
Fast Generation of Lexicographic Satisfiable Assignments:
Enabling Canonicity in SAT-Based Applications

Ana Petkovska1

ana.petkovska@epfl.ch
Alan Mishchenko2

alanmi@berkeley.edu
Mathias Soeken1

mathias.soeken@epfl.ch
Giovanni De Micheli1

giovanni.demicheli@epfl.ch
Robert Brayton2

brayton@berkeley.edu
Paolo Ienne1

paolo.ienne@epfl.ch

1Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences, Lausanne, Switzerland

2University of California, Berkeley, Department of EECS, Berkeley, USA

ABSTRACT
Lexicographic Boolean satisfiability (LEXSAT) is a varia-
tion of the Boolean satisfiability problem (SAT). Given a
variable order, LEXSAT finds a satisfying assignment whose
integer value under the given variable order is minimum
(maximum) among all satisfiable assignments. If the for-
mula has no satisfying assignments, LEXSAT proves it un-
satisfiable, as does the traditional SAT. The paper proposes
an efficient algorithm for LEXSAT by combining incremen-
tal SAT solving with binary search. It also proposes meth-
ods that use the lexicographic properties of the assignments
to further improve the runtime when generating consecu-
tive satisfying assignments in lexicographic order. The pro-
posed algorithm outperforms the state-of-the-art LEXSAT
algorithm—on average, it is 2.4 times faster when generat-
ing a single LEXSAT assignment, and it is 6.3 times faster
when generating multiple consecutive assignments.

1. INTRODUCTION
Lexicographic satisfiability (LEXSAT) is a decision prob-

lem similar to the satisfiability (SAT) problem—for a given
SAT formula it returns a satisfying assignment, if the prob-
lem is satisfiable (SAT), or otherwise it returns unsatisfiable
(UNSAT). The only difference is that SAT can return any
satisfying assignment, while LEXSAT returns deterministi-
cally the one whose integer value under a given variable order
is the minimum (or maximum) among all satisfying assign-
ments. The assignments with the minimum and maximum
integer value are called lexicographically smallest and lexico-
graphically greatest assignment, respectively. For simplicity,
we assume that LEXSAT always generates the lexicograph-
ically smallest assignment, but the same principles apply
when generating the lexicographically greatest one.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICCAD’16 November 07-10, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4466-1/16/11.

DOI: http://dx.doi.org/10.1145/2966986.2967040

Example 1. Assume a 4-input function f(x1, x2, x3, x4)
with the satisfying assignments for the inputs {0001, 0101,
1010, 1011, 1101}. SAT can return any of the given assign-
ments, while LEXSAT always returns either the lexicographi-
cally smallest assignment 0001 or the lexicographically great-
est assignment 1101, depending on the user preference.

Knuth [5] mentions two implementations of an algorithm
for generating satisfying assignments in a lexicographic or-
der. The first one [5, Ex. 7.2.2.2-109] calls a SAT solver mul-
tiple times. The first call generates a satisfying assignment
that is iteratively minimized with the successive SAT calls.
On the other hand, the second one [5, Ex. 7.2.2.2-275] imple-
ments the same concept by modifying the decision heuristic
of the SAT solver to perform decisions on the input variables
in a given order, while for the other variables decisions can
be performed in any order. However, Knuth [5] does not
evaluate the performance of these two algorithms.

Independently, Nadel and Ryvchin [8] propose Knuth’s
LEXSAT algorithm, which they call OBV-BS, in the context
of Satisfiability Modulo Theories (SMT) solving. They also
propose another algorithm integrated in a SAT solver. Their
results show, first, that the two proposed algorithms are
faster than algorithms based on SMT solvers. Second, they
show that the OBV-BS algorithm, which uses the SAT solver
repeatedly, is slower than the one integrated in the SAT
solver but it is more robust—it succeeds to find solutions
for difficult instances for which the integrated one exceeds
the given time limit. Generalization of Knuth’s algorithm is
also proposed by Marques-Silva et al. [6].

With this paper, we propose a scalable and fast LEXSAT
algorithm that also uses the SAT solver repeatedly. But,
instead of starting from a satisfying assignment that is it-
eratively minimized, we start from a potential assignment
that is the lexicographically smallest assignment that might
be satisfiable. Then, for each variable, we iteratively either
confirm that its assignment is identical to the one in the lex-
icographically smallest satisfying assignment, or we increase
it, if possible. To achieve a good performance, we also pro-
pose a version of the algorithm that is based on the concept
of binary search. Moreover, we propose methods that use the
lexicographic properties of the assignments to further im-
prove the runtime when consecutive satisfying assignments
are generated in lexicographic order, which is required in
applications such as the canonical SAT-based SOP genera-

tion [9]. For all algorithms, we propose to use incremental
SAT solving to mimic the alternative implementation that
modifies the SAT solver, which leads to a good performance
while keeping the SAT solver unmodified for general use.
The experimental results show that our algorithm is faster
than the first algorithm proposed by Knuth [5] when gener-
ating single and multiple consecutive LEXSAT assignments.

Following, Section 2 motivates using LEXSAT for elec-
tronic design automation applications. Section 3 gives the
background information. In Section 4, we describe two ver-
sions of our algorithm and the methods for improving the
runtime. Our experimental setup and results are presented
in Section 5. In Section 6, we argue that our implementation
with repetitive SAT calls is expected to be as efficient as an
implementation that modifies the SAT solver. We conclude
and present ideas for future work in Section 7.

