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Abstract—Fully implantable biosensors require small size to be
minimally invasive. To avoid embedded batteries, power can be
supplied by means of printed spiral inductors located on the skin,
close to the implanted devices. Reliable models are required to
optimize the design of such inductors. In this paper, a RLC model
to describe the electrical properties of printed spiral inductors
is proposed. The model is based on the geometrical and physical
characteristics of the inductors. The accuracy of the model is
finally compared with the experimental measurements.

I. INTRODUCTION

Remote and continuous monitoring of relevant human
metabolites, such as glucose and lactate, is a prerequisite
to enable personalized therapies. This kind of treatments are
calibrated on the response of the patient and require a constant
“telemetry” of his/her health status. Implantable biosensors
represent a possible solution to enable a minimally-invasive,
constant monitoring of the patient.

In order to realize such scenarios, several issues must be
addressed. Biosensors implanted in the subcutaneous tissues
must be biocompatible, with low thermal dissipation, low
invasivity and with large power autonomy. This last require-
ment can be satisfied by using energy harvesting methods.
These techniques exploit natural and/or artificial power sources
surrounding the person to help, and in certain cases substitute
implanted batteries.

Among the different techniques presented in the literature,
we focus on inductive remote powering. By exploiting the
magnetic coupling between two inductors, named transmitter
and receiver, an alternate current is induced in the receiving
inductor by means of an alternate current flowing in the
transmitting inductor [1]. Thus, with the receiving inductor
implanted in the subcutaneous tissues and the transmitting
inductor located just over the implantation area, power can
be wirelessly transmitted to the biosensor through the body
tissues [2].

In a previous work [3], we have studied the use of receiving
inductors having form factor comparable with a needle. In that
work, we have shown that the optimal operating frequency is
strongly affected by the geometries of the inductors, while it
is not considerably affected by the different kinds of subcu-
taneous tissues between the inductors. By using a single-turn
implanted inductor with an area of 9 mm2 and a single-turn
external inductor with an area of 120 mm2, simulations have
shown an optimal operating frequency around 400 MHz, two

Fig. 1. Lumped RLC model of a printed spiral inductor. Second order effects
are not considered.

orders of magnitude higher than the frequencies commonly
used for inductive powering. However, by increasing the size
of the external inductor and the number of turns, the optimal
working frequency decreases and the power gain of the link
noticeably increases [3].

The main target of our work is to determine an optimal
geometry of the transmitting inductor to maximize the power
transfer efficiency for a given receiving inductor and a given
set of biological tissues. To achieve this goal, a physical
model to describe the electrical properties of the printed
inductors is required. In this paper we propose a lumped RLC
model of printed spiral inductors (Fig. 1). Several models
have been presented in literature to determine the value of
such elements [4–8]. However, most of these models describe
inductors integrated on silicon, thus limiting the applicability
to printed inductors. In this paper, a model dedicated to printed
spiral inductors has been realized starting from the different
expressions presented in literature, most of which have been
recently reviewed in [9]. The model has been implemented
in MATLAB and the results returned by the simulations have
been compared with the impedance measurements on different
inductors.

The rest of the paper is organized as follows. Section
2 describes the model; Section 3 reports on the simulated
geometries and on a comparison between the simulations and
the measurements. Finally, Section 4 concludes the paper.

II. DESCRIPTION OF THE MODEL

The model aims to determine the values of the RLC lumped
elements describing the behavior of a printed inductor (Fig. 1).
The model receives as input the geometrical and physical
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Fig. 2. Geometrical and physical parameters of a printed inductor and of
the surrounding substrates.

parameters of the inductors and of the surrounding substrates
(Fig. 2). In this model, only square-shaped inductors have been
considered.

