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Abstract—In this paper, we present new optimization tech-
niques for the recently introduced Majority-Inverter Graph (MIG).
Our optimizations exploit intrinsic algebraic properties of MIGs
and aim at rewriting the complemented edges of the graph
without changing its shape. Two exact algorithms are proposed to
minimize the number of complemented edges in the graph. The
former is a dynamic programming method for trees; the latter
finds the exact solution with a minimum number of inversions
using Boolean satisfiability (SAT). We also describe a heuristic
rule based algorithm to minimize complemented edges using local
transformations. Experimental results for the exact algorithm to
fanout-free regions show an average reduction of 12.8% on the
EPFL benchmark suite. Applying the heuristic method on the
same instances leads to a total improvement of 60.2%.

I. INTRODUCTION

Nanotechnologies are recently being studied as replacement
or enhancement for CMOS. Devices in these nanotechnologies
have logic models different from standard transistors and many
of them realize majority gates as primitive building blocks.
Examples of these nanotechnologies are Quantum-dot Cellular
Automata (QCA, [1], [2]), Spin Wave Devices (SWD, [3], [4]),
Spin-Transfer-Torque Devices (STT, [5]), Resistive Random
Access Memories (RRAMs, [6], [7], [8]). To properly assess
these post-CMOS technologies, Electronic Design Automation
(EDA) tools necessitate new logic synthesis techniques and
abstractions [9]. Much work concerning majority synthesis
has been carried out back in the 1960s [10], [11]. Recently,
Majority-Inverter Graphs (MIG, [12]) are found to suitably
abstract novel majority based nanotechnologies [13], [14],
besides being a useful tool to reduce area and delay in stan-
dard CMOS circuits. MIGs use the majority-of-three function
〈xyz〉 = xy ∨ xz ∨ yz and negation as only logic primitives;
negations are simply represented as complemented edges in
the graph, similarly as in BDDs.

Inversion minimization plays a predominant role in emerg-
ing technologies whose circuits are built using only majorities
(MAJ) and inverters (INV). Area and delay costs depends
on the number of INVs in the circuit; for instance, a QCA
majority gate and inverter are presented in [2]; the majority
gate requires five QCA cells, while the inverter gate requires
up to 13 QCA cells.

Previous work has considered inversion minimization [15].
In this work, we exploit the intrinsic algebraic properties
of MIGs which allow for superior rewriting possibilities as
compared to other logic representations such as And-Inverter
Graphs (AIGs). As an example, negations can be freely prop-
agated through an MIG using self-duality, i.e., 〈x̄ȳz̄〉 = 〈xyz〉.

In this paper, we present MIG rewriting techniques that
target at optimizing inversions within the logic network. The
core idea is to minimize the number of complemented edges
in the graph without changing its shape. The shape is the
way in which all the nodes are connected through edges by
disregarding complemented edges. We present two exact algo-
rithms to minimize inversions in the MIG. First, we focus on
a dynamic programming algorithm for trees; then we propose
a minimization method based on Boolean Satisfiability (SAT).
These methods show good results, but the former is optimal
for fanout-free MIGs, while the latter can be applied to small
graphs only. We also describe heuristic approaches to obtain
a local minimum in the number of complemented egdes.
Our experimental results show that a reduction of 60.2% is
achieved on average.

The paper is organized as follows. Section II introduces
background on MIG; Section III focuses on the two exact
approaches and on the heuristic method used to minimize
complemented edges. Section IV shows experimental results
and Section V concludes the paper.

II. BACKGROUND

In this section, we describe MIGs [12], [16], [17], which
are logic representation forms based on majority logic. A MIG
is a data structure for Boolean function representation and op-
timization. It is defined as a homogeneous logic network con-
sisting of 3-input majority nodes and regular/complemented
edges.

MIGs can efficiently represent Boolean functions thanks
to the expressive power of the majority operator. Indeed, a
majority operator can be configured to behave as a traditional
conjunction (AND) or disjunction (OR) operator. In the case
of 3-input majority operator, fixing one input to 0 realizes
an AND while fixing one input to 1 realizes an OR. As a
consequence of the AND/OR inclusion by MAJ, traditional
AND/OR/INV Graphs (AOIGs) are a special case of MIGs and
MIGs can be easily derived from AOIGs. An example of MIG
representations derived from its optimal AOIG is depicted by
Fig. 1a. AND/OR operators are replaced node-wise by MAJ-3
operators with a constant input.