2. APPLICATIONS OF LEXSAT
Although LEXSAT has emerged recently, it is already

shown useful for many Electronic Design Automation (EDA)
applications. For example, Soeken et al. [11] show that LEX-
SAT enables heuristic NPN classification of large functions
with up to 194 variables. In this case, LEXSAT improves an
algorithm that was previously limited to functions with up
to 16 variables, for which truth tables could be computed [4].

LEXSAT is also used for fixing cell placement during the
physical design stage of an industrial computer-aided de-
sign flow [8]. By finding the maximal value of a bit-vector,
which encodes that a potential violation is solved, a fixer tool
generates a placement that has as few violations as possible
while giving preference to fixing high-priority violations that
are encoded with the most significant bits of the bit-vector.

Another example is a recent work [9] where LEXSAT en-
ables generation of canonical Sums Of Products (SOPs) us-
ing a SAT solver because it generates assignments in a deter-
ministic lexicographic order. Moreover, assuming a function
f(x1, . . . , xn) if the assignments of the d most left variables
xi, where 1 ≤ i ≤ d for some d ≤ n, are fixed to some
value, LEXSAT would generate an assignment that is lexi-
cographically closest to the value defined when the d most
left variables are assigned to the fixed values and the rest of
the variables xj , where d + 1 ≤ j ≤ n are assigned to 0.

Example 2. For the function f(x1, x2, x3, x4) from Ex-
ample 1, if we fix the most left variable x1 to 1, then LEX-
SAT returns the assignment 1010 as lexicographically small-
est, because it is the satisfying assignment with the smallest
integer value after the assignment 1000.

With this, LEXSAT enables generating canonical simulation
vectors used to generate canonical signatures for Boolean
functions using a SAT solver. Similarly, applications such as
constraint solving [14] and random assignment generation [7]
can benefit from LEXSAT because it can derive the closest
satisfying assignments for random valuations of inputs.

In general, since LEXSAT generates deterministic assign-
ments, it enables canonicity in SAT-based applications with
two important consequences: On the one hand, the result of
computation depends only on the Boolean function and the
user-specified variable order (and is independent of the SAT
solver and the problem representation, in particular, of the
CNF generation algorithm). On the other hand, subprob-
lems encountered during SAT solving can be cached in a way
similar to how BDD-based applications cache the results of

intermediate computations, resulting in runtime reduction.
To this end, BDD-based applications maintain a hash table
mapping BDD nodes into results of computation for these
nodes. Similarly, a SAT-based application can use LEXSAT
to compute a canonical representation of Boolean functions
(such as the canonical SOP mentioned above). This canon-
ical representation can be used as a hash key in a table of
computed results, similarly to how BDD nodes are used as
hash keys in BDD-based applications.

Additionally, algorithms for approximate computing [10,
13] can use LEXSAT to compute the worst-case error by
finding the lexicographically greatest solution for the differ-
ence between the approximate output and a correct refer-
ence version for all possible inputs. In formal verification,
LEXSAT can analyze bugs that the SAT solver finds when
solving verification instances. Suppose, for example, a satis-
fying assignment is found that indicates a mismatch between
the specification and the implementation of a hardware de-
sign. LEXSAT can determine the lexicographically closest
correct minterms before and after the buggy minterm. The
difference between the two correct minterms outlines the re-
gion of the input space where the bug is present. When one
bug is characterized in this way, a question can be asked:
are there other bugs before and after the given one in the
lexicographical order? Repeatedly calling LEXSAT allows
exploring the input space step by step, and understanding
the distribution and the size of buggy regions, which can
provide crucial information for debugging.

In summary, an appealing aspect of LEXSAT is that it
enables canonicity in SAT-based applications, leading to
the same benefits as BDD-based applications reap from the
canonicity of BDDs, which are unique for a given function
and for a given variable order. Further, there could be
practically important applications of LEXSAT in verifica-
tion, such as“canonical”random simulation based on evenly-
distributed input patterns, or bug characterization based on
exploration of input space performed by LEXSAT.

3. BACKGROUND INFORMATION
In this section, we give the terminology associated with

Boolean functions, and the SAT and LEXSAT problems.

3.1 Boolean Functions
For a variable v, a positive literal represents the variable v,

while the negative literal represents its negation v̄. A cube,
or product, c, is a Boolean product (AND, ·) of literals,
c = l1 · · · · · lk. If a variable is not represented by a negative
or a positive literal in a cube, then it is represented by a
don’t-care (−), meaning that it can take both values 0 and 1.
A cube with n don’t-cares covers 2n minterms. A minterm
is the smallest cube in which every variable is represented
by either a negative or a positive literal. Let f(X) : Bn →
{0, 1,−}, B ∈ {0, 1}, be an incompletely specified Boolean
function of n variables X = {x1, . . . , xn}. The support set of
f is the subset of variables that determine the output value
of the function f . Any Boolean function can be represented
as a two-level sum of products (SOP), which is a Boolean
sum (OR, +) of cubes, S = c1 + · · ·+ cm.

A canonical representation is a unique representation for
a function under certain conditions. For example, given a
Boolean function and a fixed input variable order, a canon-
ical SOP is an SOP independent of the original representa-
tion of the function.