A. Inductance L

Different equations have been proposed in literature to
approximate the value of the inductance L. We have adopted
the expression proposed by [10] for squared shaped coil:

L =
1.27 ·µn2davg

2

[
ln

(
2.07

ϕ

)
+ 0.18ϕ+ 0.13ϕ2

]
(1)

where µ is the magnetic permeability of the metal traces,
n is the number of turns, davg = (do + di)/2, and
ϕ = (do − di)/(do + di). The parameter ϕ, called “fill fac-
tor”, tends to zero if the turns are concentrated close to the
external perimeter, while it tends to one if the turns fill all the
area of the inductor. As underlined by [9], the error in (1) is
higher than 8% for s/w > 3 and the accuracy degrades with
ϕ ≤ 0.1 or n ≤ 2.

B. Capacitance Cp
Parallel capacitance has an important role among the differ-

ent elements of the model. Indeed, this component determines
the self-resonance frequency of the inductor.

To obtain the parallel capacitance we first define the parallel
capacitance per unit length Ca. According to the model
presented by [7, 9], the value of Ca can be expressed as

Ca = C0 +
n∑
i=1

C0i = εeffC0 (2)

where C0 is the capacitance per unit length between adjacent
traces and C0i is the capacitance between the traces and the
ith substrate.

According to [7], the value of C0 is defined as follows:
C0 = ε0

K(k′0)
K(k0)

k0 =
s

s+ 2w

k′0 =
√

1− k2
0

(3a)

(3b)

(3c)

where K( · ) is the complete elliptic integral of the first
kind and ε0 is the electrical permittivity of the vacuum
(ε0 ' 8.854× 10−12 F/m).

The value of εeff is calculated as

εeff = 1 +
1
2

k∑
i=2

(εri
− εri−1)

K(k0)K(k′i)
K(k′0)K(ki)

+

+
1
2

n∑
i=k+2

(εri
− εri−1)

K(k0)K(k′i)
K(k′0)K(ki)

(4)

where the term εri
is the relative permittivity of the ith

substrate and the terms ki and k′i are defined as
ki =

tanh
(
πs
4ti

)
tanh

(
π(s+2w)

4ti

)
k′i =

√
1− k2

i

(5a)

(5b)

where ti is the thickness of the ith substrate.
According to [7, 9], the effect of the trace thickness on the

capacitances is considered by reducing the spacing s in the
equations (3b) and (5a) of a factor 2∆, where ∆ is defined as

∆ =
t

2πεe

[
1 + ln

(
8πw
t

)]
(6)

being εe the relative permittivity of the material between the
traces.

Finally, by considering the total length of the inductor as

l = 4ndo − 4n2w − (2n− 1)2s+
[(
π

2
− 2
)

(4n− 1) p
]

(7)

the parallel capacitance Cp can be written as

Cp =
Ca
n
· l (8)

Differently from [9], Ca in equation (8) has been divided
by a factor n to consider the voltage drop across the turns of
the inductors. This solution has been suggested by [11].

C. Resistance Rs
The series resistance of the model includes two constituents.

The first constituent is independent of the frequency and
is described by the Ohm’s law. The second contribution is
frequency dependent and includes the skin effect.

An estimation of the series resistance, suggested by [11], is

Rs = ρ l

(
1
wt

+
1

2δ(t+ w)

)
(9)

where ρ is the resistivity of the metal traces. The term δ
represents the skin depth and can be expressed as

δ =
√

2ρ
ωµ

(10)

where ω is the angular frequency and µ is the magnetic
permeability of the metal traces.
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TABLE I
GEOMETRICAL PARAMETERS OF THE TEST INDUCTORS.

Geometrical Parameters TxA TxB TxC

do (mm) 38 38 24.3

di (mm) 6.6 6.6 1.4

s (mm) 2.5 1 0.146

w (mm) 1.2 1 0.254

p (mm) 3.8 2 0

n 5 8 29

t (µm) 35 35 35

ε1 (Air) 1 1 1
t1 (mm) Open Open Open

ε2 (Air) 1 1 1
t2 (mm) Open Open Open

ε3 (FR4) 4.4 4.4 4.4
t3 (mm) 1.2 1.2 0.8

D. Resistance Rp
Parallel resistance is due to the finite resistance of the insu-

lating layer where the inductor is placed. According to [11],
parallel resistance has been modeled as

Rp =
ρk tk
w l

(11)

where ρk and tk are the resistivity and the thickness of the
kth layer, where the inductor is placed.

