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Abstract—For more than four decades, Complementary Metal-Oxide-
Semiconductor (CMOS) Field Effect Transistors (FETs) have been the 
baseline technology for implementing digital computation systems. 
CMOS transistors natively implement Not-AND (NAND)- and Not-
OR (NOR)-based logic operators. Nowadays, we observe a trend 
towards devices with an increased set of logic capabilities, i.e., with 
the ability to realize in a compact way specific logic operators as 
compared to the standard CMOS. In particular, controllable-polarity 
devices enable a native and compact realization of eXclusive-OR 
(XOR)- and MAJority (MAJ)- logic functions, and open a large panel 
of opportunities for future high-performance computing systems. 
However, main current logic synthesis tools exploit algorithms using 
NAND/NOR representations that are not able to fully exploit the 
capabilities of novel XOR- and MAJ-oriented technologies. In this 
paper, we review some recent work that aims at providing novel logic 
synthesis techniques that natively assess the logic capabilities of 
XOR- and MAJ-operators. 
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I.  INTRODUCTION 
The increasingly higher level of integration reached by Field Ef-

fect Transistors (FETs) has been allowing, for more than four decades, 
the semiconductor industry to design computation systems with expo-
nential capabilities. Silicon-based Metal-Oxide-Semiconductor Field-
Effect Transistors (MOSFETs) form the elementary blocks for present 
electronics. In the digital domain, a MOS transistor behaves as a two-
terminal binary switch driven by a single input signal. Such behavior 
makes them efficient in implementing Not-AND (NAND)- and Not-
OR (NOR)-based logic operations. 

Nevertheless, as the semiconductor industry is approaching the ul-
timate limits of conventional MOSFETs, researchers are focusing their 
effort to identify possible approaches that will enable the continuation 
of Moore’s scaling laws. Fin-based Transistors (FinFETs) are suc-
cessfully replacing planar CMOS transistors at the 22-nm technology 
node [1]. Following the trend to one-dimensional (1-D) structures, 
advanced structures, such as Silicon NanoWires FETs (SiNWFETs) 
[2] or Carbon Nanotubes FETs (CNFETs) [3] are promising candi-
dates to push the device performances. 1-D structures exhibit a superi-
or electrostatic control that can bring both performances [2] and novel 
functionalities, such as the dynamic control of the device polarity [4]. 
Transistors with controllable polarity are Double-Independent Gate 
(DIG) FETs having one gate controlling on-line the device polarity. 
Transistors with controllable polarity have been experimentally fabri-
cated in several novel technologies, such as carbon nanotubes [5] and 
Silicon NanoWires (SiNWs) [4,6]. The on-line configuration of DIG 
FETs polarity is typically enabled by the regulation of Schottky barri-
ers on source/drain junctions through the additional gate. 

Transistors with controllable polarity intrinsically act as compara-
tors and thus enable the realization of eXclusive-OR (XOR) and MA-
Jority (MAJ) operators with the same complexity than AND/OR 
operators. To take advantage of this opportunity at circuit level, XOR 

and MAJ primitives should be efficiently manipulated during the 
design of a circuit. 

Nowadays, virtually all digital integrated circuits are realized us-
ing logic synthesis techniques [7], whose performances depend on the 
manipulated logic representations. Many logic representation forms 
are inspired by the underlying functionality of contemporary digital 
circuits. Designed to support MOS technologies, original logic synthe-
sis techniques, which are the basis for current commercial tools, ex-
ploit algorithms using NAND/NOR representations and miss the 
possibility to unlock the full expressive capabilities of the novel class 
of controllable-polarity FETs. 

This paper aims at surveying some recent work on novel logic 
synthesis techniques that natively assess the logic capabilities of 
XOR- and MAJ-operators. We will focus on two promising logic 
representations: Biconditional Binary Decision Diagram (BBDD), 
which uses a comparator as its core logic expansion, and Majority-
Inverter Graph (MIG), which extends standard And-Or-Inverter 
Graph and supports a powerful algebra. 

The remainder of the paper is organized as follows. In Section II, 
we devise on the opportunities brought by controllable-polarity devic-
es. In Section III, we review and discuss the basis of BBDDs, while, in 
Section IV, we focus on MIGs. In Section IV, we conclude the paper.  

II. TOWARDS THE NATIVE IMPLEMENTATION OF 
ARITHMETIC OPERATORS 

In this section, we discuss the opportunities of controllable-
polarity devices in light of arithmetic operators. 

A. Transistors with Controllable Polarity 
Advanced nanoscale device technologies often exploits Schottky 

barriers at their source and drain contacts. While decreasing the access 
resistances, they also lead to an ambipolar phenomena, coming from 
the conduction of both holes and electrons Its effect is reinforced 
today by the trend towards the use of intrinsic transistor channels at 
the 22-nm node and below. This phenomenon is typically a limitation 
for design and technologists try to suppress it through additional pro-
cessing steps. 