3.2 Boolean Satisfiability
A disjunction (OR, +) of literals forms a clause, t = l1 +
· · ·+lk. A propositional formula is a logic expression defined
over variables that take values in the set {0, 1}. To solve a
SAT problem, a propositional formula is converted into its
Conjunctive Normal Form (CNF) as a conjunction (AND, ·)
of clauses, F = t1 · · · · · tk. Algorithms such as the Tseitin
transformation [12] convert a Boolean function into a set of
CNF clauses.

A satisfiability (SAT) problem is a decision problem that
takes a propositional formula in CNF form and returns that
the formula is satisfiable (SAT) if there is an assignment
of variables from the formula for which the CNF evaluates
to 1. Otherwise, the propositional formula is unsatisfiable
(UNSAT). A program that solves SAT problems is called
a SAT solver. SAT solvers provide a satisfying assignment
when the problem is satisfiable.

Modern SAT solvers can receive as input one or more as-
sumptions, which are single-literal clauses that hold only for
one specific invocation of the SAT solver. The process of de-
termining the satisfiability of a problem under given assump-
tions is called incremental SAT solving. Some SAT solvers
support an internal stack of assumptions, which allows for
adding and removing assumptions between consecutive SAT
calls via a push/pop mechanism. This enables preserving the
state of the SAT solver between incremental runs, while in-
cremental runs themselves allow for reusing learned clauses
from previous calls of the SAT solving procedure. Thus,
both incremental SAT solving with assumptions, and incre-
mental adding/removing of assumptions lead to flexibility
and efficiency in SAT-based applications.

Example 3. For the function f(x1, x2, x3, x4) from Ex-
ample 1, if we give the assumption x1 = 1 as input, then the
SAT solver returns one of the assignments 1010, 1011, or
1101, because those assignments are satisfiable considering
the given assumption.

3.3 Lexicographic Boolean Satisfiability
The lexicographic satisfiability (LEXSAT) problem is a

variation of the SAT problem that takes a propositional for-
mula in CNF form and a given variable order, and returns
a satisfying variable assignment whose integer value under
the given variable order is minimum (maximum) among all
satisfying assignments. If the formula has no satisfying as-
signments, LEXSAT proves it unsatisfiable.

As described in Section 1, Knuth [5] proposes two solu-
tions for generating a LEXSAT assignment. In this paper,
we compare to the first implementation that calls the SAT
solver multiple times. Assuming a function f(x1, . . . , xn),
with the first call, the algorithm generates an initial satis-
fying assignment a1 . . . an, or terminates if the problem is
UNSAT. Then, if the problem is SAT, it minimizes the as-
signment iteratively. For this, a pointer d is set to 0 before
the first iteration, and later points to the next variable that
is assigned to 1 and can be flipped to 0 to decrease the as-
signment. Assignments for the variables xi for 1 ≤ i < d are
considered to be fixed. Thus, to minimize the assignment,
first, d is set to the index of the next variable that is as-
signed to 1. If d > n, then no variable in the assignment can
be flipped, and the algorithm returns a1 . . . an. Otherwise,
using the assumption mechanism, the SAT solver is called
again with the assumptions xi = ai, for 1 ≤ i < d, and

xd = 0. If the problem is SAT, the assignment a1 . . . an is
updated with the newly received assignment; otherwise, the
old assignment is kept. Finally, it performs another iteration
for minimization to find the next non-fixed 1 to be flipped.

Example 4. For a function f(x1, x2, x3, x4, x5), assume
that the assignment 00101 is received with the first SAT call.
Then, in the first iteration for minimization, the pointer d is
set to 3, since x3 is the first variable that can be flipped from
1 to 0. Next, the SAT solver is called with the assumptions
x1 = 0, x2 = 0, x3 = 0. If the problem is UNSAT, the
value of x3 remains 1, since there is no SAT assignment that
satisfies the given assumptions (i.e., that starts with 000);
thus, the old assignment is kept and in the second iteration
for minimization d is set to 5. Otherwise, assuming that the
SAT solver returns the assignment 00010, it is considered as
a potential assignment in the second iteration, so d = 4.

4. GENERATING LEXICOGRAPHIC SAT
ASSIGNMENTS

In this section, we first describe a simple and a binary
search-based version of our algorithm for generation of LEX-
SAT assignments. Then, we describe several methods that
improve their runtime when generating consecutive LEX-
SAT assignments.

4.1 Simple Version
Instead of using a SAT solver to find the initial assign-

ment, our algorithm receives as input an initial assignment
a1 . . . an that in this case is smaller or equal to the next
LEXSAT assignment. When generating consecutive LEX-
SAT assignments, this enables the search to start from the
last generated LEXSAT assignment. For the first assign-
ment or when generating non-consecutive assignments, for
a function f(x1, . . . , xn), the initial assignment is ai = 0 for
1 ≤ i ≤ n. Having this initial assignment, our algorithm
iteratively verifies if the assignment of each variable can be
fixed or it should be increased, and converts the initial as-
signment into the LEXSAT assignment that is returned as
output.