Intuitively, MIGs are at least as compact as AOIGs. How-
ever, even smaller MIG representation arises when fully
exploiting the majority functionality, i.e., with non-constant
inputs [12].

We are interested in compact MIG representations because
they translate into smaller and faster physical implementations.
In order to manipulate MIGs and reach advantageous MIG
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Fig. 1. Example (a) of MIG representations (right) for f = x⊕y⊕z derived
by transposing its optimal AOIG representations (left). Complement attributes
are represented by bubbles on the edges. Example (b) of optimized MIG for
f .

representations, a dedicated Boolean algebra was introduced
in [16]. The axiomatic system for the MIG Boolean algebra,
referred to as Ω, is defined by the five following primitive
transformation rules.

Ω



Commutativity – Ω.C
〈xyz〉 = 〈yxz〉 = 〈zyx〉
Majority – Ω.M
〈xxy〉 = x 〈xx̄y〉 = y
Associativity – Ω.A
〈xu〈yuz〉〉 = 〈zu〈yux〉〉
Distributivity – Ω.D
〈xy〈uvz〉〉 = 〈〈xyu〉〈xyv〉z〉
Inverter Propagation – Ω.I

〈xyz〉 = 〈x̄ȳz̄〉

(1)

Some of these axioms are inspired from median algebra
and others from the properties of the median operator in
a distributive lattice. A strong property of MIGs and their
algebraic framework is about reachability. It has been proven
that, by using a sequence of transformations drawn from
Ω, it is possible to traverse the entire MIG representation
space [12]. In other words, given any two equivalent MIG
representations, it is possible to transform one into the other
by just using axioms in Ω. This results is of paramount interest
to logic synthesis because it guarantees that the best MIG, for
a given target metric, can always be reached. Unfortunately,
deriving such an optimal sequence of transformations is an
intractable problem. As for traditional logic optimization,
heuristic techniques provide here fast solutions with reasonable
quality [18]. An efficient depth optimization heuristic has been
introduced that iterates local Ω rules over the critical path in
order to push up variables with late arrival times.

As previously anticipated, by using the MIG algebraic
framework, it is possible to obtain better MIGs for the example
in Fig. 1a. Fig. 1b shows the new MIG structure, which is
optimized in both depth (number of levels) and size (number
of nodes). These MIG can be reached using a sequence of Ω
axioms starting from their unoptimized structures. We refer
the reader to paper [12] for an in-depth discussion on MIG
optimization recipes.

III. INVERSION MINIMIZATION

This section describes the techniques employed to minimize
the number of complemented edges. First, we present two
exact algorithms to minimize inversions in the graph. Then,
we focus on a heuristic minimization method based on the
local manipulation of each node using the axiom Ω.I.

A. Tree based Exact Algorithm

We first present an exact algorithm to minimize comple-
mented edges for the case when the MIG is a tree, i.e., if every
node has at most one output. Here, inversion minimization is
possible using the axiom Ω.I. The axiom 〈xyz〉 = 〈x̄ȳz̄〉 states
that the complemented edges can be moved without neither
changing the number of nodes nor the edges connections in the
graph. For each node, the complemented edges configuration
includes three input edges and one output edge; the original
configuration is the configuration of the node in the MIG,
while the changed configuration is the configuration of the
node changed according to the axiom Ω.I. The cost of a
node is the sum of the number of complemented edges on
three children and the cost of each children. Complements on
constant inputs are not accounted in the cost, since in physical
implementations both constants 0 and 1 are available.

The presented method uses dynamic programming and
computes best configurations in a topological order. We notice
(i) that the cost of complemented edges depends on the cost
of the three children, and (ii) that two optimum configurations
for a node have different effects on the parent node only if
they show opposite polarities for the node’s output.

The algorithm is applied to the nodes going from the inputs
(leaves) to the outputs (roots) of the graph. Since we traverse
the nodes in topological order, for every node v, we know the
minimum complemented edges configuration for each children
and the cost of each configuration.