However, it is possible to control this phenomenon in order to en-
rich the capabilities of the elementary transistors by creating double-
independent-gate structures. 

Typically, in such device, one gate electrode, called Control Gate 
(CG) acts conventionally by turning on and off the device. The other 
electrode, called Polarity Gate (PG), acts on the side regions of the 
device, in proximity of the Source/Drain (S/D) Schottky junctions, 
switching the device polarity dynamically between n- and p-type, as 
illustrated in Fig. 1-a. 

This elementary property defines a new class of emerging devices 
that inherently implement a two-input comparator rather than a simple 
switch. These innovative devices come in many different technologies, 
such as silicon nanowires [4,6], carbon nanotubes [5], graphene [8] 
and nanorelays [9]. In the first three approaches, the basic element is a 
double-gate controllable-polarity transistor. It enables online configu-
ration of the device polarity (n or p) by adjusting the voltage at the 
second gate. Consequently, in such a double-gate transistor, the on/off 
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state is biconditional on both gates values. The basic element in the 
last approach [9] is instead a six-terminals nanorelays. It can imple-
ment complex switching functions by controlling the voltages at the 
different terminals. Following to its geometry and physics, the final 
electric way connection in the nanorelay is biconditional on the termi-
nal values [9]. Even though they are based on different technologies, 
all the devices in [4,5,8,9] have the same common logic abstraction, 
depicted by Fig. 1-b. 
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Fig. 1. Transistor with polarity control behavior illustration (a) and common 
logic abstraction (b). 

B. Logic Operations with Higher Expressive Power 
Digital circuits using these transistors can exploit both gates as in-

puts, thereby enabling the design of compact cells that implement 
XOR more efficiently than in CMOS. Indeed, the devices are logic 
biconditional on their two-gate polarities, and embed intrinsically an 
XOR characteristic. This unique feature is used to a full-swing 2-input 
XOR gate, reported in Fig.2-a, with only 4 transistors while the tradi-
tional full-swing static CMOS implementation uses 8 transistors [10]. 
Similarly, a 4-transistor 3-input majority logic gate is reported in 
Fig.2-b. This gate returns the logic value assumed by more than 2 
inputs. In static CMOS, the same gate has 10 devices in place of 4 
here [10]. 
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Fig. 2. 2-input XOR (b) and 3-input MAJ (c) gates. 

Thanks to their improved expressive power, transistors with con-
trollable polarity enable compact realizations for XOR- and MAJ-
dominated circuits, that can be largely found in arithmetic systems. 
Unfortunately, traditional design methodologies are not always able to 
identify these primitives, thereby missing interesting design perspec-
tives. In the following, we review two techniques developed to native-
ly assess the performances of controllable-polarity devices. 

III. BICONDITIONAL BINARY DECISION DIAGRAMS 
In this section, we report on a novel decision diagram able to na-

tively abstract the functionality of controllable-polarity devices. 

A. Generalities 
As described before, many emerging devices can act as compara-

tors. Therefore, we may try to naturally harness such logic functionali-
ty with a novel logic representation. We report on Biconditional Bina-
ry Decision Diagrams (BBDDs) that are a class of BDDs based on the 
biconditional expansion of two variables [11]. The biconditional 
expansion is defined as: 

f (x, y,..., z) = (x⊕ y). f (y, y,..., z)+ (x⊕ y). f (y, y,..., z)  
and naturally model the comparator behavior of a controllable-polarity 
device. Such decomposition embeds the XOR functionality and makes 
the diagrams that exploit its functionality remarkably compact for 
arithmetic operations. A decision diagram node relying on the bicondi-
tional expansion is given in Fig. 3. Each non-terminal node in a 
BBDD has a branching condition biconditional on two variables. We 
call these two variables Primary Variable (PV) and the Secondary 
Variable (SV). 

PV=x 

SV=y 

PV=SV PV≠SV 

f(x,y,...,z) 

f(y,y,...,z) f(y,y,…,z)  
Fig. 3: BBDD non-terminal node [11]. 

B. Elementary Properties of BBDDs 
BBDDs exhibit interesting properties for Electronic Design Auto-

mation (EDA). We report in this section on the canonicity property 
and some interesting theoretical bounds. 