Basic idea. A simple version of our algorithm fixes the as-
signments of the variables one by one. A pointer d, which is
initially set to 1, gives the index of the first non-fixed vari-
able whose assignment should be fixed, while for the previ-
ous variables the assignments xi = ai, for 1 ≤ i < d, are
already fixed. To fix the assignments, a SAT solver is called
iteratively with the assumptions xi = ai, for 1 ≤ i ≤ d. If
the problem is SAT, then there is a satisfying assignment
that starts with a1 . . . ad and d is incremented. Otherwise,
if there is no SAT assignment that starts with a1 . . . ad, the
problem is UNSAT. In this case, if ad = 0, we set ad = 1,
set ai = 0 for d < i ≤ n to keep the assignment the smallest
possible for the future iterations, and perform another itera-
tion. But, if the problem is UNSAT when ad = 1, then there
is no satisfying assignment both when ad = 0 and ad = 1,
and thus the algorithm returns UNSAT. Once d > n, the as-
signments for all variables are fixed and a1 . . . an is returned
as a LEXSAT assignment.

Example 5. To generate the first LEXSAT assignment
for a function f(x1, x2, x3, x4, x5), the received initial assign-
ment is 00000. Initially, d = 1 and the first SAT call as-
sumes x1 = 0. If the problem is SAT, then d is incremented

to d = 2, and in the next iteration the SAT call assumes
x1 = 0 and x2 = 0. Otherwise, if the problem is UNSAT,
we flip a1 = 1, and iterate with the assumption x1 = 1. This
time, if we receive SAT, we increment d, and in the next it-
eration the SAT call assumes x1 = 1 and x2 = 0. But, if we
receive UNSAT again, it means that there is no assignment
both with x1 = 0 and x1 = 1, and thus we return UNSAT.

Improving performance by learning from satisfying
assignments. Similarly to the algorithm by Knuth [5] de-
scribed in Section 3.3, when the SAT solver returns a satisfy-
ing assignment, we can learn some variable assignments from
it. Thus, we always save the last satisfying assignment, and
use it as following. First, same as before, if the first variable
assigned to 1 after d is on position d+t, where 1 ≤ t ≤ n−d,
then we can learn and fix to 0 the t− 1 variables between d
and d + t. Moreover, in our case, the potential assignment
a1 . . . an is the lexicographically smallest assignment that
might be satisfiable. Thus, if the potential assignment for a
variable xi is ai = 1, then we cannot flip it to 0 to minimize
the assignment as in the algorithm by Knuth. This allows
us to learn from the SAT solver and fix all assignments up
to the first variable for which the potential assignment and
the assignment returned by the SAT solver differ. Assume
that the last satisfying assignment returned by the solver is
v1 . . . vn. Instead of incrementing d by 1, we can set it to
the index i, such that aj = vj for 1 ≤ j < i and ai 6= vi.
Finally, same as Knuth’s algorithm, for a given literal xd,
where 1 < d ≤ n, with vd = 1, if we get UNSAT when as-
suming xd = 0, we can immediately fix xd to 1, as this value
is confirmed by the last satisfying assignment.

Example 6. For a function f(x1, . . . , x6), assume that
101000 is received as an initial assignment. When the SAT
solver is called with the assumption x1 = 1, it returns a sat-
isfying assignment 101101, which is saved as a last satisfying
assignment. Besides fixing x1 = 1, from this assignment, we
can learn and fix x2 = 0 and x3 = 1, because their initial
assignments are confirmed by the last satisfying assignment.
The variable x4 is the most left variable for which the as-
signments differ and might be flipped to 0, so for the next
iteration we set d = 4 and call the SAT solver with the as-
sumptions x1 = 1, x2 = 0, x3 = 1 and x4 = 0. If the
problem is SAT, we fix x4 to 0 and update the last satis-
fying assignment. But, if the problem is UNSAT, from the
last satisfying assignment 101101, we already know that the
problem is satisfiable when x4 = 1, we can additionally fix
x5 = 0, and set d = 6 for the next iteration.

4.2 Binary Search-Based Version
To further enhance the simple version of our algorithm,

instead of fixing the assignments of variables one by one,
we propose to set the pointer d using binary search. Two
additional pointers l and r show the first and last variable
with non-fixed assignments, respectively, and initially are
set l = 1 and r = n. Then, d is set to the middle variable in
the array of variables bounded by xl and xr. This assumes
the assignments of the left half of the variables xi, where
1 ≤ i ≤ d, in the first iteration. Later, whenever the SAT
solver returns SAT, it confirms that a satisfying assignment
that starts with a1 . . . ad exists. As shown in Section 4.1,
from the returned satisfying assignment we can confirm and
fix t additional assignments from the potential assignment,
where 0 < t < n − d. After this step, the assignments for

the variables xi, where 1 ≤ i ≤ d + t are fixed. For the
next iteration, we set l = d + t + 1 and r = n to assume
the assignments for the non-fixed variables in the right half.
Otherwise, if the problem is UNSAT, if ad = 0, then we
proceed as in the simple version of the algorithm: we set
ad = 1, set ai = 0 for d < i ≤ n for the future iterations,
and perform another iteration; while, if ad = 1, for the next
iteration r = d− 1 to assume fewer non-fixed variables.

Example 7. To generate the first LEXSAT assignment
for a function f(x1, x2, x3, x4, x5, x6), the initial assignment
000000 is received as input. Initially, l = 1, r = 6 and d = 3.
Thus, the first SAT call would assume x1 = 0, x2 = 0, and
x3 = 0. If the problem is SAT and the satisfying assignment
000010 is returned, then the assignment x4 = 0 is learned
since it is the same in the initial assignment, and the values
of the pointers are updated to l = 5, r = 6 and d = 5 for the
next iteration. Otherwise, if it is UNSAT, we would first try
the assumptions x1 = 0, x2 = 0, and x3 = 1. This time,
if we receive SAT we would proceed same as before; while,
if we receive UNSAT again, for the next iteration, we would
update the values of the pointers to l = 1, r = 2 and d = 1
to assume less variables.

