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A Linear Approach to Multi-Panel Sensing in
Personalized Therapy for Cancer Treatment
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Abstract— In this paper, a new approach for evaluating the
performance of a multi-panel biosensor using linear algebra is
presented. With a system-level mathematical analysis based on
graphs and linear algebra, we formulate a new approach for
contributions decoupling in a multi-panel biochip for simulta-
neous detection of anti-cancer drugs, avoiding redundancy and
interaction between enzymes. Experimental results have been
used to validate the model.

Index Terms— Cytochrome P450 biosensor, multiplexed drugs
detection, personalized therapy, condition number, limit of
detection, linear system.

I. INTRODUCTION

THE personalization of drug therapies has a significant
effect on the quality and cost of healthcare [1]. In order

to personalize a pharmacological treatment, it is required to
monitor the concentration of drugs or their metabolites directly
in blood and to extract some important pharmacokinetics
parameters. Then the dose of drug can be individually adjusted
according to the patient’s pharmacokinetics profile [2], in order
to increase the accuracy and efficacy of the treatment and
to reduce dangerous adverse drug reactions. Amperometric
biosensors provide rapid, accurate and quantitative detection
of drugs and metabolites with an inexpensive and simple to
use set-up [3], [4].

A promising approach is based on cytochrome P450
enzymes (CYP). CYPs possess multiple substrate recognition
sites, therefore they are able to metabolize a wide range
of drugs [6]. At the present state-of-the-art there are many
examples of CYP-based sensors [7], where typically one probe
(enzyme) is employed for the recognition of a single target (the
drug). What is still missing is a multi-panel approach where
many probes are used to recognize many targets, i.e. involving
several CYP isoforms for detecting mixtures of drugs.

Multiple drug detection with CYP is a promising task
because many pharmacological therapies are based on the
administration of several drugs at the same time, such as for
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Fig. 1. Multiple-spots sensor scheme. Three working electrodes are nanos-
tructured with multi-walled carbon nanotubes (MWCNTs) and a CYP isoform
that is specific for a group of drugs (listed inside the boxes), while one
electrode is functionalized with only MWCNTs. MWCNTs are used for
enabling drug detection at pharmacological ranges [5].

chemotherapy or cardiovascular diseases [1], [2]. However, a
CYP isoform can detect several different compounds at the
same time due to the broad substrate range of cytochrome
and to its molecular structure [6], not allowing a correct
identification and quantification of the drug compound.

Nevertheless in previous works [8], [9], we have shown that
by choosing the right combination of CYPs, the simultaneous
measurement of two drugs in the same sample is possible,
even if it requires complex data analysis. In the development
of a cytochrome biosensor array for multiple drug monitoring,
proper strategies to distinguish the different drug contributions
are therefore necessary to minimize the errors coming from the
measurements [10].

The strategy presented in this work is based on linear
algebra. In this paper, we propose a system-level mathematical
analysis based on a matrix formulation for the decoupling of
individual drug contributions in a system containing multiple
CYP biosensors. The model, designed to decouple an indef-
inite number of compounds (in practical clinical cancer, the
drugs to be monitored are typically in the range from 1 to 10),
has been validated with real experimental data, and it can be
used for the design of a biosensor array chip for personalized
therapy (Fig. 1).

With this paper we want to present the investigation of
the possible interactions between the sensors within an array
and the strategy that we can adopt to overcome the interfer-
ences. In the next sections we will show the mathematical
model built on the scheme of the sensor platform reported in
Fig. 1, which has been generalized for an undefined number
of probes and targets. In Section V we present the validation
of the model by a comparison with experimental data.
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II. PROBLEM MODELING

In electrochemical biosensors based on CYP we can mea-
sure the presence of drugs by analyzing the peaks that are
produced in a cyclic voltammogram when the drug bind to
the active site of CYP. The presence of a drug induces an
increase in the current peak that is proportional to the drug
concentration [7].