1) Canonicity 
Many decision diagrams are a must in modern EDA tasks, such as 

logic synthesis or verification, because of their canonicity, i.e., the 
uniqueness of the structure for a given logic function. BBDDs are 
canonical under some order and reduction conditions. To correctly 
order a BBDD, one can impose a variable order for PVs and follow 
the Chain Variable Order (CVO) rule given in [11] to assign variables 
on the SVs. For convenience, the CVO, given an order π = (π0, π1, ..., 
πn−1) of the inputs, is reported as the following: 

PVi = π i

SVi = π i+1

⎧
⎨
⎩

with i = 0,1,...,n− 2;
PVn−1 = π n−1

SVn−1 =1
⎧
⎨
⎩

 

From an ordered BBDD, it is possible to apply a set of transfor-
mations to reduce the number of nodes used by the diagram. There-
fore, a reduced BBDD follows the following rules: 

R1) It contains no two nodes, root of isomorphic subgraphs. 
R2) It contains no nodes with identical children. 
R3) It contains no empty levels. 
R4) Subgraphs representing single variable functions degenerates 

into a single BDD driven by a traditional Shannon’s expansion. 
A BBDD ordered by the CVO and reduced according to these 

rules has been shown to be canonical in [11]. 
2) Theoretical Bounds 

Intrinsically embedding the XOR primitive, BBDDs have been 
shown remarkably compact for some arithmetic functions. In [11], 
theoretical bounds have been drawn for adders and majority functions. 
While the demonstration is not reported here for the sake of simplicity, 
we would like to point out that a n-bit binary adder function has 3n+1 
nodes as compared to 5n+2 nodes for standard BDDs [12]. This leads 
to a gain of about 40% nodes compared to state-of-the-art DDs. Simi-
lar results are also reachable for n-bit majority (n odd) functions. 

C. Interest for Controllable-Polarity Devices 
Well supported by an efficient manipulation package [13], 

BBDDs can efficiently exploit the properties of controllable-polarity 
devices at the logic synthesis level. Indeed, they are able to identify 
portions of circuits that require arithmetic operators more often than 
traditional methodologies. 

Furthermore, one can note that there exists a one-to-one corre-
spondence between BBDD nodes and controllable-polarity devices, as 
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illustrated in Fig. 4. It then becomes interesting to consider One-Pass 
logic Synthesis (OPS) techniques to build on-the-fly novel gate struc-
tures that embed the XOR operation. 
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Fig. 4: Direct correspondance between a BBDD node and its realizations at 
both logic and transistor levels [11]. 

IV. MIG: MAJORITY-INVERTER GRAPHS 
In this section, we report on a technique that exploits majority op-

erator as a core logic representation. Therefore, we expect to leverage 
the performances of controllable-polarity devices that efficiently 
implement a majority primitive. 

A. MIG Logic Representation 
With the objective of extending the capabilities of standard 

NAND/NOR representations towards both arithmetic and control 
logic, we present Majority-Inverter Graph (MIG). An MIG is a logic 
network comprised of only 3-input majority primitives. MIG is a 
universal representation form that includes And-Or-Inverter Graph 
(AOIG), as proven in [14] and illustrated in Fig. 5. 
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Fig. 5: Examples of MIG representations for f=x⊕y⊕z (a) and f=x(y+uv) (b) 
derived from their optimal AOIG representations [11]. 

In principle, MIGs can be manipulated using traditional AND/OR 
techniques. However, the potential of MIGs goes beyond standard 
AOIGs and, in order to unlock their full expressive power, a new 
Boolean algebra, natively supporting the majority/inverter functionali-
ty was introduced. The novel Boolean algebra is defined over the set 
(�,M,ʹ,0,1), where M is the majority operator of three variables and ʹ is 
the complementation operator. The following set of five primitive 
transformation rules is an axiomatic system for (�,M,ʹ,0,1) that ena-
bles an efficient manipulation of MIGs: 

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x) 
2- Majority: if(x = y), M(x, y, z) = x = y; if(x = yʹ), M(x, y, z) = z 
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x)) 
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z) 
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ) 

B. Opportunities for Controllable-Polarity Devices 
Thanks to the presented axiomatic system, applying simple trans-

formations on an MIG, representing a Boolean function, ultimately 
consists of its transformation into a different MIG, with better figures 

of merit in terms of area (size), delay (depth), and power (switching 
activity). In [14], the application to logic synthesis produced competi-
tive results, as compared to elaborated state-of-the-art techniques, 
thanks to the expressive power of MIGs and their associated algebra. 
Indeed, there exist logic circuits, for which traditional optimization 
reaches its limits while the proposed methodology can optimize fur-
ther. In particular, MIGs open the opportunity for efficient synthesis of 
datapath circuits, where majority logic is dominant, and we can there-
fore envisage many advantageous use of MIG for controllable-polarity 
devices synthesis. 

V. CONCLUSION 
In this paper, we comment on a novel and promising class of sem-

iconductor devices that exhibit an enhanced functionality. In particu-
lar, devices with a dynamic control of the polarity have been recently 
demonstrated. These devices act naturally as a comparator and present 
many compelling interests for realizing arithmetic circuits based on 
XOR and MAJ operators. Unfortunately, current logic synthesis tech-
niques do not support well these operators and many advantages of 
controllable-polarity devices are lost during automated design. We 
then reviewed two interesting body of work that aim at fully unlocking 
these opportunities: Biconditional Binary Decision Diagram (BBDD), 
which uses a comparator as its core logic expansion, and Majority-
Inverter Graph (MIG), which extends standard And-Or-Inverter 
Graph and supports a powerful algebra. 
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