4.3 Runtime Improvement when Generating
Consecutive LEXSAT Assignments

Applications such as the SAT-based generation of canon-
ical SOPs [9] generate consecutive satisfying assignments in
lexicographic order. To allow generation of new satisfying
assignments, each generated assignment is added to the SAT
solver as a blocking clause, which is an additional clause that
blocks known solutions of the SAT problem.

Example 8. For the function f(x1, x2, x3, x4) from Ex-
ample 1, the first LEXSAT call returns the assignment 0001.
If we add this assignment as a blocking clause to the SAT
solver, with the next LEXSAT call the assignment 0101 is
generated because it is the lexicographically smallest satisfy-
ing assignment that is not blocked.

For these types of algorithms, we present three methods
that improve the runtime of the newly proposed algorithm
by using the lexicographic properties of the assignments and
the fact that, after the first LEXSAT call, the received initial
assignment is the last generated LEXSAT assignment.

Fixing leading 1s. When generating consecutive LEX-
SAT assignments, after some time, assignments that start
with one or more consecutive 1s are generated. Generat-
ing a lexicographically smallest SAT assignment that starts
with one or more consecutive 1s implies that all unblocked
satisfying assignments are greater than the generated, and
therefore also start with the same number of 1s. Thus, when
generating a LEXSAT assignment, assume that ai = 1 for
1 ≤ i ≤ t, for some t ≤ n (i.e., the received initial assign-
ment starts with t consecutive 1s). Then, we can fix these t
assignments for the corresponding variables xi, and the ini-
tial value of l (or of d in the simple version) is set to t + 1
to point the first variable that is assigned 0.

Example 9. For a function f(x1, x2, x3, x4, x5), assume
that the last generated LEXSAT assignment is 11010 and it
is received as an initial assignment. Since the next LEXSAT
assignment has to be greater than the last generated assign-
ment, we know that it also starts with 11. Thus, we can skip

12.5%
w = -2

UNSAT
UNSAT

UNSAT

UNSAT 25%
w = -1

50%
w = 0

75%
w = 1

87.5%
w = 2

SAT
SAT

SATSAT

SAT

UNSAT

Figure 1: Changing the percentage of assumed variables for
the first SAT call of LEXSAT depending on the success of
the previous first SAT calls. In this case, at most three
iterations of binary search are performed at once.

assuming assignments for x1 and x2, and directly fix them
to 1. Initially, l is set to 3, r to 5, d is computed to be 4,
and thus, the first SAT call would be with the assumptions
x1 = 1, x2 = 1, x3 = 0, and x4 = 1.

Correcting the initial assignment. When generating
consecutive LEXSAT assignments, for the first LEXSAT as-
signment, the initial assignment received as input assigns
all variables to 0. Afterwards, for the following LEXSAT
assignments, the initial assignment is equal to the last gen-
erated LEXSAT assignment. But, the first unblocked as-
signment is the one whose integer value is one unit greater
than the last LEXSAT assignment. Thus, assuming that the
last LEXSAT assignment ends with t 1s, for some t ≤ n, i.e.,
an−i = 1 for 0 ≤ i < t, we flip the most right 1s by setting
an−i = 0 and the first 0 from the right by setting an−t = 1.

Example 10. For a function f(x1, x2, x3, x4, x5), assume
that the assignment 11011 is generated with the previous
LEXSAT call and received as an initial assignment. Since
the next lexicographical assignment has to be greater than
the last generated, the first possible satisfying assignment is
11100. Thus, we flip the 1s and the first 0 starting from the
right to get the potential assignment 11100.

Profiling the success of the first SAT calls. For the
LEXSAT algorithm, we consider satisfiable SAT calls as suc-
cessful because they confirm the assumed assignments, while
unsatisfiable SAT calls are considered unsuccessful. Further,
we propose to profile the success of the first SAT call from
the LEXSAT algorithm and use this profile to alter the per-
centage of assumed assignments in the first SAT calls in the
subsequent invocation of the LEXSAT algorithm based on
binary search. This method does not apply to the simple
version of the algorithm.

The binary search-based version always sets the pointer d
to point the middle variable of the array of variables bounded
by xl and xr. Thus, with the first SAT call we always assume
the non-fixed assignments for the first 50% of the variables
between xl and xr. In the next iterations, with every satis-
fiable SAT call, we increase the number of assumptions and
add 50% more of the right subarray. With every unsatisfi-
able SAT call, we decrease the number of assumptions and
the next time we use only 50% of the assignments of the
left subarray. Thus, for example, assuming 75% of the as-
signments in the first SAT call is equivalent to having two
consecutive iterations with successful SAT calls.

To profile and alter the percentage of assumed assign-
ments in the first SAT call, we keep a variable w which tells
us how many iterations to perform at once and in which
direction we should perform them. We iterate |w| times to

decrease or increase the percentage when w < 0 or w > 0,
respectively. Initially, w = 0, which means that we should
assume 50% of the assignments. If the first SAT call is satis-
fiable, we increase w for 1 when w ≥ 0 or we set w = 1 when
w < 0. If the first SAT call is unsatisfiable, we decrease w
for 1 when w ≤ 0 or we set w = 0 when w > 0. Figure 1
shows how the percentage of assumed variables for the first
SAT call and the value of w changes with the success of the
first SAT calls. In this example, at most three iterations of
binary search are performed at once.

