
A DRAM Centric NoC Architecture and Topology Design Approach

Ciprian Seiculescu�, Srinivasan Murali§ �, Luca Benini‡, Giovanni De Micheli�
� LSI, EPFL, Lausanne, Switzerland,{ciprian.seiculescu, giovanni.demicheli}@epfl.ch

§ iNoCs, Lausanne, Switzerland, murali@inocs.com
‡ DEIS, University of Bologna, Bologna, Italy, luca.benini@unibo.it

ABSTRACT
Most communication traffic in today’s System on Chips (SoC) is
DRAM centric. The NoC should be designed to efficiently handle
the many-to-one communication pattern, funneling to and from the
DRAM controller. In this paper, we motivate the use of a separate
network for the DRAM traffic and justify the power overhead and
performance improvement obtained, when compared to traditional
solutions. We also show how the topology of this DRAM network
can be designed and optimized to account for the funnel-shaped
pattern. Our experiments on a realistic SoC multimedia benchmark
shows a large reduction in power consumption and improvement in
performance when compared to existing solutions.

Keywords
Network-on-Chip (NoC), DRAM

1. INTRODUCTION
Many of today’s Systems on Chips (SoCs) are DRAM centric as

the applications running on them have large data storage require-
ments. In such systems many cores access the external DRAM
memory through a single on-chip DRAM controller. Since there
are many cores that have high communication demands to a sin-
gle DRAM controller, the controller can become the bottleneck
for the system performance. It can even affect the performance of
cores that do not communicate with it directly. Several works have
presented methods to improve the efficiency for accessing DRAM
through transaction scheduling and reordering [12]. However re-
ordering transaction makes the latency for accessing DRAM unpre-
dictable and highly dependent on the address traces generated by
the applications accessing it. The unpredictable nature of DRAM
access can lead to transitory bottlenecks at the DRAM controller
ports. If a Network-on-Chip (NoC) is used as the system intercon-
nect, packets backlog at the DRAM ports would queue up in the
network and interfere with non DRAM traffic. It is highly undesir-
able for non DRAM traffic to be blocked by DRAM traffic as it can
take tens to hundreds of cycles to clear out the DRAM backlog.

To prevent DRAM traffic from blocking non DRAM traffic end-
to-end flow control can be used. However end-to-end flow control
requires the use of a specialized mechanism to notify the cores of
the state of the DRAM. For example a separate network or high
priority virtual channel [20] can be used. This not only increases
the design complexity, but also the buffering requirements needed
to drain the messages that are already in the network. Another solu-
tion is to separate the traffic going to DRAM (DRAM traffic) from
the traffic going between the other cores (non DRAM traffic) us-
ing virtual channels or physical channels. However for most SoC

the traffic patterns are known at design time and the interconnect
topology can be optimized for that specific application. In such
cases physical channels can be used when the NoC is designed to
split the traffic. Since the bandwidth requirements to the DRAM
controller are large, the ports of the DRAM can have wider data
paths than the rest o the cores. In this work we show how design-
ing a separate network to DRAM is better, as it can account for the
funnel-shaped pattern communication pattern and reduce the num-
ber of data size converters.

The contributions are three fold as follows: It is unclear what
is the power and performance trade-off for splitting DRAM and
non DRAM traffic using dedicated physical channels in the NoC.
Therefore we first analyze this and also compare it to a solution
using end-to-end flow control. We present results for a realistic
multimedia and wireless communication SoC benchmark on appli-
cation specific topologies. We use a cycle accurate NoC simulator
and DRAM controller simulator [17] to compare the performance
of the shared and split NoCs for the generated topologies. Sec-
ond we show how the network to DRAM can be optimized due to
the funnel-shaped communication pattern when the cores and the
DRAM controller have different data bus sizes. Third we present
an architecture for data size converter, capable of transferring data
full bandwidth on the wider side.

Our experiments show several interesting results: i) As expected
split network and end-to-end flow control perform significantly bet-
ter for non DRAM traffic (2.2× lower write latency and 1.7× lower
read latency); ii) Split network and end-to-end flow control have
similar power overhead; iii) All solutions perform similarly for
DRAM traffic; iv) Designing a separate network to DRAM can be
optimized in the presence of heterogeneous cores leading to power
saving of 23%.

