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Luca Amarú, Pierre-Emmanuel Gaillardon, Giovanni De Micheli

Integrated Systems Laboratory (LSI), EPFL, Switzerland

Abstract—In this paper, we present the EPFL combinational
benchmark suite. We aim at completing existing benchmark
suites by focusing only on natively combinational benchmarks.
The EPFL ccombinational benchmark suite consists of 23 combi-
national circuits designed to challenge modern logic optimization
tools. It is further divided into three parts. The first part includes
10 arithmetic benchmarks, e.g., square-root, hypotenuse, divisor,
multiplier etc.. The second part consists of 10 random/control
benchmarks, e.g., round-robin arbiter, lookahead XY router, alu
control unit, memory controller etc.. The third part contains 3
very large circuits, featuring more than ten million gates each. All
benchmarks have a moderate number of inputs/outputs ranging
from few tens to about one thousand. The EPFL benchmark
suite is available to the public and distributed in all Verilog,
VHDL, BLIF and AIGER formats. In addition to providing
the benchmarks, we keep track of the best optimization results,
mapped into LUT-6, for size and depth metrics. Better logic
implementations can be submitted online. After combinational
equivalence checking tests, the best LUT-6 realizations will be
included in the benchmark suite together with the author’s name
and affiliation.

I. INTRODUCTION

The EDA community heavily relies on public benchmarks
to evaluate the performance of academic and commercial
design tools. Logic optimization and synthesis are core EDA
applications where benchmarking is essential to develop ef-
fective methodologies. In this context, benchmarks can be
broadly classified into two categories: combinational circuits
and sequential circuits. Combinational circuit implements pure
Boolean functions. Sequential circuit consists of combinational
portions and memory elements. Sequential circuits can virtu-
ally describe any digital system. However, many academic op-
timization tools [1]–[7] only deal with combinational circuits
because:

(i) The underlying optimization methodology is inherently
intended for combinational logic.

(ii) Handling/splitting sequential circuits adds extra coding
complexity in the software.

(iii) The optimization of a sequential circuit will eventually
collapse into the optimization of its combinational portions.

On the other hand, tools dealing with sequential circuits
are compatible with combinational circuits. With the aim of
providing the best portability among existing synthesis and
optimization tools, we focus on combinational benchmarks.

Existing combinational benchmark suites face one or more
of the following issues:

(i) Large combinational circuits are derived from sequential
circuits by removing registers and adding new inputs and
outputs. This leads to a disproportionate number of I/O where
tuning/testing optimization heuristics is inappropriate.

(ii) Natively combinational circuits are quite outdated. For
example, the MCNC benchmark suite (1991) is 24 years old.

(iii) A benchmark intended behavior (original functionality)
is often not provided or not discernible. This makes difficult
drawing conclusions from the results.

(iv) Benchmarks provided in unrestricted HDL format are
hard to read. General HDL parsers can be more complex than
the optimization code itself.

(v) EDA vendors use customer designs as benchmarks to
demonstrate performance of their products over their compe-
tition. However, customer designs are usually confidential and
not available to the public.

(vi) Due to issues (i-v) researchers use custom benchmarks
to test their tools. This makes difficult comparing to other
approaches and again drawing conclusions from the results.

In this paper, we present the EPFL combinational bench-
mark suite [8]. On top of addressing the aforementioned issues,
the EPFL benchmark suite has the following key features:

(i) All benchmarks are natively combinational.
(ii) Each benchmark is provided in all Verilog, VHDL,

BLIF and AIGER formats. The HDL versions are written in
a restricted format such that all assignments are simple AND-
2/INV functions. The parsing complexity is minimized.

(iii) Three types of benchmarks are provided: arithmetic,
random/control and very large (more than ten million gates).

(iv) Varying complexity of the benchmarks. Circuits with
10i equivalent gates are available, with i = 2, 3, 4, 5, 6, 7.
Different methods (exact or heuristic) can be tested on the
most approriate circuit size.