The algorithm considers two cases depending on which level
the node belongs:

(i) nodes with all children being primary inputs,
(ii) all other nodes.

Case (i): We save both the original configuration of comple-
mented edges and the one changed according to Ω.I . These
two configurations have different output polarities and then
they cause a different effect on the parent node. The two
configurations and their costs are stored.

Case (ii): At this point, we have computed at most two
optimum configurations for each child from which we can
compute at most 8 configurations for the node. From these the
best configuration for each output polarity is saved. If only one
output polarity is covered by all configurations, we apply Ω.I
on the computed configurations and pick the best one from
the newly generated ones.

It is worth noticing that for the output nodes only one
configuration is saved. The configuration with the smallest
cost is saved independently of the output polarity; if two
configurations have the same cost, only one is saved since
there is no effect on the MIG.



The algorithm is explained in Alg. 1. An MIG M =
(V,E, Y ) is a DAG consisting of a finite set of nodes V ,
a finite multiset of edges E and a finite multiset of outputs
Y [19]. The MIG resulting from the algorithm is a new MIG
M̂ with a different complemented edges configuration. The
nodes are evaluated in topological order and depending on
their level. For nodes v with all children being primary inputs,
two configurations are saved, v and v̂. For other nodes, all the
combinations of children configurations are considered. W is
a finite set including all configurations of node v, while Ŵ
consists of configurations changed according to the axiom.
Two configurations are saved, which respectively are the best
one in W and Ŵ . If v is an output node, the configuration
with the lower cost is add to M̂ .

Data: MIG M = (V,E, Y )
Result: Optimized MIG M̂

1 foreach v ∈ topsort(V ) do
2 if all children of v are primary inputs then
3 set v̂ ← Ω.I(v);
4 set conf(v)← {v, v̂};
5 else
6 let v1, v2, v3 be the children of v;
7 set W ← {}, Ŵ ← {};
8 foreach combination v′ of conf(v1), conf(v2),

conf(v3) do
9 set W ←W ∪ {v′};

10 set Ŵ ← Ŵ ∪ {Ω.I(v′)};
11 end
12 set conf(v)← {minW,min Ŵ};
13 if v is an output node then
14 add the best configuration in conf(v) to M̂ .
15 end
16 end
17 end
Algorithm 1: Complemented edges minimization in a tree.

Example 1: Alg. 1 is applied to the MIG in Fig. 2a. We
will use the symbol ˆ for nodes changed according to axiom
Ω.I. First, nodes 1 and 2 are considered since their inputs are
primary inputs only. For these nodes, two configurations are
saved. The costs of the nodes are evaluated and stored. For
instance, for node 1 the cost is equal to 2, while for node
1̂ the cost is 1, since only one input is complemented. Four
configurations are possible for node 3, since two of its children
(1 and 2) have two configurations stored. They are shown in
Fig. 3a. The costs are given by the sum of cost of node 3 and
the costs of its children. Four configurations are possible for
node 3̂ and they are shown in Fig. 3b. All the configurations
of node 3 have an opposite polarity with respect to node 3̂.
Two configurations with opposite polarities need to be saved.
We save the ones with the smallest cost for node 3 and node
3̂, which respectively are configuration (i) for node 3 and (ii)
for 3̂. For node 4 and 4̂, two combinations are present. Since
4 is an output node, only the configuration with the smallest
cost is saved.
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Fig. 2. Example: MIG for function f , before (a) and after (b) minimization
of complemented edges using the exact algorithm for trees.
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Fig. 3. All combinations for node 3 (a) and node 3̂ (b).

The final MIG is shown in Fig. 2b. The total amount of
complemented edges is reduced from 5 to 3.

B. SAT based Exact Algorithm

Here, we aim at minimizing the number of complemented
edges using a SAT based approach. Given an MIG, the
Boolean function f that it represents, and the number of
complemented edges p, the purpose is to find the minimum
number of complemented edges pmin for the given graph. In
order to be consistent with the previous algorithm, the shape
and the number of nodes of the graph are not changed by this
method. It is worth noticing that the SAT based algorithm can
be adopted to find an MIG with pmin and a different number
of nodes and shape.