2. RELATED WORK
NoC as a new interconnect paradigm and the benefits of NoCs

were presented in [1] and [2]. Many methods for designing appli-
cation specific NoC topologies are available in literature [3]-[11].
In this work we analyze the impact the a shared DRAM controller
has on the traffic in the network. We use the method from [11] to
generate the topologies.

Several works have presented method to improve DRAM access
efficiency by scheduling and reordering transactions in the DRAM
controller [12]-[17]. In [13], [15] are presented optimizations for
multicore systems, and in [14] a predictable DRAM controller is
presented. Memory scheduling is important in increasing the effi-
ciency of DRAM access, but it is orthogonal to the scope of this
paper. We use the simulator model from [17] in order to include
these memory access optimizations in our simulation framework.

In [18] the authors present a way to reorder DRAM transactions

2011 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4447-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISVLSI.2011.60

54

Figure 1: Communication specifications to DRAM

Figure 2: Example of DRAM controller connection

while in the network and simplify the DRAM controller. However
this does not solve the problem of interference with the normal traf-
fic in the NoC. To reduce the traffic to DRAM the authors propose
in [19] to have a processor base DRAM controller capable to pro-
cess complex requests and return only the results. A credit based
flow control method is used in [20] to prevent the DRAM traffic
from waiting into the network and interfering with non DRAM traf-
fic. In this work we propose the use of a separated DRAM network
to prevent non DRAM traffic to be blocked by DRAM traffic. In
[21] the authors propose to give higher priority to transactions wait-
ing in the DRAM queue that have to be sent back to cores in areas
of the NoC which are less congested. However in custom topolo-
gies the response path is usually not congested. Memory centric
NoC architectures with real chip implementations are provided in
[22] and [23]. However in this systems there are several memories
which are on-chip and the communication between cores is done
through these memories.

3. SYSTEM ARCHITECTURE
We use NoC switches and Network Interfaces (NIs) similar to

those from [24]. We use input buffering, on/off flow control and
source routing for the switches with no virtual channels. We con-
sider a high performance DRAM controller capable of scheduling
and reordering transactions. We synthesized power efficient appli-
cation specific topologies using the tool from [11]. All the topolo-
gies have 4 switches for the request network and 4 switches on
the response network. We chose these topologies as they were the

Figure 3: NI injection queues: a) shared b) split and c) end-to-
end flow control

20

30

40

50

60

Po
we

r (
mW

)

NI Switch Extra buffer Total

0

10

20

30

40

50

60

Shared Split Flow Control

Po
we

r (
mW

)

NI Switch Extra buffer Total

Figure 4: Power consumption for shared and separated NoCs

most power efficient generated by the tool. The power models for
the NoC components are base on values provided by commercial
tools after place and route of the library components from [24] in
65nm technology. We analyze three designs. In the first design we
synthesized a topology where the traffic that goes to DRAM and the
non DRAM traffic can share channels. In the rest of the paper we
call this design as shared NoC. In the second case we synthetized
a topology where the DRAM traffic is physically separated from
the non DRAM traffic, which we call split NoC. In the third design
we use the same topology as in the case of the shared NoC, but
we apply end-to-end flow control on top, to prevent DRAM mes-
sages from queuing in the NoC when the DRAM is backlogged.
We use on/off flow control and the occupancy of the DRAM con-
troller buffers determines when core can inject packets to DRAM.
This requires a specialized interconnect to give the off signal to the
cores.

3.1 Benchmark
We used a realistic benchmark for a multimedia and wireless

communication System-on-Chip. The benchmark has 28 cores,
among which an processor, a DSP both with L2 caches, a DMA,
two image accelerators, a display controller, 6 clusters of periph-
erals, five scratch pad memories, a flash memory controller and a
DRAM controller to connect to an external DRAM memory. The
communication graph to and from DRAM is shown in Figure 1.
The vertices represent the cores and the edges the communication
flows between the cores. The weights on the edges represent the re-
quired communication bandwidth for write/read in MB/s. The total

55

4

6

8

10

12

14

16

at
en

cy
 (c

yc
le

s)
Write Read

0

2

4

6

8

10

12

14

16

Shared Split Flow control

10 40

La
te

nc
y

(c
yc

le
s)

DRAM buffer size (transactions)

Write Read

Figure 5: Average latency for non DRAM flows

40

60

80

100

120

140

160

180

La
te

nc
y

(c
yc

le
s)

Write Read

0

20

40

60

80

100

120

140

160

180

Shared Split Flow control

10 40

La
te

nc
y

(c
yc

le
s)

DRAM buffer size (transactions)

Write Read

Figure 6: Maximum latency for non DRAM flows

desired bandwidth to the DRAM controller is of 2160 MB/s. For
reasons of space we only show the communication specifications
to the DRAM controller.

