achieving Limit Of Detection (LOD, the minimum
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Fig. 1. Proposed machine-learning based approach for continuous monitoring of propofol: from left to right, the sample is analysed through electrochemical sensors and CV to
extract relevant features to be fed a ML-based that determines the range of concentration of the propofol, compensating the fouling effect.
concentration detectable by the sensor) of 0.5 μM (0.1 μg/ml) in only
25 s (Hong et al., 2016), most of those sensors leverage on blood-spot
sampling with disposable sensors, most of the time single-use (Dincer
et al., 2019), which cannot be used in an automatic TDM closed-loop
system.

In continuous detection of propofol, when a difference of potential
is applied to trigger the direct oxidation, a propofol free radical is
generated (Langmaier et al., 2011). Unfortunately, free radicals react
with O2 or they undergo polymerization, leading to the formation
of a polymeric film (Heyne et al., 2003; Stradolini et al., 2018b).
The polymeric thin film covering the electrodes may degrade the
sensor signal leading to the fouling phenomenon (Yang et al., 2013).
The fouling film is robust, with low permeability, thermally stable
and chemically inert itself. Being composed of high molecular weight
species, it adheres tightly to the electrode. The fouling is highly limiting
the development of closed-loop systems for monitoring of anaesthetics
because continuous monitoring of propofol requires high stability in
time.

The literature presents a few attempts to solve the propofol fouling
problem. Good results were achieved by coating the electrode with
a PVC membrane (Kivlehan et al., 2015). Still, its low mechanical
resistance constrains to carry out electrode cleaning in order to ensure
the long term performances (Stradolini et al., 2018b), which, on the
other hand, limits the final application since it requires constant human
intervention. Commercial pencils are suitable for propofol detection,
and their composition balances the fouling effect (Stradolini et al.,
2018a). Nevertheless, sensor response highly depends on the confor-
mation of the sensor, where any small change in geometry, size, and
composition results in a drastic drop in sensor performance.

In this work, we propose a novel machine learning (ML)-based cali-
bration procedure to compensate the fouling effect. Our ML classifier is
implemented to identify the correct concentration of propofol in a given
sample to contribute to the development of a system for closed-loop
controlled infusion of anaesthetic. Our classifier is designed, and its
parameters are optimized using a large dataset of 480 samples acquired
in PBS background. Later, the model is validated with a smaller, still
representative, dataset of 120 samples for direct monitoring of propofol
in undiluted human serum.

2. Machine learning for continuous monitoring

Soft modelling techniques based on ML models are commonly cou-
pled to biosensors as tools for solving complex mathematical models
related to biochemical processes (Esteban et al., 2006; De Vito et al.,
2018). Applications such as peak deconvolution, pH, temperature and
fouling compensation have been successfully applied to e-tongues and
e-noses cyclic voltammograms by the aid of ML models, such as sup-
port vector machines and artificial neural networks (ANNs) (del Valle,
2017; De Vito et al., 2018; Wang et al., 2019). Those systems extract
relevant features from biochemical analysis, and they provide them
to ML-based algorithms to build complex mathematical models. For
ANN-based ML-based techniques, key components to be extracted from
a cyclic voltammogram are the peak position, peak height, peak width
half-height, peak sum of derivatives, and charge (Asir et al., 2019).
2

The fouling phenomena in phenolic compounds are characterized by
a strong non-linear response, limiting the application of pre-established
mathematical models. Chemometric techniques based on ML have been
successfully applied to compensate for the lack of theoretical mod-
els (Apetrei and Apetrei, 2013; Maleki et al., 2017; Li et al., 2019;
Sheng et al., 2019). To the best of our knowledge, an ML algorithm
specifically designed to balance the fouling of propofol has never been
proposed.