Since CYPs can host several molecules in their active site,
they can detect two different compounds at the same time.
With some drug pairs, CYPs will produce multiple peaks in
the single cyclic voltammogram [8]. But with other drugs,
as reported in [9], we cannot distinguish the contributions
of each single drug within a mixture by using only one
CYP-sensor, because the current peaks are given at the same
potential. The solution to this problem is given by using
several CYPs in a sensor array, in the right combination. With
this strategy we can decouple the contribution of every drug
present in the mixture.

In previous studies many models for avoiding redundancy in
sensor applications have been developed: algorithms based on
irredundant cover computation, integer linear programming or
heuristic models [11], [12]. These models were optimized for
different applications: they mainly aim to select a minimum
number of probes for the design of arrays, where the input
samples may contain any number of probes (which is usually
a large number, in case of DNA sensors) [12]. In another
study [10], the combinations of sensor spots to be queried
were selected by solving a covering problem [13].

The model presented in this paper has the advantage to be
based on linear algebra, thus it can be easily implemented to
algorithms with low computational costs.

A model based on linear algebra can be applied when
sensors give a linear response even in presence of multiple
drug interactions. Our previous work [9] shows some exam-
ples of detection of drug pairs. In particular we measured
the concentration variations of three anti-cancer compounds
(Cyclophosphamide, Ifosfamide and Ftorafur) in presence
of another compound, Etoposide. As shown in the above-
mentioned paper, the drug-drug interactions on the same
sensor were linear in a certain range of Etoposide concen-
tration (up to 50 μM). This means that for low concentration
of Etoposide (<50 μM) we can use the linear approxima-
tion proposed in this model. And in many clinical applica-
tions Etoposide is administered at concentration in the range
1–40 μM, as in [14] and in the more recent [15], [16].

However there are some cases where drug-drug interac-
tions are not linear. In the work reported in [8], non linear
interactions of several drugs on the same sensors were taken
into account. However, that approach is redundant in the case
where drug-drug interactions are occurring in a concentration
range where they may be sufficiently well modeled by a linear
approach.

Here we show how the sensing system can be modeled
by a graph and then how it can be analyzed through linear
algebra. We introduce a new definition of limit of detection
referred to the entire sensor array, which considers all the
enzyme spots and the target molecules that enzymes are able

Fig. 2. Graph-scheme: general case with n drug compounds and m enzyme
spots. This graph is weighted, i.e. coefficients sl j can be associated with
edges and they represent the interaction between drugs and enzymes, i.e. the
sensitivity of the l-enzyme spot in detecting the j-drug (where 1 < l < m;
1 < j < n). In general the sensitivity coefficient sl j > 0 and sl j �= 0, but
it may be equal to zero if the l-enzyme is not involved in the metabolism of
the j-drug.

to metabolize. The limit of detection for a single-spot sensor is
limited by the measurement and instrument errors, and by the
sensor sensitivity [17]. In this new parallel setting, the limit of
detection for the entire sensor array (L O D∗), is also affected
by limitations due to multiple drug-probe interactions.

In a sensor array, a set of currents is measured, that are
indicative of the target concentration. In general

i = f (c) (1)

where iεR
m, cεR

n are the current and concentration vectors
respectively and f : R

m → R
n is the transduction function.

All concentrations are of interest within a medical interval,
the pharmacological range, [cL cM ], with cL, cMεR

n. If we
linearize the function f in the central part of the interval, we
can write

Sc = i (2)

where S is the Jacobian matrix. We can experimentally show
that for the set of sensors that we are studying, the linear
approximation is justifiable, since all the performance criteria
evaluated for the biosensor, such as the sensitivity and limit of
detection, are determined within the linear concentration range
of the calibration curve. Electrochemical biosensors always
have an upper limit of the linear concentration range. This limit
is directly related to the catalytic properties of the biological
receptor [18].