Our approach finds optimum solutions by solving decision
problems that ask whether there exists an MIG in which
the number of complemented edges is pmin. The algorithm
used and the encoding of the problem are similar to the
ones proposed in [19]. The instance is a Boolean function
f : Bn → B represented by the MIG, which has k nodes and p
complemented edges. To find the solution, we start by solving
the decision problem for pmin = p and decrease the value
until the solution becomes unsatisfiable. According to [19],
the number of nodes is equal to k and each node with index
l ∈ {1, ..., k} can be represented with 10 variables:
• three inputs a

(j)
1,l , a

(j)
2,l , a

(j)
3,l ∈ B of gate l,

• one output b(j)l ∈ B of gate l,
• three select variables s1,l, s2,l, s3,l ∈ B[log2(n+l)] that

encode which are the children of gate l, and



• polarity variables p1,l, p2,l, p3,l ∈ B that represented
regular/complemented edges of the children.

Variable j ranges from 0 to 2n − 1 and each j represents
one input assignment in f ; hence each node is duplicated 2n

times.
Regarding the problem constraints, the Majority Function-

ality and the Function Semantics are ensured by constraints
proposed in [19]. Two more constraints are considered for
this problem: (i) one on the select variables in order to have
the same MIG structure as the original one and (ii) one on the
polarities variables for the minimum number of complemented
edges. These two constraints are discussed below.

1) Input Connections: For this decision problem, the num-
ber of nodes k is given and it is equal to the number of nodes of
the original MIG. Since we want to have the same structure for
the MIG, the values for the three select variables s1,l, s2,l, s3,l
are known and are taken from the MIG. For each node, since
all its children belong to a lower level, the values for the three
select variables range from 0 to n + (l − 1), where n is the
number of inputs. If sc,l is equal to 0, it means that the constant
value 0 is child c of node l. If the input of a node is a primary
input, then its select variable is lower than or equal to n; while
a value between n and n + (l− 1) ensures a connection with
an internal node in the lower level.

2) Minimum Complemented Edges: To make sure that the
number of complemented edges equal to pmin, some clauses
are added to the problem. A SAT encoding for cardinality
constraints such as x1 + · · ·+xm ≤ r is proposed in [20]. We
add similar clauses to ensure that the sum of all the polarities
variables and the polarity of the output is equal to pmin. It is
worth noticing that also in this algorithm, complemented edges
that point to constant 0 are not considered in the sum. The
number m of polarity variables is 3k + 1− z, where k is the
number of nodes of the MIG and z is the number of constant
inputs. For this case, r = pmin. We consider (m− r) · r new
variables qhv with 1 ≤ v ≤ (m− r) and 1 ≤ h ≤ r, and new
clauses for the SAT problem:

q̄hv ∨ qhv+1, for 1 ≤ v < (m− r) and 1 ≤ h ≤ r, (2)

x̄v+h ∨ q̄hv ∨ qh+1
v , for 1 ≤ v ≤ (m− r) and 0 ≤ h ≤ r, (3)

where q̄hv is not added for h = 0 and qh+1
v is omitted when

h = r.
The decision problem is solved using the SMT solver

Z3 [21]. Fig. 4a is given in order to explain the approach used.
It shows an MIG in which the initial number of complemented
edges is p = 6 and the number of nodes is k = 3. The select
variables are:

s1,1 = 1, s2,1 = 2, s3,1 = 3; (4)

s1,2 = 7, s2,2 = 5, s3,2 = 4; (5)

s1,3 = 6, s2,3 = 7, s3,3 = 8. (6)

The problem we want to solve is

p1,1+p2,1+p3,1+p1,2+p2,2+p3,2+p1,3+p2,3+p3,3+y ≤ p,
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Fig. 4. Example: MIG for function f , before (a) and after (b) minimization
of complemented edges using a SAT-solver based approach.
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Fig. 5. Another example: MIG for function f (a); minimization of comple-
mented edges using the tree method (b) and a SAT-solver based approach
(c).

where y is the output polarity according to [19]. To find the
minimum number of complemented edges, we decrease p until
the problem becomes unsatisfiable and pmin is found. For the
example in Fig. 4, the minimum number of complemented
edges is 3. The final result is shown in Fig. 4b. The number
of nodes and the structure of the MIG are the same as the
input graph.