3.2 Simulation infrastructure
To run experiments, we use a cycle accurate NoC simulator ca-

pable to simulate custom topologies. In the NoC simulator we
plugged-in DRAMsim2 [17], a cycle accurate DRAM simulator.
We configured DRAMsim2 with open row scheduling policy and
bank round robin. Transactions are interleaved in the banks based
on the least significant bits of the address. We connect the network
simulator to the DRAM simulator using a custom interface to pro-
vide support for multiple ports and to assemble the NoC messages
into DRAM transactions of fixed size, as showed in Figure 2. We
assume the DRAM to be a DDR2 device running at 333 MHz, and a
64 bit data bus from the DRAM controller to the external memory.
We use the timing parameters of the Micron DDR2 of 32MB with 4
banks and 4 bit interface, 4 word burst and -3E speed grade, that is
provided with the DRAMSim2 package. We design the NoC syn-
chronous running at the DRAM controller frequency of 333 MHz.

The traffic generators have infinite injection queues. This is to
capture in the measured latency the effect of the core being de-
layed, when they are unable to inject due to congestion the network.
Traffic generators are connected to the initiator Network Interfaces
(NIs) and inject traffic according to the bandwidth specified in the
communication specification. The injected packets have a size of
32 byte of actual data for the write requests and read responses.

20

30

40

50

60

70

La
te

nc
y (

cy
cl

es
)

Injection Buffer Request NoC
DRAM buffer Total

0

10

20

30

40

50

60

70

Shared Split Flow control

10 40

La
te

nc
y (

cy
cl

es
)

DRAM buffer size (transactions)

Injection Buffer Request NoC
DRAM buffer Total

Figure 7: Average latency split for write DRAM flows

20

30

40

50

60

70

80

at
en

cy
 (c

yc
le

s)

Injection Buffer Request NoC DRAM buffer
Response NoC Total

0

10

20

30

40

50

60

70

80

Shared Split Flow control

10 40

La
te

nc
y (

cy
cl

es
)

DRAM buffer size (transactions)

Injection Buffer Request NoC DRAM buffer
Response NoC Total

Figure 8: Average latency split for read DRAM flows

The actual bandwidth that is injected in the network accounts for
the packetization overhead that the NoC architecture creates. In
Figure 3 we present how the NIs are modeled. In case of the shared
NoC the DRAM and non DRAM packets can mix (Figure 3 a). In
the split NoC, two NIs are used to separate the packets (Figure 3 b).
For end-to-end flow control separate queues in the same NI are used
(Figure 3 c). More over based on the occupancy of the dram buffer
the queue holding the DRAM packets can be prevented from inject-
ing. In our work we use a separate signal to notify the NIs when
they can inject based on the DRAM buffer occupancy. The target
traffic generators respond to the read requests immediately for the
flows that do not go to the DRAM controller. For the DRAM traf-
fic the read and write requests are buffer in the DRAM controller
(however the DRAM controller buffer is finite), and the response is
sent back through the network once the DRAM controller services
the transaction.

4. SEPARATED NOC VS. SHARED NOC

4.1 Power analysis
The power consumption of the NoCs is estimated by the syn-

thesis tool that uses the power models of the components from the
library in [24]. We show the breakdown of the power consump-
tion in Figure 4. The split network has higher power as expected,
as more NI are needed for cores that have both DRAM and non
DRAM traffic. Also switches are larger to connect the extra NIs.
Interestingly the overhead of the switch to switch connectivity is

56

150

200

250

300

350

400

450

500

La
te

nc
y

(c
yc

le
s)

Write Read

0

50

100

150

200

250

300

350

400

450

500

Shared Split Flow control

10 40

La
te

nc
y

(c
yc

le
s)

DRAM buffer size (transactions)

Write Read

Figure 9: Maximum latency for DRAM flows

6

8

10

12

14

16

at
en

cy
 (c

yc
le

s)