Example 11. For a function f(x1, . . . , x10), assume that
the assignment 0000110000 is received as an initial assign-
ment and w = 0. Since, l = 1, r = 10 and w = 0, for the
first SAT call d is computed as d = b(1+10)·0.5c = 5. Thus,
we assume x1 = 0, x2 = 0, x3 = 0, x4 = 0 and x5 = 1. If
this call is satisfiable, then w is set to 1 for the next LEX-
SAT assignment. Assume that with the following SAT calls
the LEXSAT assignment 0000110001 is generated. Then,
when generating the next LEXSAT assignment, for the first
SAT call, d = b(1 + 10) · 0.75c = 8 because w = 1, so instead
of assuming the initial assignments only for the first five in-
puts as before, we assume the assignments for the first eight
inputs. For the remaining SAT calls of the current LEX-
SAT assignment, we always use the regular binary search
algorithm, which always assumes 50% of the assignments.

5. EXPERIMENTAL RESULTS
In this section, for convenience we call the algorithm from

Knuth [5] KLEX (Section 3.3), and the simple and binary
search-based versions of our algorithm SIMPLE and BINARY,
respectively (Section 4). We implemented in ABC [2] the
three algorithms KLEX, SIMPLE, and BINARY, as well as the
methods for improving the runtime from Section 4.3. ABC
features an integrated incremental SAT solver derived from
an early version of MiniSAT [3]. Also, this SAT solver sup-
ports pushing and popping of assumptions.

To evaluate the runtime of the algorithms and the speedup
achieved from the additional methods, we use the set of large
MCNC benchmarks, as well as a set of logic tables from the
instruction decoder unit [1], which we denote with LT-DEC.
The names of the LT-DEC benchmarks are given in the form
“[NPI].[NPO]”, where NPI is the number of primary inputs
and NPO is the number of primary outputs. For a given
benchmark, each algorithm generates a user specified num-
ber of consecutive LEXSAT assignments for each combina-
torial output, that is each primary output and each latch
input. However, to avoid repeatedly calling the procedure
for output functions with isomorphic circuit structure, we
divide the outputs into equivalence classes. An equivalence
class contains outputs that implement an identical function
expressed over different inputs. Thus, for each benchmark,
we actually generate LEXSAT assignments only for the rep-
resentative of each class.

For a given function and a variable order, the LEXSAT
assignments are deterministic and must be generated in the
same order when generating consecutive LEXSAT assign-
ments. The correctness of our algorithms is validated by
generating assignments with each algorithm, and comparing
them to ensure that all algorithms generate the same assign-
ments in the same order. For generating a given number of
LEXSAT assignments, the number of SAT calls depends on
how often the algorithm calls the SAT solving procedure.

-50%

-66%

-75%

Figure 2: Performance of our algorithms SIMPLE and BINARY compared to the KLEX algorithm when generating a single
LEXSAT assignment per combinatorial output. Next to each bar is the actual runtime (in milliseconds) and the number of
SAT calls, respectively. Next to the name of the benchmark, we give the number of LEXSAT calls in brackets.

-66%

-75%

-80%

-50%

Figure 3: Performance of our algorithms SIMPLE and BINARY compared to KLEX when generating 1000 consecutive LEXSAT
assignments per combinatorial output. Next to each bar is the actual runtime (in seconds) and the number of SAT calls (in
thousands), respectively. Next to the name of the benchmark, in brackets, is the number of LEXSAT calls (in thousands).

Next we compare the runtime of KLEX, and the two ver-
sions of our algorithm SIMPLE and BINARY enhanced with
the methods described in Section 4.3. We evaluate the three
algorithms for both generation of a single and multiple con-
secutive LEXSAT assignments. Afterwards, we evaluate the
speedup achieved by each of the additional methods.

5.1 Runtime Comparison
Generation of a single LEXSAT assignment. Some
LEXSAT-based applications, such as the NPN classifica-

tion [11], require multiple LEXSAT assignments, but they
are not in a consecutive order or they are for different func-
tions. Thus, first, we evaluate the runtime and number
of SAT calls required by each algorithm for generating a
single LEXSAT assignment. For each benchmark, a sin-
gle LEXSAT assignment is generated per combinatorial out-
put. Since the algorithms generate these assignments in few
milliseconds, to get a precise comparison, we generate each
LEXSAT assignment 1000 times, and then divide the total
runtime by 1000. As Figure 2 shows, both versions SIMPLE

Figure 4: Runtime and number of SAT calls of SIMPLE (S)
and BINARY (B) when different methods for improving the
runtime are used for 4 benchmarks from the MCNC set.
Next to the name of the benchmark, we give the number of
combinatorial inputs and outputs, respectively.

and BINARY perform better than KLEX for almost all bench-
marks. Since the algorithmic steps of SIMPLE are very sim-
ilar to those of KLEX when generating a single assignment,
SIMPLE makes only 9.7% less calls to the SAT solver, and
thus is only 14.7% faster than KLEX. On the other hand,
assuming more assignments at once with BINARY leads to
about 2x less SAT calls and 2x faster runtime than SIMPLE.
Finally, BINARY is 2.4x faster than KLEX and makes 2.1x
less SAT calls.