As shown by the previous example, this approach is not
limited to fanout-free circuits as the method described in
Section III-A. Fig. 5 shows a circuit optimized with both the
tree method (Fig. 5b) and the SAT based method (Fig. 5c).
The resulting circuit has a different complemented edges
configuration, but the minimum number is the same for both
methods.

This SAT-oriented approach allows us to find the exact
solution in terms of number of complemented egdes; but it
does not scale for large functions.

C. Heuristic Algorithm by Local Rewriting

Both the exact approaches described in previous section
suffer from some limits: the former can be applied to fanout-
free graphs only, while the second is perfect for graphs
of limited size. Here, we propose a heuristic method to
minimize complemented edges. We aim at minimizing the
complemented edges in the MIG by recursively applying the
inverter propagation axiom Ω.I , given by 〈xyz〉 = 〈x̄ȳz̄〉.

The main idea to minimize complemented edges is to use
Ω.I to move complemented edges on the inputs to the output.
To reduce the number of complemented edges, we apply the
transformations rules mentioned below on all the nodes of
the MIG. These transformations do not change the depth nor
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Fig. 6. MIG for a full adder, before (a) and after (b) one-level rules to decrease
the number of complemented edges. Bubbles represent complementation of
the edges

the size of the MIG. Different ways of applying Ω.I can be
adopted depending on whether the node has constant inputs or
not. Furthermore, the axiom can be applied considering one
node at a time (one-level) or evaluating savings in the number
of complemented edges for two levels of the MIG (two-level).
A taxonomy of the rules used to decrease complemented
edges is proposed in the following; then the procedure used
to minimize complemented edges is described.

1) One-level Rules for MAJ: Here, we describe rules that
apply to MAJ nodes, which are nodes with no constant inputs.
The rules used to decrease complemented edges aim at moving
complemented edges of the inputs to the output. They can be
formalized as:

Rules


MAJ_3{
〈x̄ȳz̄〉 = 〈xyz〉
〈x̄ȳz̄〉 = 〈xyz〉

MAJ_2
〈xȳz̄〉 = 〈x̄yz〉

(7)

The MAJ_3 rules consider nodes in which the three inputs
are complemented. Considering each node, these transforma-
tions lead to a decrease in the number of complemented edges
equal to:

3 + (#CO−#NCO) (8)

where #CO is the number of complemented outputs of the
node and #NCO are the uncomplemented outputs. Savings
for the MAJ_2 rule are equal to:

1 + (#CO−#NCO) (9)

For these rules, only one node is considered at a time. We
evaluate savings according to the formulas mentioned above;
each node is changed using one of the transformation rules if
savings larger than 0 can be achieved. An example is given in
Fig. 6. Fig. 6a shows the MIG of the full adder composed by
the three nodes 1, 2 and 3. It is possible to apply the MAJ_3
rule on node 2 with savings of 3 and the MAJ_2 on node 1
with savings of 2. Fig. 6b illustrates the MIG of the full adder
after the one-level transformations applied on the nodes of the
first level. In this example, the number of complemented edges
is reduced from 7 to 2.

2) One-level Rules for AND/OR: All the rules mentioned
above are applied to nodes in which none of the inputs is set to
a constant value. It is worth noticing that they equally work for
AND and OR nodes, which are majority nodes in which one of

the input is set to 0 and 1, respectively. Our MIG data structure
only has constant 1, hence in AND nodes the constant input
is 1̄ = 0. The rules used to decrease complemented edges for
AND/OR are:

AND/OR Rules



AND_3{
〈x̄ȳ1̄〉 = 〈xy1〉
〈x̄ȳ1̄〉 = 〈xy1〉

AND_2
〈xȳ1̄〉 = 〈x̄y1〉
OR_2
〈x̄ȳ1〉 = 〈xy1̄〉

(10)

Note that, as in the previous algorithms, complements on
constant inputs are not accounted in the total amount of
complemented edges. The savings estimation is adjusted for
the AND/OR cases. The AND_3 rule has savings equal to:

2 + (#CO−#NCO) (11)

while for the AND_2 rule they are equal to:

#CO−#NCO (12)

For OR rule savings are equal to:

2 + (#CO−#NCO) (13)

3) Two-level Rules: In two level transformations, we con-
sider one node (main node) and all the nodes on its outputs
(parents). By doing this, we account that transforming only
the main node may not result in savings greater than 0, but
this transformation changes the complemented edges pattern
of the parents and consequently may result in a total two-
level savings larger than 0 when applying transformations on
the parents. We evaluate the total two-level savings as the sum
of the savings obtained by changing the main node and the
savings achieved on the parents if the main node is changed.
If the total two-level savings are positive, first the main node
is changed according to the rules (7), then all the one-level
rules are applied to the parents. In Fig. 7a, none of the nodes,
which are called here node 1, 2 and 3, can be changed by the
one-level transformation since there is no benefit in the total
number of complemented edges. On the other hand, changing
node 1 according to the inverter propagation axiom generates
the possibility of applying one of the one level rules on node
3. If node 1 is changed, its savings are equal to 0, but, thanks
to this first transformation, the MAJ_2 rule can be applied to
node 3. Fig. 7b shows the full adder after changing node 1;
while Fig. 7c shows the final circuit. In this case, the number
of complemented edges is not reduced from step a to step b
but it is reduced from step b to c, with total savings equal to
2.

4) Minimization Procedure: We minimize the comple-
mented edges using the reduction rules proposed above in the
way given in Alg. 2. We describe a possible order of applying
the rules, but they can be applied in a different way producing
different results. When the number of complemented edges
before optimization is equal to the number of complemented
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Fig. 7. Two-level transformation applied on the MIG of a full adder.

edges after the optimization, it means that no further rules can
be applied to the MIG and we have reached the minimal num-
ber of complemented edges achievable with our procedure.
We apply each single rule from node 0 to the last node of the
circuit. At the end of the minimization process, the MIG has
the same logical depth and the same size of the unoptimized
one, since all transformation rules do not change the shape of
the graph but aim at changing the number of complemented
edges.

1 while the number of compl. edges is decreasing do
2 AND_3(n) for each node n;
3 AND_2(n) for each node n;
4 MAJ_3(n) for each node n;
5 MAJ_2(n) for each node n;
6 Two-level(n) for each node n;
7 end
Algorithm 2: Heuristic algorithm to minimize complemented
edges.

IV. EXPERIMENTAL RESULTS

In this section, we present results obtained in terms of
minimization of complemented edges. First, we test the tree
algorithms on the fanout-free regions of the arithmetic circuits
of the EPFL benchmarks,1 then we describe the further im-
provement obtained on the same instances with the heuristic
approach and the minimization rules proposed in Section III-C.
Preliminary experimental results are provided for the SAT
based approach.

A. Tree based Exact Algorithm on Fanout-free Regions

We developed a C program to implement the exact algo-
rithm for trees proposed in III-A. The algorithm has been
applied to the fanout-free regions of instances which are
optimized using the rewrite recipe described in [12]. The
fanout-free regions are evaluated in topological order and the
nodes with more than one output are not changed by the
algorithm.

We compare the number of complemented edges; results are
shown in Table I.

The size and the depth of the MIG are the same before
and after minimization. The improvement in the number of
complemented edges is 12.8% on average. Table I lists the
number of fanout-free regions and their average size for each

1http://lsi.epfl.ch/benchmarks

TABLE I
EXACT TREE ALGORITHM ON FANOUT-FREE REGIONS

Benchmark #N #FFR Sffr #CE #CEtree Impr.

adder 2978 1447 2.1 2905 2532 12.8%
divisor 75666 28058 2.7 78302 67622 13.6%
log2 37582 13374 2.8 38585 33877 12.2%
max 7202 1421 5.1 6543 4778 27.0%
multiplier 41885 14886 2.8 39589 37530 5.2%
sin 7890 3002 2.6 7625 6642 12.9%
sqrt 52344 19697 2.7 53327 44788 16.0%
square 19200 11277 1.7 23390 22752 2.7%

Average 2.8 12.8%

#N : number of MIG nodes, #FFR: number of fanout-free regions, Sffr:
average size of the fanout-free regions, #CE: number of complemented edges,
#CEtree: number of complemented edges after minimization with the exact
tree algorithm on the fanout-free regions, Impr: improvement with regards to
#CE.