(v) Each benchmark is accompanied by documentation
about its functionality. By running logic simulation it is
possible to reproduce the described functionality.

(vi) Researchers can submit their optimized circuits mapped
into LUT-6 [8]. We will publish online the best version of each
benchmark (size and depth metrics) together with the author’s
name and affiliation.

The remainder of this paper is organized as follows. Section
II provides an historical background on logic benchmarks.
Section III presents the EPFL combinational benchmark suite.
Section IV shows simpele LUT-6 mapping experiments. Sec-
tion V discusses the aim of the EPFL combinational bench-
mark suite initiative. Section VI concludes the paper.

II. HISTORICAL BACKGROUND

The first set of combinational benchmark circuits was
reported at the International Symposium on Circuits and
Systems (ISCAS) in 1985 [9]. After four years, sequential



circuits were added to ISCAS’85 generating the ISCAS’89
benchmark suite [10]. In 1991, these benchmarks plus others
presented at past workshops and conferences were collected
and distributed under the maintainance of the Microelectronics
Center of North Carolina (MCNC) [11]. The MCNC suite was
published in the same year at the International Workshop on
Logic Synthesis (IWLS). Even though quite outdated, MCNC
benchmarks are still popular in academic research.

After MCNC, a plethora of other specialized benchmark
suites have been proposed, e.g., high level synthesis [12],
physical design [13], testing [14], FPGA [15], etc.. However,
none of them reached the same adoption level as MCNC.

In 2005, a new set of benchmarks for logic synthesis was
presented at the IWLS workshop under the name of IWLS’05
benchmark suite [16]. It consisted of 84 designs collected
from various websites (OpenCores, Faraday, etc.) and previous
benchmark suites (MCNC, ITC, etc.). While the IWLS’05
suite provides state-of-the-art sequential circuits, it does not
support natively combinational ones. Indeed, extracting the
combinational portions of IWLS’05 circuits leads to a dispro-
portionate number of I/O whose function is mostly unknown
or not discernible.

In this work, we aim at completing the IWLS’05 suite by
focusing on natively combinational benchmarks.

III. THE EPFL COMBINATIONAL BENCHMARK SUITE

In this section, we present the EPFL combinational bench-
mark suite. It consists of 23 combinational circuits grouped
in three parts. We start by presenting the first part which
includes 10 arithmetic benchmars. Then, we show the second
part containing 10 random/control benchmarks. Finally, we
introduce the last part composed of 3 More than ten Million
(MtM) gates circuits.

The EPFL combinational benchmark suite can be down-
loaded at [8] in Verilog, VHDL, BLIF and AIGER formats.

A. Arithmetic Benchmarks

The set of arithmetic benchmarks in the EPFL suite con-
sists of 10 circuits representing complex arithmetic functions.
They are obtained by a simple-minded (automated) mapping
of arithmetic computational algorithms, such as square-root,
logarithm, multiplication etc., into basic logic gates. The
initial implementations are intentionally sub-optimal to test the
ability of optimization tools. The arithmetic benchmarks come
in different bit-widths to provide diversity in the implementa-
tion complexity. Table I shows their initial characteristics in
terms of And/Inverter Graph (AIG) representation. In total,
the arithmetic benchmarks count about 0.37M nodes and 36k
levels. A detailed description for each benchmark follows.

1) Adder: This benchmark represents a standard 2-operand
binary addition function:
{cOut, f} = a+ b

where signals a, b and f are 128 bit wide. The signal cOut
is 1 bit wide.

TABLE I
ARITHMETIC BENCHMARKS

Benchmark name Inputs Outputs AND nodes Levels
Adder 256 129 1020 255

Barrel shifter 135 128 3336 12
Divisor 128 128 44762 4470

Hypotenuse 256 128 214335 24801
Log2 32 32 32060 444
Max 512 130 2865 287

Multiplier 128 128 27062 274
Sine 24 25 5416 225

Square-root 128 64 24618 5058
Square 64 128 18484 250

Total 1663 1020 373958 36076

In its initial AIG implementation, this benchmark counts
1020 nodes and 255 levels.

