
Towards More Efficient Logic Blocks By
Exploiting Biconditional Expansion
Pierre-Emmanuel Gaillardon, EPFL
Gain Kim, EPFL
Xifan Tang, EPFL
Luca Amarù, EPFL
Giovanni De Micheli, EPFL

Nowadays, Field Programmable Gate Arrays (FPGA) exploit
Look-Up Tables (LUTs) to generate logic functions. A K-input
LUT can implement any Boolean functions with K inputs.
Thanks to this flexibility, LUTs remained conceptually
unchanged in FPGAs, only the number of inputs increased in
time. Unfortunately, the flexibility does not come for free and
LUTs have non-negligible costs in both circuit-level
performances (large number of memories, area or delay
penalties) and logic-level capabilities (limited fan-out). Here, we
propose an FPGA fabric based on two novel logic blocks. First,
we introduce a new LUT design showing reduced power
consumption with no sacrifice in the logic flexibility. Then, we
present a block suited to arithmetic functions but preserving
enough versatility to implement general logic functions. The two
blocks are supported by a recently introduced logic
representation called Biconditional Binary Decision Diagrams
(BBDDs). Using architectural-level benchmarking, we showed
that an FPGA architecture exploiting the novel blocks performs
significantly better than current state-of-the-art FPGA
architectures at 40nm technological node over a large set of test
circuits. While reducing the power consumption of MCNC
big20 benchmarks by 29%, the proposed architecture is able to
efficiently implement arithmetic circuits as compared to its
traditional LUT-based FPGA counterpart. For instance, a 256-
bit adder can be realized with a 43% gain in area×delay product.
While considering large general and arithmetic logic
benchmarks, we observe, on average, 4%, 3% and 10%
improvements in area, delay and power respectively.

ACM Categories & Descriptors: H.3.6 Programmable logic
elements

Keywords: FPGA; Arithmetic functions; BBDD; Logic Element

DOI: http://dx.doi.org/10.1145/2684746.2689100