Write Read

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60

La
te

nc
y

(c
yc

le
s)

DRAM buffer size (transactions)

Write Read

Figure 10: Average latency for non DRAM flows in shared NoC

not significant. For our benchmark the power overhead is 18%.
The end-to-end flow control design also has similar power over-

head as split. The NIs of cores that have both DRAM and non
DRAM traffic need separated packet queues. When the occupancy
of the DRAM controller buffer reaches a threshold, the off signal
is send to the injector NIs, As it takes several cycles to reach all
the injectors there can be several inflight packets going to DRAM.
Therefore the buffer on the DRAM side has to be large enough to
buffer these inflight DRAM packets. We use simulation data to de-
termine the required size of the buffer. As buffering requirements
in the DRAM controller are similar to those found in the network
to DRAM in the split NoC, the power overhead is also similar. The
area of the split NoC is 30% larger as compared to the area of the
shared topology. Most of the increase in area comes from the extra
NIs that have to be added.

4.2 Performance analysis for non DRAM flows
In Figure 5 we show the average latency that the non DRAM

flows have for the thee designs: shared, split and end-to-end flow
control. We present both the write and the read latency. The bench-
mark uses posted writes so no acknowledgement is sent back. The
write latency is measured from the time that the write request is
generated until the head flit of the packet reaches the destination.

60

80

100

120

140

160

180

at
en

cy
 (c

yc
le

s)

Write Read

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50 60

La
te

nc
y

(c
yc

le
s)

DRAM buffer size (transactions)

Write Read

Figure 11: Maximum latency for non DRAM flows in shared
NoC

In case of the reads the latency is measured from the time the read
request is generate until the head flit of the response packet reaches
the requester. From the plot, we can see that the shared design
has 2.2× larger write latency and a 1.7× larger read latency com-
pared to the split or end-to-end flow control case. The increase
in latency is due to the contention of the non DRAM flows with
the DRAM flows when the DRAM backlogged. The traffic to the
DRAM is from many initiators to one destination on the request
network, and from one source to many destinations on the response
network. Therefore the DRAM controller which becomes the bot-
tleneck only creates congestion in the request network. This is the
reason why the difference between the write latency is larger than
that between the read latencies of the shared and split designs. The
latency for the split NoC and end-to-end flow control are the same.

In the case of the maximum latency observed for the non DRAM
flows we can see a very big difference between the shared and
split network as shown in Figure 6. For applications where the
non DRAM flows have real time constraint ensuring that the worst
case latency is small is very important for the performance of the
system. From the plot we can see that in the case of the shared
NoC the DRAM traffic can greatly affect the latency of some pack-
ets. In between the split topology and the end-to-end flow control
the results are quite similar, split being marginally better.

4.3 Performance analysis for DRAM flows
For the DRAM flows, surprisingly the three solutions perform

similarly as the DRAM controller is the bottleneck. In Figure 7
we show a breakup of the average write latency of the dram flows.
We show how much time the packets spend in the injection buffer
of the NI, how long it takes to traverse the request network, how
much time the transactions spend in the DRAM buffer (to be ser-
viced by the DRAM controller before they can be sent back) and
the total. Similarly in Figure 8 we present the breakup of the av-
erage read latency, where in addition the write we show the time it
takes to also traverse the response network. From the experiments
we notice that the DRAM controller is the bottleneck, so most time
is spent to reach the DRAM controller and for the transaction to
be serviced. The latency on the response network is small, as the
response network is from one to many and there is no congestion.
The end-to-end flow control solution performs slightly better that
the split and shared, because it requires a larger DRAM buffer so
in turn the DRAM controller itself performs better when services

57

Figure 12: Original topology

the transactions. In Figure 9 we also show the maximum latency of
the DRAM flows, for both write and read.

4.4 Observations
From the experiments presented before, we can conclude the

following: i) the shared network preforms poorly for non DRAM
flows compared to split and end-to-end flow control; ii) all designs
have comparable performance for the DRAM flows; iii) the split
and end-to-end flow control designs have similar power overhead.
Our experiments show that a split network can be an efficient solu-
tion as it can be implemented using existing NoC components, as
opposed to end-to-end flow control that would require specialized
hardware.