III. GRAPHS AND LINEAR SYSTEMS

The array-based sensor chip reported in Fig. 1 can be
abstracted as a bipartite graph (Fig. 2) where two fam-
ilies of vertices are connected together through weighted
edges. The first family of vertices (in Fig. 2 labeled as
“Drugs”), represents all drug compounds of interest while
the second family (the spot column labeled as “Enzyme
Spot” in Fig. 2), represents the spots functionalized by
different enzymes which are responsible for the catalytic
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reaction enabling the detection mechanism. This graph is
edge-weighted and these weights represent the interaction
strength between drugs and enzymes. In the general case
represented by the graph in Fig. 2, we assume to have n
drug spots connected to m enzyme spots. The weight matrix
S = {

sl j , l = 1, 2, …, m; j = 1, 2, …, n
}
, with sl j ≥ 0, con-

tains the coefficients of proportionality between the concen-
tration of j -drug and the current measured at the l-spot, due
only to the presence of the drug j , thus corresponding to the
definition of sensitivity [17] of the single array spot.

Sensi tivi ty = Peak Current

Drug Concentration

[
n A

μM · mm2

]
. (3)

The sensitivity coefficient sl j has a unit of measurement
of μA/μM (sometimes it is normalized by the electrode
area, e.g. mm2), it is always positive and it is equal to zero
if the l-enzyme is not involved in the metabolism of the
j -drug. The sensor array operation can be represented as a
linear system of m equations in the unknowns represented by
vector c = [c j , j = 1, 2, ....., n] [19]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i1 = s11c2 + s12c2 + s13c3 + · · · + s1ncn

i2 = s21c1 + s22c2 + s23c3 + · · · + s2ncn

i3 = s31c1 + s32c2 + s33c3 + · · · + s3ncn
...
im = sm1c1 + sm2c2 + sm3c3 + · · · + smncn

(4)

that can be written in the matrix form
⎡

⎢
⎢
⎢
⎣

s11 s12 · · · s1n

s21 s22 · · · s2n
...

...
...

...
sm1 sm2 · · · smn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

c1
c2
...

cn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

i1
i2
...

im

⎤

⎥
⎥
⎥
⎦

(5)

where i = [il, l = 1, 2, ....., m] is the vector of the currents
measured with each spot. These are the catalytic currents
measured at each l-enzyme spot. For the sake of simplicity,
starting from this point we assume m = n. In an ideal
case, each drug is sensed by only one probe. Hence S is
diagonal. In reality, the drug-drug interaction makes S a non-
diagonal matrix. The contribution of this work is to give a
means to assert the accuracy and the limit of detection of
the sensor array. Moreover we present a new mathematical
approach to decouple the contributions of several drugs, start-
ing from a complex system, where these contributions are
coupled.

We assume that our system is consistent and not homoge-
neous (i.e. we exclude the case where the vector i equals the
null vector). In Fig. 3, examples of biosensor structures leading
to consistent and inconsistent systems are reported. The coeffi-
cient matrix S is chosen to be not singular, i.e. the determinant
is not equal to zero, d(S) �= 0. The system does not yield a
unique solution if S is not invertible, or equivalently if the
rows of S are linearly dependent. We guarantee the system
to have a unique solution by choosing in the design phase as
many sampling currents as the targets to be measured, and by
checking the accuracy of the solution as described in the next
section [19].

Fig. 3. Examples of consistent and inconsistent systems: in a) and c) the
number of equation equals the number of unknowns, thus the systems are
consistent, i.e. they have at least one solution (unique or infinite solution);
b) is an inconsistent system since the number of unknowns is less than the
number of equations.

IV. ACCURACY OF SOLUTIONS OF LINEAR SYSTEMS

Here we introduce two definitions of error on the con-
centration. The error on the evaluation of the concentration
�e depends on the accuracy of the solution of the linear
equation system and it differs from the error on the con-
centration �c, which affects the measurements performed by
the sensor. The latter error will be bigger than the previous
one since it includes also errors due to the instrument and
due to the experimental measurements (random and possible
systematic errors).

A system of linear equations is considered to be well-
conditioned if a small change in the coefficient matrix or a
small change in the right hand side results in a small change
in the solution vector [19], [20]. Considering the system in
(5), if we change i + �i , the new solution c is affected by an
error on its evaluation �e, defined as

S(c + �e) = i + �i, (6)

where �i is the error on the measured current. Thus the
correspondent change in the vector c that is defined as the
error on the evaluation of the concentration (�e), is given by

�e = S−1�i. (7)

The perturbations �e, �i and �S are the differences between
the measured values of the drug concentration cr , the current
ir and sensitivity Sr , and the theoretical values (c, i and S):

cr = c + �e

ir = i + �i

Sr = S + �S. (8)

According to [20] we can assert that the equations system is
well-conditioned if small �i results in small �e. The solution
c + �e is accurate only if the problem of solving Sc = i
is well conditioned. From a physical standpoint the error �e
depends on two factors: 1) the sensitivity of the linear system
as represented by S and 2) the error on the transduction
as modeled by �S. Here we will evaluate the first factor,
neglecting the influence of �S.