TABLE II
HEURISTIC ALGORITHM BY LOCAL REWRITING

Benchmark #CE #CEtree #CElocal Impr. Tot_Impr.

adder 2905 2532 1192 52.9% 59.0%
divisor 78302 67622 30748 54.5% 60.7%
log2 38585 33877 14367 57.6% 62.8%
max 6543 4778 3464 27.5% 47.1%
multiplier 39589 37530 18829 49.8% 52.4%
sin 7625 6642 3017 54.6% 60.4%
sqrt 53327 44788 19889 55.6% 62.7%
square 23390 22752 5404 76.2% 76.9%

Average 53.6% 60.2%

#CE: number of complemented edges, #CEtree: number of complemented
edges obtained in IV-A, #CElocal: number of complemented edges after
minimization with heuristic algorithm by local rewriting, Impr: improvement
with regards to #CEtree, Tot_Impr: improvement with regards to #CE.

instance. As expected, the larger improvement in the number
of complemented edges is for the instance in which the fanout-
free regions have larger size (max). Since, on average, the
fanout-free regions have small size, an optimization across
fanout-free regions boundaries is required.

B. Heuristic Algorithm by Local Rewriting

To overcome limits due to the reduced size of fanout-free
regions, we developed a C program to implement the heuristic
algorithm proposed in Section III-C. We apply the algorithm
on instances in which the number of complemented edges is
already reduced with the method discussed in Section III-A.
The code implements all the rules described in Section III-C.
The rules are applied as proposed in Alg. 2 on all the nodes
of the MIG, from the first one to the last one. A loop iterates
the process until the minimal number of complemented edges
is reached. The code changes the number of complemented
edges of the MIG without transforming the shape of the graph.
Results are shown in Table II.

The largest improvement in the number of complemented
edges is obtained after the first loop. On average, 3.5 loops
are necessary to reach the minimal number of complemented
edges. The algorithm is applied on instances in which the
number of complemented edges has been previously decreased



with the tree algorithm on fanout-free regions. The further
improvement is of 53.6% on average. This heuristic approach
allows a total improvement in the number of complemented
edges equal to 60.2% on average.

C. SAT based Algorithm

We have run the exact synthesis algorithm on all unique
(fully DSD decomposable) 6 variable functions obtained using
structural cut enumeration on all instances of the MCNC,
ISCAS, and ITC benchmarks as proposed in [22]. That is,
first an MIG with an optimum number of nodes is found
which is then resynthesized to achieve the optimum number
of complemented edges in a second step. 40195 functions are
evaluated and a timeout of 1 minute is given for each function.
Among these 40195, we encountered 2264 timeouts and in
the remaining ones, we achieved a reduction in the number
of complemented edges of 30.8% in average, requiring 0.3
seconds. In the best case, the complemented edges are reduced
by 83.3% (from 12 to 2) with a runtime equal to 0.7 seconds.

V. CONCLUSION

We described two exact algorithms to minimize the number
of complemented edges in a MIG. The tree exact algorithm
can be applied to MIGs in which each node has one output
only, while the SAT based approach is suitable for MIGs of
limited size. We illustrated also a heuristic method to decrease
complemented edges.

At the logic level, our results showed that a decrease in
the number of complemented edges of 12.8% on average can
be achieved when applying the tree exact algorithm on the
fanout-free regions of the circuits. Experiments showed that
due to the limited size of fanout-free regions, an optimiza-
tion that considers fanout-free regions boundaries is needed.
Experimental results illustrated that a total improvement of
60.2% on average can be reached using the heuristic method
on instances previously optimized using the tree algorithm on
fanout-free regions.

The preliminary experimental evaluation for the SAT based
algorithm shows promising results. Possible directions for
future works include (i) an alternative encoding of the SAT
based algorithm using a smaller number of variables and (ii) a
peephole optimization of small subnetworks in large MIGs
using the SAT based method.
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