III. SIMULATIONS AND MEASUREMENTS

The mathematical model described in the previous section
has been implemented in MATLAB and the results have been
compared with the measurements. The geometrical parameters
of the test inductors are listed in Table I. For these geometries,
the results obtained from simulations and measurements are
listed in Table II. The impedance of the test inductors has
been measured by means of a network analyzer, by obtaining
the impedance values from the scattering parameters. In the
simulations, the impedance Z is determined by the lumped
parameters presented in Fig. 1:

Z =
RsRp + jωLRp

(Rs +Rp − ω2LRpCp) + jω(L+RpRsCp)
(12)

In Fig. 3 are shown the real and the imaginary part of the
inductor impedance, comparing the results of the simulations
with the measurements.

The self-resonance frequencies returned by the simulations
are slightly different from those obtained with the measure-
ments. This shift is due to the difference of the parallel
capacitance Cp between the model and the measurements.
Indeed, the measured value of Cp is noticeably influenced by
several factors, such as the surrounding environment and the
parasitic capacitances of the soldering. Thus, it is extremely
difficult to model this element with high precision.

Nevertheless, the value of Cp obtained with the model is
important to obtain a rough estimate of the self-resonance

frequency of the inductors. Then, if we assume to work at
frequencies at least one order of magnitude lower than the self-
resonance frequency, the model can be simplified by neglect-
ing the presence of Cp. Indeed, at such low frequencies the
parallel capacitance does not significantly affect the impedance
Z presented in (12).

As shown in Table II, at the operating frequency of 1 MHz
the maximum error on the impedance is 21.4% on the real part
and 4.8% on the imaginary part for spiral TxA. For a more
dense geometry, as in the case of spiral TxC, the error of the
model at 1 MHz is reduced to 1.9% on the real part and 0.5%
on the imaginary part.

IV. CONCLUSION

In this paper a model of printed spiral inductors for remote
powering of implantable biosensors has been presented. The
model has been implemented in MATLAB and it has been
compared with the measurements.

The modeling of Cp is still unprecise. The low precision of
the model is due to several factors, such as the surrounding
environment and the parasitic capacitances of the soldering.
Nevertheless, the values obtained with the simulations can
be still used to have a rough estimate of the self-resonance
frequency of the coil. By the knowledge of the self-resonance
frequency, it is possible to define a range of operating frequen-
cies where the effect of Cp is negligible.

In that range, for the tested geometries the maximum error
on the impedance is 21.4% on the real part and 4.8% on the
imaginary part (TxA). For a more dense geometry (TxC) the
error of the model at 1 MHz is reduced to 1.9% on the real
part and 0.5% on the imaginary part.

Future work will focus on a better modeling of the series
resistance Rs, in order to obtain a better approximation of the
real part of Z and to extend the validity of the model at higher
frequencies.
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TABLE II
ELECTRICAL PARAMETERS OF THE TEST INDUCTORS.

Electrical Parameters
TxA TxB TxC

Measurement Model Measurement Model Measurement Model

Self-resonance frequency (MHz) 112.2 160.5 70.4 75.9 32.6 32.5

L (µH) 0.588 0.565 1.53 1.52 9.44 9.50

Cp (pF) 3.42 1.74 3.34 2.89 2.52 2.52

Re{Z} @1 MHz (Ω) 0.28 0.22 0.56 0.45 3.61 3.68

Im{Z} @1 MHz (Ω) 3.76 3.58 9.76 9.64 60.1 60.4

(a) (b)

(c)

Fig. 3. Impedance of the inductors described in Table I. TxA (a), TxB (b), TxC (c)
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