Generation of multiple consecutive LEXSAT assign-
ments. On the other hand, some applications, such as the
LEXSAT-based generation of canonical SOPs [9], require
consecutive LEXSAT assignments. In this case, the meth-
ods described in Section 4.3 also contribute to reducing the
runtime of SIMPLE and BINARY. For this experiment, we gen-
erate at most 1000 consecutive LEXSAT assignments for
each combinatorial output. For each output we perform the
experiment 5 times, and thus the presented results represent
the average over 5 runs. As Figure 3 shows, both SIMPLE and
BINARY outperform KLEX—for SIMPLE, we have 2.3x less SAT
calls on average, which reduces runtime 5.1x, while for BI-

NARY we have 2.7x less SAT calls on average, which reduces
runtime 6.3x. Regarding the two proposed versions of our
algorithm, on average, BINARY has 16.1% less SAT calls that
contribute to 18.9% better runtime than SIMPLE.

Thus, BINARY has the best performance both when gen-
erating a single assignment and when generating multiple
consecutive LEXSAT assignments.

5.2 Evaluation of the Methods for Runtime
Improvement

Section 4.3 presented the following methods for runtime
improvement when generating consecutive assignments.

1. Fixing leading 1s.

2. Correcting the initial assignment.

3. Profiling the success of the first SAT calls.

Since the method for fixing the leading 1s affects the run-
time only when generating assignments in which the most
significant bits are assigned to 1, we evaluate the methods
by generating the complete truth table (i.e., generating all

Figure 5: Runtime and number of SAT calls of SIMPLE (S)
and BINARY (B) when different methods for runtime improve-
ment are used for one of the outputs from 4 benchmarks from
the MCNC set. Next to the name of the benchmark, we give
its number of combinatorial inputs.

assignments for which the function evaluates to 1) for a sub-
set of the MCNC benchmarks. The selected benchmarks
have at most 16 combinatorial inputs, which means that,
for each combinatorial output, we can have at most 65536
minterms when the function is 1. Similarly to before, the
presented results represent the average over 5 runs. Fig-
ure 4 shows the runtime and number of SAT calls for four
of the selected benchmarks. First, it shows the results when
the algorithms SIMPLE (S) and BINARY (B) are used without
the additional methods. We can see that fixing the leading
1s (S+1, B+1) decreases the runtime moderately. Contrar-
ily, if we additionally correct the initial assignment (S+1+2,
B+1+2) then the runtime decreases for 32%, on average.
Finally, for BINARY, although the method for profiling the
success of the first SAT calls in general decreases the num-
ber of SAT calls, for functions with small number of inputs
it slightly increases the runtime. However, we have observed
reduction of runtime for benchmarks with a large number of
combinatorial inputs. Figure 5 shows the runtime and num-
ber of SAT calls required to generate 1000 minterms for a
single output of 4 large MCNC benchmarks. The consid-
ered outputs have more than 70 combinatorial inputs. In
this case, the method for fixing leading 1s does not affect
the number of SAT calls because the most significant bits of
all generated assignments are 0s.

Note that in Section 5.1 the results for SIMPLE and BINARY

are obtained when all methods are used (i.e., with S+1+2
and B+1+2+3, respectively).

6. ON INTEGRATING THE LEXSAT
ALGORITHMS IN A SAT SOLVER

The algorithms presented and evaluated in this paper use
repeatedly the SAT solver. Another option is to modify
the SAT solver such that it generates LEXSAT assignments.
For convenience, we refer to them with OUTSAT and INSAT,
respectively. Knuth [5, Ex. 7.2.2.2-275] suggests an INSAT

implementation of KLEX. Nadel and Ryvchin [8] show that an
INSAT algorithm is faster than an OUTSAT implementation of
the KLEX algorithm, but unlike the OUTSAT implementation,
it is not scalable for difficult instances. In this section, we
discuss the difference in these two implementation options.

Generally, in an INSAT implementation, the SAT solver
performs decisions on the input variables in the order and
with the values given by the LEXSAT algorithm, while for
the other variables decisions can be performed in any order.
With this solution, to generate LEXSAT assignments for a
function, a single SAT solver instance is created and, for
each LEXSAT assignment, the procedure for SAT solving is
called only once, with a given order for the input variables.
Note that the concepts of the algorithms SIMPLE and BINARY

can also be used to determine the order of issuing decisions
and the values for the input variables.

On the other hand, in our OUTSAT implementations, incre-
mental SAT solving allows generating multiple LEXSAT as-
signments of a function also by using only a single SAT solver
instance. Moreover, for each LEXSAT assignment, the inter-
faces for pushing and popping assumptions, which we sug-
gest to use, preserve the internal state of the solver between
consecutive invocations of the SAT solving procedure. With
this, on a higher level, we mimic the solution based on mod-
ifying the SAT solver. With such implementation, and by
using the algorithm BINARY, we expect our OUTSAT imple-
mentation to be as fast as an INSAT implementation, but
confirming this experimentally is left for future work.