2) Barrel shifter: This benchmark is a barrel shifter. Its
logic behavior is:

result =right shift(a, shift)
where a and result are 128 bit wide signals, shift is a 7 bit

wide signal.
In its initial AIG implementation, this benchmark counts

3336 nodes and 12 levels.
3) Divisor: This benchmark implements an (unsigned) in-

teger division. All signals are 64 bit wide:
quotient rem remainder = a/b
that can be equivalently rewritten as:
a = b· quotient+ remainder
In its initial AIG implementation, this benchmark counts

44762 nodes and 4470 levels.
4) Hypotenuse: This benchmark computes the length of the

longest side of a right-angled triangle, i.e., the hypotenuse. Let
a and b the length of the other two sides in the triangle. The
hypotenuse can be computed using the Pythagorean theorem:

hypotenuse =
√
a2 + b2

All signals are 128 bit wide.
In its initial AIG implementation, this benchmark counts

214335 nodes and 24801 levels.
5) Log2: This benchmark represents a logarithm base 2

function:
result = log2(a)
In this benchmark, all signals are 32 bit wide.
In its initial AIG implementation, this benchmark counts

32060 nodes and 444 levels.
6) Max: This benchmark computes the maximum among

four numbers {in0, in1, in2, in3}. On top of returning the
maximum value, it also gives the address (from 0 to 3) where
such maximum was located.

result = max{in0, in1, in2, in3}
address =position(result)
Signals {in0, in1, in2, in3} and result are 128 bit wide.

Instead, signal address is 2 bit wide.
In its initial AIG implementation, this benchmark counts

2865 nodes and 287 levels.



7) Multiplier: This benchmark is a standard 2-operand
binary multiplier. Its function is:

f = a· b
where a, b are 64 bit wide. The signal f is 128 bit wide.
In its initial AIG implementation, this benchmark counts

27062 nodes and 274 levels.
8) Sine: This benchmark represents the sine trigonometric

function. The input angle is a, and its function is:
sin =sin(a)
Signal a is 24 bit wide and sin is 25 bit wide.
In its initial AIG implementation, this benchmark counts

5416 nodes and 225 levels.
9) Square-root: This benchmark realizes a square-root

function:
asqrt =

√
a

Signal a is 128 bit wide while signal asqrt is 64 bit
wide. The difference in bit width is due to (unsigned) integer
truncation at the output.

In its initial AIG implementation, this benchmark counts
24618 nodes and 5058 levels.

10) Square: This benchmark is a square function:
asquared = a2

Signal a is 64 bit wide while signal asquared is 128 bit
wide.

In its initial AIG implementation, this benchmark counts
18484 nodes and 250 levels.

B. Random/Control Benchmarks

The set of random/control benchmarks in the EPFL suite
consists of various types of controllers, arbiters, routers, con-
verters, decoders, voters and random functions. It contains
10 circuits mapped into simple gates from behavioral de-
scriptions. Table II shows their initial characteristics in terms
of and/inverter graph (AIG) representation. Also here, the
initial implementations are intendedly unoptimized. In total,
the random/control benchmarks count about 76k nodes and
0.6k levels. A detailed description for each benchmark follows.

TABLE II
RANDOM/CONTROL BENCHMARKS

Benchmark name Inputs Outputs AND nodes Levels
Round-robin arbiter 256 129 11839 87

Alu control unit 7 26 174 10
Coding-cavlc 10 11 693 16

Decoder 8 256 304 3
i2c controller 147 142 1342 20

Int to float converter 11 7 260 16
Memory controller 1204 1231 46836 114

Priority encoder 128 8 978 250
Lookahead XY router 60 30 257 54

Voter 1001 1 13758 70

Total 2832 1841 76441 640

1) Round-robin arbiter: This benchmark implements the
combinational tasks involved in round robin arbitration. Round
robin arbitration is a scheduling scheme which gives to each
requestor its share of using a common resource for a limited
time or data elements [17]. In this particular benchmark,
priority and request signals are 128 bit wide and the grant
signal is 128 bit wide. The request signal follows a one-
hot priority vector encoding. There is also a anyGrant signal
saying if any grant has been issued. It is 1 bit wide.