The condition number χ(S) of S [20]

χ(S) = ‖S‖
∥
∥
∥S−1

∥
∥
∥ (9)
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is the product of the norm of S and the norm of the inverse of
S. The condition number χ(S) can quantify the accuracy of
the solution of the linear system Sc = i . It is a function of the
norm of a matrix, since the definition of condition number uses
the notion of norm to combine information on about a set of
numbers into a single number. Thus it is important choosing a
norm definition that can properly fit the problem [19]. We can
normalize the condition number of S respect to the number of
the rows and columns:

χ(S) = ‖S‖
∥
∥
∥S−1

∥
∥
∥

1

Nm · Nm
, (10)

where Nm is the number of rows and columns of the matrix S.
In this way we obtain condition numbers that are independent
of the number of electrodes (since with the norm we always
consider the maximum values for each row and column of the
matrix S). Let’s now independently consider the effects of a
perturbation �i on the solution of Sc = i

Sc = i + �i. (11)

We can demonstrate that the variation of the solution of
a nonsingular system Sc = i with respect to perturbation
�i in i is directly proportional to the condition number of
S [19], [20]. From (7) we have

‖�e‖ ≤
∥∥
∥S−1�i

∥∥
∥ ≤ ‖�i‖

‖i‖
∥∥
∥S−1

∥∥
∥ ‖i‖ . (12)

By computing the relative error in the solution εc = ‖�e‖
c , and

knowing that from (2)

‖i‖ = ‖Sc‖ ≤ ‖S‖ ‖c‖ , (13)

we obtain from (9)

‖�e‖
‖c‖ ≤ χ(S)

‖�i‖
‖i‖ → εc ≤ χ(S)εi , (14)

which represents an upper limit for εc. In (14), ‖�i‖
‖i‖ is the

relative error in i , εi . This means that the relative error in
i can be magnified by as much as a factor of χ(S) in the
solution. Inequality (14) asserts that if the condition number
of S is small (usually close to unity), the system is well-
conditioned, that is the relative error in i is not much larger
than the relative error in c. If χ(S) is large (χ(S) 	 1), the
system is ill-conditioned, that is the relative error in i can be
significantly larger than the relative error in c.

V. MODEL VALIDATION

Detection limit and sensitivity are the key parameters
used for evaluating the sensor quality. The limit of detection
(L O D), expressed as a concentration or quantity, is defined as
the smallest measure that can be detected with reasonable cer-
tainty for a given analytical procedure [17]. For a single sensor
of the platform, L O D is calculated as the ratio of the mean of
standard deviation current �i (calculated from the background
current values), over the analytical sensitivity S, [17], [21]

L O D = k
�i

S
, (15)

where �i and S are scalar values. We can introduce a more
general definition of limit of detection (L O D∗), for a sensor

array with m-enzyme spot and m-drug compounds to be
detected:

L O D∗ = k
∥
∥
∥S−1�i

∥
∥
∥ (16)

where �i, iεR
m, SεR

mxn and k can have the following values,
according to the confidence interval

k =
⎧
⎨

⎩

1 → 68.3%
2 → 95.4%
3 → 99.7%

con f idence interval. (17)

This is a general definition for limit of detection and it can be
applied to every array-based sensor with a variable number of
enzyme spots and chemicals to be measured. Values of L O D∗
will be usually larger than the limit of detection evaluated
for the single-spot sensor, because, according to the norm
definition, with L O D∗ we always consider the maximum
number in the matrix row/column. By introducing in (14) the
new definition of L O D∗, we can obtain an upper bound for
the error on the evaluation of the concentration, �e which
depends on the condition number and the L O D∗, according
to this inequality