Recent works suggested that monitoring controlled-delivery of
anaesthetics may be achieved with a 10 % accuracy around the target
concentration, and with one measurement every 30 s, continuously in
time, while the therapeutic concentration of propofol ranges between
0.25 mg/l and 10 mg/l (1 : 60 μM) (Simalatsar et al., 2018). The goal
of this work is to develop a technique suitable for the continuous
measurement of propofol concentration every half a minute and able to
discriminate the concentration level lower than 12 μM. Fig. 1 presents
the proposed ML-based method. Through an electrochemical sensor and
CV technique, the redox of propofol is analysed. From the voltammo-
gram, several peculiar features are extracted and fed to the ML-based
classifier. The classifier determines the concentration level of propofol
in the sample in the form of classes, compensating fouling of propofol.
According to the requirements, we subdivided the therapeutic range
into classes representing concentration levels of 10 μM. The developed
ML classifier provides the anesthesiologist with a tool for direct de-
termination of the concentration of propofol in human serum. The
classifier, compared to a regressor, directly provides the information
required to maintain the constant-dose in the range of interest.

3. Materials and methods

In this work, chemicals, setup, and sensor (Section 3.1) are defined
leveraging of previous works that had been proven to be suitable for
the monitoring of anaesthetics (Stradolini et al., 2018a; Tuoheti et al.,
2020). Section 3.2 describes the procedure for acquiring the samples,
which resembles the real scenario of the target application. The dataset
elaboration is detailed in Section 3.3, and used to train an ML-based
algorithm, which is fully described in Section 3.4.

3.1. Chemicals

A stock solution of 5.4 mM propofol is prepared on the day of use
with 2,6-Diisopropylphenol (propofol) purchased from Tokyo Chemical
Industry Co., Ltd. and dissolved in 0.1 M NaOH. The samples are
prepared with seven concentrations of propofol, equally spaced in its
therapeutic range: 10, 20, 30, 40, 50, and 60 μM. The samples for
primary analysis, and the training and testing sets for the ML classifiers
are prepared in Phosphate Buffer Saline (PBS, 10 mM, pH 7.4) from
Sigma Aldrich®. The final testing is done with real and undiluted
human serum with the addition of propofol in the therapeutic range at
body temperature, which artificially mimics the infusion of anaesthetic
done in the clinical environment. The samples for classification in
human serum are prepared in undiluted human serum, heat-inactivated
from human male AB plasma, from Sigma-Aldrich®, and they are

◦ ®
continuously kept at 37 C by a hot plate stirrer from VWR .
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Fig. 2. Proposed experimental setup: the three-electrode electrochemical cell consisting
of two pencil lead (WE and CE) and a platinum wire (RE) that are immersed in the
sample containing propofol dissolved in ether PBS or Human Serum. The wires are
connected to the potentiostat to perform CV.

The sensor is a three-electrode electrochemical cell consisting of two
0.5 mm diameter HB mechanical pencil lead from Papeteria Migros,
and one 0.3 mm diameter platinum wire as shown in Fig. 2. Similarly
to what presented in Tuoheti et al. (2020), the WE consists of one
pencil lead, exposed to the sample for 10 mm of its length, resulting
in an active area of around 32 mm2. The CE is the other pencil lead
exposed to the sample for 15 mm to maintain a ratio between the area
of WE and CE smaller than one. The RE is the platinum wire exposed
to the sample for 10 mm. A silicon disc keeps the cell stable, and
the electrodes are directly wired on their top to the instrumentation.
The design of the electrochemical cell is the result of a long study
performed through potassium ferrocyanide to define the best geometry
for a disposable and miniaturized sensor. It is worth to be noticed
that the platinum pseudo-reference electrode utilized in this work did
not show any visible difference of stability when compared to silver
reference electrodes present on commercial screen-printed electrodes.
The selectivity of this type of pencil graphite sensors has been proven to
be optimal for the detection of propofol in human serum for the target
application through interference studies in previous works (Stradolini
et al., 2018b).