In its initial AIG implementation, this benchmark counts
11839 nodes and 87 levels.

2) Alu control unit: This benchmark is a simple alu control
unit. It has various signals controlling alu operations, register
destination, memory operations, jumps, etc. It has 7 inputs and
26 outputs.

In its initial AIG implementation, this benchmark counts
174 nodes and 10 levels.

3) Coding-cavlc: This benchmark is part of a Context-
adaptive variable-length coding (CAVLC) video encoder for
the H.264/MPEG-4 AVC format [18]. It contains look-up
tables for coefficients, total zeros, trailing ones and other
signals [18]. Given its nature, this benchmark is an example
of random logic.

In its initial AIG implementation, this benchmark counts
693 nodes and 16 levels.

4) Decoder: This benchmark is a traditional decoder. In
particular, it is an 8 to 256 decoder.

In its initial AIG implementation, this benchmark counts
304 nodes and 3 levels.

5) i2c controller: This benchmark implements the combi-
national tasks of an i2c communication controller. The full
description is taken from OpenCores [19]. Due to its complex
functionality, the precise I/O functionality is not provided.

In its initial AIG implementation, this benchmark counts
1342 nodes and 20 levels.

6) Int to float converter: This benchmark represents an
integer to floating point format conversion. The input is an
integer in binary format named B. B is 10 bit wide. The
outputs are a mantissa signal M and an exponent signal E.
M and E are 4 and 3 bit wide, respectively.

In its initial AIG implementation, this benchmark counts
260 nodes and 16 levels.

7) Memory controller: This benchmark implements a mem-
ory controller. Similarly to the i2c controller, it is taken from
a full design available at OpenCores [20]. Due to its complex
functionality, the precise I/O functionality is not provided.

In its initial AIG implementation, this benchmark counts
46836 nodes and 114 levels.

8) Priority encoder: This benchmark is a standard priority
encoder. In particular, it is a 128 to 7 priority encoder. There
is one additional output bit indicating whether or not the input
data is valid.

In its initial AIG implementation, this benchmark counts
978 nodes and 250 levels.



9) Lookahead XY router: This benchmark represent a pop-
ular router in network-on-chips. It is a lookahead XY router
to achieve low latency, high throughput communication in a
network-on-chip environment. Details on the lookahead XY
router are available at [21].

In its initial AIG implementation, this benchmark counts
257 nodes and 54 levels.

10) Voter: This benchmark is a voter circuit. In particular,
it is a majority voter of 1001 variables.

In its initial AIG implementation, this benchmark counts
13758 nodes and 70 levels.

C. MtM Benchmarks

The More than ten Million gates (MtM) benchmarks are
designed to challenge the size capacity of modern optimization
tools. In the EPFL combinational benchmark suite there are
three such MtM circuits. They are extracted from a set of
random Boolean functions, generated with a custom computer
program, using as selection metric the implementation com-
plexity. Given their relatively small number of I/O, the MtM
benchmarks may have a much smaller minimum implemen-
tation complexity. However, no optimization tool found yet a
substantially smaller AIG implementation.

The three MtM benchmarks are named sixteen, twenty and
twentythree. Their names indicate the number of million AND
nodes in their initial AIGs. Table III shows their characteristics
in terms of and/inverter graph (AIG) representation. In total,
the MtM benchmarks count about 60M nodes and 0.48k levels.

TABLE III
MTM BENCHMARKS

Benchmark name Inputs Outputs AND nodes Levels
sixteen 117 50 16216836 140
twenty 137 60 20732893 162

twentythree 153 68 23339737 176

Total 407 178 60289466 478

IV. LUT-6 MAPPING EXPERIMENTS

In this section, we present LUT-6 mapping experiments for
the EPFL combinational benchmark suite. Table IV shows the
corresponding results. All experiments are performed using
ABC academic tool [22], with the pure mapping command
if -K 6. Obviously, better results were possible by including
optimization scripts prior to the mapping step. However,
finding the best LUT-6 realization for these benchmarks if left
as challenge to researchers. Details on how to submit better
implementations for one or more of the EPFL benchmarks are
given in [8].