‖�e‖ ≤ 1

k
χ(S)L O D∗ ‖�i‖ ‖c‖

‖�e‖ ‖i‖ (18)

that can be simplified defining the last term as a generic
function g:

‖�e‖ ≤ 1

k
χ(S)L O D∗g(�i,�e, i, c). (19)

This result states that the limit of detection has to be as low
as possible because it affects the accuracy of the solution, i.e.
if the L O D∗ is high we estimate the drug concentration with
a bad resolution. Similarly, the error on the concentration �c
must be at least equal or bigger than the error on the evaluation
of the concentration since �c contains also the experimental
errors (instrument, measurements, etc.)

�c ≥ �e. (20)

We show now the validation of the proposed model on
experimental data that were previously published. In our
previous work [9], we measured four anti-cancer drugs with
four independent sensors in a wet lab. For each sensor we
evaluated the sensitivity and limit of detection, as defined
in [17]. In order to demonstrate the feasibility of the approach
presented in this paper, we evaluate the coefficient matrix S
for seven different systems. These systems are thought as if
the single sensors tested in [9] were disposed in seven different
sensor arrays. Fig. 4 reports all the cases under investigation: in
a) the graph for the general case with all four electrodes, in b)
the graph for the sensor with three electrodes functionalized
with enzymes, in c) all the possible combinations with two
drugs, with the corresponding interacting isoforms. For each
case we calculated the coefficient matrix S (by taking the
sensitivities obtained from experimental data), L O D∗, and
the condition number χ(S), since these are among the most
significant parameters for checking our approach. Table I
summarizes the results obtained with the systems illustrated
in Fig. 4. Condition numbers and limit of detection (in matrix
form), are reported. The values for L O D∗ are compared with
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Fig. 4. Graphs of array-based sensor: in a) the graph for the general case with all four electrodes, in b) the graph for the sensor with three electrodes
functionalized with enzymes, in c) all the possible combinations with two drugs.

TABLE I

RESULTS FROM THE MODEL AND EXPERIMENTS

the limits of detection obtained by the experimental measure-
ments on each single sensor tested in [9], (Measured L O D in
Table I). The LODs∗ (listed in Table I), that we calculate with
our model take into account the possible interferences between
enzyme spots. The measured LODs have been obtained with
independent sensors. So it is reasonable that LODs∗ are in
general equal or worse than the measured LODs. With two
electrodes we obtained LODs∗ very close to the measured
LODs, thus demonstrating: 1) the accuracy of the model
exposed previously and 2) that with a sensor array we can
obtain more precise measurements than with a single enzyme
spot. As expected, for the case with three and four electrodes,
the L O D∗ were larger, but very close to the measured L O D.
This is due to different reasons: the higher the number of drugs
that we want to measure, the more we lose in term of limit
of detection, when the off-diagonal terms in the coefficient
matrix are significant; according to the definition of L O D∗,
we evaluate the norm of a product (Eq. 16), e.g. we always
consider the maximum values for each row and column of the
matrix S). We also obtained fairly good relative error values
εc: for example, with the two-electrodes chip, we can measure
a Cyclophosphamide concentration of 10 μM with a detection
limit of 4.10 μM, and with a 2.8% of error which correspond
to 10 μM ± 0.3 μM.

VI. CONCLUSION

In this paper we showed the formal underpinning for design-
ing a sensor array with different enzymes as probe molecules
for detection of drugs and chemicals in general. The realized
enzyme-array is modeled as a graph and data acquisition has

been analyzed by means of linear algebra. We introduced a
new definition of limit of detection that is referred to the
entire sensor array. The results coming from the validation
of the model showed that this model provides a new approach
for the automatic detection of multiple drugs with an array
of sensors. With this innovative formulation, we can design
biosensors with a larger number of probes as well as sensor
array with different proteins. We can also integrate other kinds
of sensor (such as pH, temperature or glucose sensors), which
can further improve the reliability of drug detection. Future
works will consider the implementation of this model on a
FPGAs or microcontrollers in order to obtain a fully automate
array sensor for the simultaneous detection of anti-cancer
drugs in therapeutic cocktails.
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