3.2. Data collection

According to the description in Section 2, the proposed sensor is
capable of compensating fouling in real-time, at a fixed concentration
of analyte in its therapeutic range. For this reason, all the samples
prepared according to Section 3.1 are measured twenty consecutive
times, with an interval time of 30 s, to be consistent with the continuous
monitoring target of this work.

The proposed sensor is connected to a commercial potentiostat,
the Metrohm Autolab PGSTAT 302N, driven by the software Nova
1.11. The analysis of the sample is performed via a staircase cyclic
voltammetry (SCV) procedure. The SCV is executed with a scan rate
of 0.1 V/s, with a driving voltage ranging in – 0.8 : 0.7 V, with a step
voltage height of 5 mV, and a step time length of 30 ms, starting from
0 V, reaching up to 0.7 V, lowering down to – 0.8 V, and finally settling
again at 0 V. It is worth noticing that the procedure is not formally
cyclic because the proposed method entails that the fouling is limited to
its minimum. Cycling the voltage scan more than one time per measure
would catastrophically reduce the lifespan of the sensor.
3

3.3. Dataset

The dataset consists of 𝑚 = 480 samples acquired from four different
sensors in PBS and 𝑚 = 120 samples obtained in human serum. The
dataset in PBS has been extended with respect to the human serum
one in order to improve the optimization process of the ML-based
algorithm and its parameters. Each recorded sample is a voltammogram
relating the current measured in function of the potential applied to
the electrochemical cell. The voltammograms acquired from propofol
measurements at known concentrations are analysed in order to extract
three relevant features the peak current, the potential at peak current,
and the total charge. The peak Faradaic current 𝑖𝑝 is the current result-
ing from primary propofol oxidation, with the removal of the baseline
charging current. 𝐸𝑝 is the cell potential at which the peak current is
achieved. 𝑖𝑝 and 𝐸𝑝 are the most relevant features for characterizing the
electrochemical measurements (Carrara, 2012). Moreover, the integral
of the voltammogram in the window 0 : 0.7 V is computed. The latter is
the total charge exchanged during primary propofol oxidation, denoted
as 𝑄, that has been proved to be relevant in the determination of
drugs (Aiassa et al., 2020). Lastly, the ordinal number of measurements
performed with the same sensor, 𝑛𝑚𝑒𝑎𝑠, is added to the feature list. The
input features matrix X is first standardized by removing column mean,
and scaled to unit variance. This is of paramount importance since
the features have different unit scales. The dataset is then split into
a training and test set of ratio 80% / 20%.

3.4. Support vector classifier

Given the nonlinearity induced by the fouling on the sensor re-
sponse, non-linear classifiers are considered in this work. Kernelized-
SVCs are suitable for non-linear classification problems by constructing
the optimal hyperplane in the features space induced by a kernel
function (Cortes and Vapnik, 1995). The SVC predicts propofol concen-
tration class of unknown samples according to distance or similarity
of the samples to the training instances. All processing stages and
algorithms are implemented within a Python 3.7.4 environment, using
NumPy and scikit-learn libraries (Pedregosa et al., 2011).

Let 𝐗 = {𝐱𝑖}𝑖=1,…,𝑚, with 𝐱𝑖 ∈ R𝑛, denote the input tensor of m sam-
ples and n features. Let 𝐲 ∈ R𝑚 denote the vector labelling the propofol
concentration of each measurement, where each target concentration
(10, 20, 30, 40, 50, and 60 μM) is encoded into a categorical class with
values from zero to five. The objective of the six-class classifier is to
construct a predictor based on the training set (𝐗𝑡𝑟𝑎𝑖𝑛, 𝐲𝑡𝑟𝑎𝑖𝑛) that is able
to divide the input features space into a collection of regions belonging
to each class. The decision boundaries are refined in the training
process, for which the metric used is the classification accuracy:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