Moreover, assume a function with n inputs for which the
assignments of the first d inputs are already fixed, from some
1 ≤ d ≤ n. In the OUTSAT implementation, the SAT solving
procedure can and do change the order of decisions for the
least significant n − d − 1 variables whose value is not yet
fixed, when running the query to fix the value of the variable
d+1. However, the INSAT implementation always makes the
same decisions in the same order, and can not change the
order even if that would lead to faster UNSAT calls during
LEXSAT solving. Thus, for difficult instances, such as func-
tions with large number of variables when different variable
orders affect the efficiency of the SAT solving procedure, as
well as when all calls are not satisfiable, an OUTSAT imple-
mentation is more scalable than an INSAT implementation.

7. CONCLUSION
This paper presents a novel variation of the Boolean sat-

isfiability problem, called LEXSAT, which in addition to
determining the status of a problem (satisfiable or unsat-
isfiable), also returns satisfying assignments that are min-
imum (maximum) considering a given variable order. We
demonstrate that LEXSAT allows developing SAT-based al-
gorithms that share desirable properties with BDDs but are
less likely to suffer from the scalability problems that be-
set BDD-based computations in many EDA applications. In
particular, LEXSAT can achieve canonicity of the computed
results: when for the given Boolean function under the given
variable order, the result is deterministic and independent
of the SAT solver and the CNF generation algorithm.

The paper also proposes a fast binary search-based algo-
rithm for generation of a single LEXSAT assignment, which
is 2.4 times faster than the state-of-the-art LEXSAT algo-
rithm. Furthermore, it proposes several improvements to
the LEXSAT algorithms for the typical use-model when it
is applied iteratively and the resulting satisfying assignments
are monotonically increasing. For such use, the proposed al-
gorithm enhanced with the new features is 6.3 times faster
than an existing LEXSAT algorithm. Finally, we propose
a way of using incremental SAT solving to improve perfor-
mance without modifying the SAT solver.

We expect that LEXSAT has many potential uses in EDA.
Future work on LEXSAT will focus on exploring several
promising applications: SAT-based constraint simulation,
SAT-based factoring, SAT-based exclusive sum-of-product
minimization, etc.

Acknowledgments. This work was partly supported by
NSF/NSA grant “Enhanced equivalence checking in crypto-
analytic applications” at University of California, Berkeley,
and partly by H2020-ERC-2014-ADG 669354 CyberCare.

8. REFERENCES
[1] The EPFL Combinational Benchmark Suite, “Multi-output

PLA benchmarks”. http://lsi.epfl.ch/benchmarks.

[2] Berkeley Logic Synthesis and Verification Group, Berkeley,
Calif. ABC: A System for Sequential Synthesis and Verifi-
cation. http://www.eecs.berkeley.edu/~alanmi/abc/.

[3] N. Eén and N. Sörensson. An extensible SAT-solver. In Pro-
ceedings of the International Conference on Theory and Ap-
plications of Satisfiability Testing, volume 2919, pages 502–
18. Springer, May 2003.

[4] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko.
Fast Boolean matching based on NPN classification. In Pro-
ceedings of the 2013 International Conference on Field Pro-
grammable Technology, pages 310–13, Kyoto, Dec. 2013.

[5] D. E. Knuth. Fascicle 6: Satisfiability, volume 19 of The
Art of Computer Programming. Addison-Wesley, Reading,
Mass., Dec. 2015.

[6] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce.
Boolean lexicographic optimization: algorithms & appli-
cations. Annals of Mathematics and Artificial Intelligence,
62(3):317–43, May 2011.

[7] A. Nadel. Generating diverse solutions in SAT. In Proceed-
ings of the International Conference on Theory and Appli-
cations of Satisfiability Testing, pages 287–301, Ann Arbor,
Mich., June 2011.

[8] A. Nadel and V. Ryvchin. Bit-vector optimization. In Pro-
ceedings of the 22nd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
pages 851–67, Eindhoven, The Netherlands, Apr. 2016.

[9] A. Petkovska, A. Mishchenko, D. Novo, M. Owaida, and
P. Ienne. Progressive generation of canonical sum of products
using a SAT solver. In Proceedings of the 25th International
Workshop on Logic and Synthesis, Austin, Tex., June 2016.

[10] M. Soeken, D. Große, A. Chandrasekharan, and R. Drech-
sler. BDD minimization for approximate computing. In Pro-
ceedings of the 21st Asia and South Pacific Design Automa-
tion Conference, pages 474–79, Macao, Jan. 2016.

[11] M. Soeken, A. Mishchenko, A. Petkovska, B. Sterin,
P. Ienne, R. Brayton, and G. De Micheli. Heuristic NPN
classification for large functions using AIGs and LEXSAT.
In Proceedings of the International Conference on Theory
and Applications of Satisfiability Testing, Bordeaux, France,
July 2016.

[12] G. S. Tseitin. On the complexity of derivation in proposi-
tional calculus. In Automation of Reasoning 2: Classical
Papers on Computational Logic 1967-1970, Symbolic Com-
putation, pages 466–83. Springer, Berlin, 1983.

[13] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan.
MACACO: Modeling and analysis of circuits for approxi-
mate computing. In Proceedings of the International Con-
ference on Computer Aided Design, pages 667–73, San Jose,
Calif., Nov. 2011.

[14] J. Yuan, A. Aziz, C. Pixley, and K. Albin. Simplifying
Boolean constraint solving for random simulation-vector
generation. IEEE Trans. on Computer-Aided Design of In-
tegrated Circuits and Systems, 23(3):412–20, Mar. 2004.