In our LUT-6 mapping experiments, we observe a coherent
but scaled trend with respect to the initial AIG implementa-
tions. Arithmetic benchmarks are mapped into 80k LUT6 and
6.4k levels in total. Random/control benchmarks are mapped
into 18k LUT6 and 0.1k levels in total. MtM benchmarks are
mapped into 21M LUT6 and 1k levels in total. The average

TABLE IV
LUT-6 MAPPING EXPERIMENTS

Benchmark name Inputs Outputs LUT-6 count Levels
Arithmetic

Adder 256 129 254 51
Barrel shifter 135 128 512 4

Divisor 128 128 9311 867
Hypotenuse 256 128 44635 4194

Log2 32 32 8008 77
Max 512 130 842 56

Multiplier 128 128 5913 53
Sine 24 25 1458 42

Square-root 128 64 5720 1033
Square 64 128 3985 50
Total 1663 1020 80638 6427

Random/Control
Round-robin arbiter 256 129 2722 18

Alu control unit 7 26 29 2
Coding-cavlc 10 11 122 4

Decoder 8 256 287 2
i2c controller 147 142 365 4

Int to float converter 11 7 49 3
Memory controller 1204 1231 12096 25

Priority encoder 128 8 210 31
Lookahead XY router 60 30 89 7

Voter 1001 1 2691 16
Total 2832 1841 18660 112

MtM
sixteen 117 50 5648909 29
twenty 137 60 7189658 33

twentythree 153 68 8246898 36
Total 407 178 21085465 98

AIG/LUT-6 scaling factor for size ranges between 3 and
5. Considering depth, the average AIG/LUT-6 scaling factor
ranges between 4 and 6.

V. DISCUSSIONS

The EPFL benchmark suite is designed to test state-of-the-
art optimization and synthesis tools. It consists of natively
combinational circuits to guarantee the best portability be-
tween academic and commercial tools.

The EPFL benchmark suite fits a wide spectrum of op-
timization algorithms thanks to its variety of circuit types
and complexity. For example, high-quality (time-consuming)
methods suit small benchmarks such as alu control unit
and int2float converter while fast methods (low-quality) suit
large benchmarks such as MtM and hypotenuse benchmarks.
Advanced synthesis tools with (auto)tunable quality/runtime
tradeoff can be tested over the entire benchmark suite.

The ultimate goal of the EPFL benchmark suite is to define
a new comparative standard for the logic optimization and
synthesis community. We plan to achiave this goal by (i)
providing a ready/easy to use set of benchmarks, (ii) keeping
track of the best results and publishing them online (iii) giving
a symbolic recognition/award to the authors of the best results.

We plan on extending the number and types of benchmark
based on users’ feedback.



VI. CONCLUSION

In this paper, we presented the EPFL combinational bench-
mark suite. It consists of 23 combinational circuits designed
to challenge modern logic optimization tools. The benchmark
suite is divided into arithmetic, random/control and MtM parts.
The arithmetic part includes 10 benchmarks, e.g., square-root,
hypotenuse, divisor, multiplier etc.. The random/control part
consists of 10 benchmarks, e.g., round-robin arbiter, lookahead
XY router, alu control unit, memory controller etc.. The MtM
part contains 3 very large benchmarks, featuring more than
ten million gates each. The EPFL benchmark suite can be
downloaded at [8] in Verilog, VHDL, BLIF and AIGER
formats. In addition to providing the benchmarks, we keep
track of the best optimization results, mapped into LUT-6, for
size and depth metrics. Better logic implementations can be
submitted online. After combinational equivalence checking
tests, the best circuits will be included in the benchmark suite
together with the author’s name and affiliation.
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