# 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
(1)

During inference, the predicted class indicates the range of concen-
tration of propofol in the sample. In kernelized-SVCs the optimization
objective is

min
𝜶

1
2
𝜶𝑇 ⋅𝐌 ⋅ 𝜶 − 𝐞𝑇 ⋅ 𝜶

subject to 𝐲𝑇 ⋅ 𝜶 = 0,

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… , 𝑚,

(2)

where 𝐌 is an m by m positive semi-definite matrix 𝑀𝑖𝑗 = 𝑦𝑖 ⋅ 𝑦𝑗 ⋅
𝐾(𝐱𝑖, 𝐱𝑗 ), and 𝐾(𝐱𝑖, 𝐱𝑗 ) ≡ 𝜙(𝐱𝑖)𝑇 ⋅ 𝜙(𝐱𝑗 ) is the equation defining the
SVC kernel. 𝐞 is a vector of ones of length m. 𝐶 is a regularization
hyper-parameter tuning the tolerance of margin violations. Linear,
polynomial, Gaussian radial basis function (RBF), and sigmoid kernels
are investigated. The training instances are shuffled, and ten-splits
cross-validation is performed, where the metric used is the prediction
accuracy based on decision boundaries. The ten splits are stratified
to preserve the number of samples per class in each training and
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validation split (80% / 20%). An analysis is carried out to assess how
the type of kernel, and the features to be considered in the dataset,
influence SVC performance. Then, a cross-validation grid-search on
the kernelized-SVC hyper-parameters is carried out to optimize the
classifier. Finally, the classification performance of the optimal SVC is
evaluated on the test set. LIBSVM library is used, where a one-versus-
one scheme is adopted for the multi-class classification (Chang and Lin,
2011).

4. Results

Section 4.1 presents the performance of the sensor for propofol
detection through standard metrics and shows the limitation of a
linear model in the given application. Several experiments and analysis
are carried out to implement the here proposed ML-based algorithm.
Namely, the optimal kernel is selected (Section 4.2), the best set of
features is defined (Section 4.3), and the parameters of the classifier are
optimized (Section 4.4). The previous experiments are performed with
the dataset obtained from the 480 samples in PBS background. Such a
stable background may facilitate the identification of the best ML model
for the compensation of propofol fouling. Finally, in Section 4.5, the
proposed ML-based SVM is validated on human serum.

4.1. Limits of standard linear model

Fig. 3 presents the resulting voltammogram obtained by repetitively
acquiring the Faradaic current in a sample of 60 μM of propofol,
considering PBS (Fig. 3a), and human serum (Fig. 3b) as background.
Even though both the sensor and the concentration of propofol are
not varying, the curves are radically varying. Fig. 3a illustrates fouling
on the carbon surface of the electrode in PBS. Namely, every new
measurement the fouling layer increases on the interface, reducing the
height of the primary oxidation peak (A), and shifting the peak itself
to the right. Peak B and C are substantially changing in time, similarly
to A, presenting fouling as well. In this work, the analysis focuses
on the primary peak A, which is the best candidate to determine the
concentration of propofol, due to higher magnitude which improves
sensitivity, and higher distance from other peaks, which enhances
selectivity.

Fig. 3b shows a detail of peak A in the undiluted human serum,
obtained by baseline subtraction and filtering. The human serum con-
tains proteins completely absent in PBS, which embed and adsorb the
propofol. For this reason, the free propofol detectable in serum is lower
than in PBS, resulting in reduced Faradaic current, signal strength, and
reduced sensitivity (Stradolini et al., 2018c). As expected, the current
peak is lower (one fifth), and the passivation due to fouling is again
visible.

The full dataset acquired is elaborated to extract the sensor calibra-
tion according to the linear model commonly used in electrochemical
sensors (Aiassa et al., 2019a) to evaluate the limitation introduced by
the fouling phenomenon. The calibration relates linearly the primary
oxidation current peak and the propofol concentration recalling the
Randles-Ševćik equation (Carrara, 2012). The calibration is performed
using 80 % of the samples, to be consistent with the ML-based method.
The linear calibration procedures resulted in a sensor with a sensitivity
of 162.9 ± 10.3 nA/μM and a LOD of 2.4 ± 0.1 μM with PBS as
ackground. In human serum, the sensor presented a sensitivity of
8.8 ± 7.7 nA/μM and LOD of 4.9 ± 1.3 μM. The sensitivity has been
alculated as the coefficient of regression through linear regression fit,
hile LOD has been computed as three times the standard deviation
f the blank signal around the peak, over the sensitivity (Stradolini
t al., 2018a). Both sensitivity and LOD variations are computed with
he residual sum of squares of three times standard deviation of each
bservation.

Despite being promising, the two extracted linear calibrations
resent their limits only when considering the measurements in time.
4

Fig. 3. Voltammogram from propofol detection in time at fixed 60 μM in PBS (a), and
in human serum (b). In human serum, the peak is graphically highlighted by baseline
subtraction, and filtering since the lower free concentration of propofol reduces its
visibility. In both cases, the peak A lowers in current after each new measurement due
to the fouling phenomenon.

Reporting the linear model to a six-classes classifier, as the ML-based
model will do in this work, the classification accuracy tested on the
remaining 20 % of the samples are 69.8 % and 33.3 % in PBS and
human serum, respectively. This analysis proves that it is not possible to
develop a system for continuous monitoring of propofol concentration
without compensating the non-linear fouling effect with a non-linear
model.

4.2. Kernel selection

The selection of the most appropriate kernel for the classification
of propofol is exploited implementing linear, polynomial, RBF, and
sigmoid SVCs with their default hyper-parameters. The classifiers de-
cision boundaries are constructed from the training set in the space
built by the combination of standardized peak current and standardized
potential at peak current (𝑖 −𝐸 space). The latter are the main features
𝑝 𝑝
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Table 1
Selection of the appropriate kernel for propofol classification: comparison among different kernelized-SVCs
in 𝑖𝑝 − 𝐸𝑝 features space with their default hyper-parameters. The best results are achieved with RBF-SVC.

Kernel type Linear Polynomial RBF Sigmoid

Kernel function 𝐾(𝐱𝑖 , 𝐱𝑗 ) 𝐱𝑇𝑖 ⋅ 𝐱𝑗 (𝛾 ⋅ 𝐱𝑇𝑖 ⋅ 𝐱𝑗 + 𝑟)𝑑 exp (−𝛾‖𝐱𝑖 − 𝐱𝑗‖2) 𝑡𝑎𝑛ℎ(𝛾 ⋅ 𝐱𝑇𝑖 ⋅ 𝐱𝑗 + 𝑟)
Kernel hyper-parameters – 𝛾 = 1∕𝑚, 𝑟 = 0, 𝑑 = 3 𝛾 = 1∕𝑚 𝛾 = 1∕𝑚, 𝑟 = 0
Soft-margin penalty parameter 𝐶 = 10 𝐶 = 10 𝐶 = 10 𝐶 = 10
Classification accuracy 43.8% 86.5% 90.6% 33.3%
Fig. 4. Cross-validation classification accuracy of RBF-SVC trained with four combina-
tions of input features. The box plots extend from lower to upper quartile values of
cross-validation accuracy, with median (dotted blue line) and average (red line), and
whiskers show the range of classification accuracy. The complete set of feature ({𝑖𝑝, 𝐸𝑝,
𝑛𝑚𝑒𝑎𝑠, 𝑄}) shows visibly an higher accuracy, that cannot be reached with less features.

to characterize propofol electrochemical measurements. The different
classifiers are trained with ten-splits cross-validation on the training
set and evaluated on the test set. The four different kernel function,
the kernel hyper-parameters, and their classification performance are
reported in Table 1. The decision boundaries of each kernelized-SVC
are visualized in Supplementary Material, Fig. S3. Linear and sigmoid
kernels are not suitable for detection of propofol (see Table 1). Mean-
while, non-linear kernels enable computing the decision hyperplanes
in the space of higher dimension. Polynomial and RBF are the most
accurate kernels, and the decision boundaries are smoothly separating
the classes. RBF kernel is chosen for the subsequent experiments since
it yields the higher classification accuracy of 90.6 % on the test set.

4.3. Features selection

Different combinations of input features are evaluated on the RBF-
SVC. This optimization will help to understand the effect of the differ-
ent features extracted from the voltammograms on the classification
accuracy of the ML model. The possible combinations of features
considered are {𝑖𝑝, 𝐸𝑝}, {𝑖𝑝, 𝐸𝑝, 𝑛𝑚𝑒𝑎𝑠}, {𝑖𝑝, 𝐸𝑝, 𝑄}, and {𝑖𝑝, 𝐸𝑝, 𝑛𝑚𝑒𝑎𝑠,
𝑄}. All the different input sets are fed to the classifier, and a ten-splits
cross-validation is performed on the training set. The cross-validation
accuracies are presented in Fig. 4 with a whisker plot. It highlights
that classification accuracy scales with the amount of features included
in the dataset. Indeed, it could be noticed from Supplementary Ma-
terial, Fig.S3, that samples belonging to classes two and three are
mis-classified in features space 𝑖𝑝 −𝐸𝑝, since the samples are intermin-
gled. Besides, for the set of features {𝑖𝑝, 𝐸𝑝, 𝑄}, classification accuracy
is more dispersed, and it is lower than using 𝑛𝑚𝑒𝑎𝑠 instead of 𝑄. There is
a high correlation between the charge exchanged during propofol oxi-
dation and the peak oxidation current. When the training set contains
all four features, significant improvement in cross-validation accuracy
is observed, and the latter reaches 0.970 ± 0.020.
5

4.4. Hyper-parameters optimization

RBF-SVC hyper-parameters are tuned through cross-validation grid-
search in order to optimize the hyper-parameters of our proposed
ML model. The non-linear coefficient 𝛾 is swept from 10−9 to 103,
while the soft margin penalty parameter 𝐶 is swept from 10−2 to
1010. Both sweeps are performed in logarithmic scale, training 169 SVC
models. The training set (𝐗𝑡𝑟𝑎𝑖𝑛, 𝐲𝑡𝑟𝑎𝑖𝑛) comprising the four features is
shuffled, and ten-splits cross-validations are implemented. The training
and validation accuracies are computed for each split. Their average
value is retained for classifier comparison. Supplementary Material,
Fig. S2, displays the heatmap of the cross-validation accuracy on hyper-
parameters, highlighting the hyper-parameter space yielding the most
accurate classifier. It is observed that for large values of 𝛾, the support
vectors are not able to separate the samples. They influence very few
training instances. Conversely, a low value of 𝛾 over-constrains the
classifier model, that ends up behaving like a linear classifier. The
classifier does not capture the complexity of the non-linear dataset.
As for the soft-margin penalty parameter 𝐶, a lower value is preferred
to reduce over-fitting trading-off accuracy. Larger values for 𝐶 tend to
generalize better, but maximum accuracy is reached for 𝐶 = 104, and it
does not improve beyond. RBF-SVC models with 𝐶 lower than 104, and
yielding cross-validation accuracy above 97.5 % are evaluated on the
test set. RBF-SVC with parameters {𝐶 = 100, 𝛾 = 1} yields classification
accuracy of 98.9 %.

4.5. Validation in human serum

After the selection of the best ML-based model for propofol foul-
ing compensation in PBS buffer, the proposed RBF-SVC classifier is
validated in undiluted human serum at the body temperature (37 ◦C).
The CV dataset from propofol measurement in human serum is pre-
processed as the dataset from PBS. The column mean-centring and
standardization to unit-variance are applied, and the dataset is split
into training/test set of ratio (80% / 20%). All four features {𝑖𝑝, 𝐸𝑝,
𝑛𝑚𝑒𝑎𝑠, 𝑄} are sent to the classifier and a cross-validation grid-search is
carried out for the optimization of the hyper-parameters 𝐶 and 𝛾. The
RBF-SVC models yielding cross-validation accuracy superior to 94.0 %
are selected, and evaluated on the test set. The same RBF-SVC which
obtained the higher performance in PBS (with {𝐶 = 100, 𝛾 = 1}),
yields the best results also in human serum. The maximum classification
accuracy achieved by our model, in human serum, is 100 %, with a null
generalization error. The lower error and higher gain achieved by the
classifier in serum with respect to the PBS is justified by the smaller
dataset, 120 samples for human serum and 480 samples for PBS.

Fig. 5 displays the results of the validation carried directly in
undiluted human serum, in the form of confusion matrices, which
presents the prediction accuracy graphically. As visible in Fig. 5a the
standard linear model features a classification accuracy of 33.3 %,
leading to a wrong estimation of the concentration in 66 % of the cases.
Meanwhile, the proposed ML-based model with the RBF-SVC classifier
(Fig. 5b) compensates the fouling resulting in an accuracy of 100 %.
With this result, we prove that our sensor is suitable for continuous
monitoring of propofol for up to ten minutes, with one sample every

30 s, discriminating concentration levels of 10 μM.
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Fig. 5. Results of validation in undiluted human serum: the confusion matrices show
the difference between real concentration (true class) and the concentration estimated
(predicted class). While the standard linear model (a) leads to wrong estimation 33 %
of the time, the proposed ML-based model (b) always outputs a correct result.

5. Discussion

Previous works had proven that it is possible to detect propofol
with small LOD with inexpensive and disposable sensors (Hong et al.,
2016). At the same time, Simalatsar et al. (2018) opened the need for
sensors for continuous monitoring of anaesthetics for improved TDM-
assisted anaesthesiology practice. With this goal in mind, Kivlehan et al.
(2015) and Stradolini et al. (2018a) faced the problems of fouling and
electrode-passivation in continuous measurement of propofol using new
materials and new mechanical procedures. In this work, we demon-
strated, on one hand, the difficulties of using standard linear models
in continuous measuring of propofol, on the other hand, we proposed
a novel soft-modelling based solution to compensate via ML-based
method the problem of fouling.

The proposed sensor itself features LOD of 4.9 ± 1.3 μM in real
undiluted human serum, which is ten times more than the LOD reached
by Hong et al. (2016), but still below the minimum concentration of
interest (10 μM). More comparisons on the LOD with respect to the
state-of-the-art are available on Supplementary Material, Table S1. The
kernelized-SVM has been proven to be optimal for compensating the
problem of fouling since it reaches 100 % of accuracy in real undiluted
human serum at steady 37 ◦C in discriminating 10 μM of propofol.
Moreover, extensive experiment and optimization have demonstrated
that the best kernel for SVM in this application is RBF, with the best
parameter set to {𝐶 = 100, 𝛾 = 1}, considering as input feature the
Faradaic primary current peak (𝑖𝑝), the potential at the current peak
6

(𝐸𝑝), the total charge exchanged during Faradaic process (𝑄), and the
ordinal number of measurements performed with a given sensor since
it was new (𝑛𝑚𝑒𝑎𝑠).

6. Conclusion

We developed a novel ML-assisted method to compensate the foul-
ing effect of propofol on electrochemical sensors to improve the anaes-
thesiology practices. Through extensive analysis, we demonstrate that
the proposed model based on Gaussian RBF-SVC helps to obtain high
classification accuracy (higher than 98.9 %) both in PBS and in human
serum. Our ML-based model discriminates 10 μM concentration with
100 % classification accuracy, directly in undiluted human serum at
body temperature, and continuously up to ten minutes to meet the
requirement for the development of a system for closed-loop controlled-
infusion of anaesthetics. Future work will include the implementation
of the proposed model in a portable electronic device for continuous
monitoring of anaesthetics and its test with clinical samples.
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