4.5 DRAM buffer size impact on non DRAM
flows

We ran experiments with different buffer sizes on the DRAM
controller. From the experiments we make the following observa-
tions. First having a large buffer does not make a significant differ-
ence on the latency of the DRAM flows. This is because packets
are waiting in the DRAM buffer instead of the injection queue or
the request NoC. Second in for the shared NoC we noticed that
with large buffering it can achieve similar performance as the split
network. In Figure 10, we show the average latency of the non
DRAM flows for different sizes of the DRAM buffer and in Figure
11, the maximum latency. However with the extra buffering the
shared design would consume similar or more power than the split
NoC.

4.6 Port count
For the previous experiments we used three ports for the DRAM

controller. However having different number of ports can influence
the bandwidth that is transferred to the DRAM buffer. To see the
impact, we ran experiments for different number of ports. In Table
1 we show how the latency is influenced by the number of ports for
the split network. Because the DRAM memory is double data rate
and the port data size is the same as the size of the bus to the DRAM

Figure 13: Optimized topology

Figure 14: Data size converter architecture

memory, two ports are needed to support the peak bandwidth of
the DRAM controller. Therefore there is a larger difference in the
latency between one and two ports. When more ports are added the
reduction in latency is less significant. Multiple ports are costly as
the buffer is implemented as a multiported memory. Therefore an
alternative is to increase the data size of the port. In the next section
we show how the network to DRAM can be optimized when the
cores and the DRAM controller have different data sizes.

5. NETWORK OPTIMIZATION FOR HET-
EROGENEOUS CORES

In many SoCs, the cores are heterogeneous and they have dif-
ferent data sizes. Also the port of the DRAM controller could be
wider than that of the cores. If the network is designed with a sin-
gle flit size, it needs to be at the size of the widest, core usually
the DRAM controller. In Figure 12, we show one topology with
uniform flit size for our benchmark. The cores and the switches are
annotated with the data size. Some cores are 32 bit, some are 64
bit and the DRAM controller uses 128 bit wide data. In this case,
the size conversion is done in the NI that connects the core to the
switch. However, since the conversion is done from narrow to wide,

58

Number Read latency (cycles)
of ports Average Maximum

1 83 579
2 67.6 448
3 67.3 423
4 61 340

Table 1: Average and maximum read latency from DRAM for
different number of ports

to inject at full bandwidth the whole packet needs to be buffered in
the NI before it can be sent out. In this case the size converters are
at the endpoints. This requires a large number of converters and
leads to wider switches. To reduce the number of converters they
need to be moved after the switches. In the next section we show
a converter architecture that could be placed after the switches and
be able to work at full bandwidth.

5.1 Proposed size converter architecture
In order to be able to push at full bandwidth on wide link from a

switch with narrow data width we propose a new converter design
as showed in Figure 14 for 64 bit to 128 bit conversion. Two links
from the switch feed the size converter, and the packets from each
link are buffered separately. This enables the converter to buffer
a packet from one input link while sending data to the output link
from the other buffer. The arbitration between the two input chan-
nel is done at packet level in order to prevent flits from different
packets to be interleaved, in a round robin fashion. By buffering
packets from two input links the converter can push data out on the
wider output link at full bandwidth under high traffic load. Sim-
ilarly the converter between a 32 bit switch and the DRAM can
be build, only that in this case the converter would need to buffer
packets from four input links in order to be able to send data at
full bandwidth to the DRAM controller. The communication flows
going to the same port of the DRAM controller could be statically
assigned to use one of the input links of the converter. An alter-
native would be to modify the allocator of the switch to send the
packet of any of the flows onto one of the links going to the same
converter, but where the buffer is free.

5.2 Optimized NoC
To reduce the number of required packet buffers and size con-

verters we show in Figure 13 an example of how the topology could
be designed differently. In the new case cores are clustered and
connected to switches based on their data bus size. Therefore the
switches can have a flit size closer to that of the cores. This removes
the need for size conversion between the core and the switch. Also
switches can have different sizes. Existing solutions do not con-
sider the flow data conversion efficiency.

In the case of our new topology only 8 packet buffers are needed,
two in each 64 bit to 128 bit converters and four in the 32 bit to 128
bit converter. The size converter between the 64 bit switch and the
32 bit switch is a wide to narrow converter, that in out benchmark
is only used by one flow, so it does not need to buffer the packet.
In this new design we reduce the number of packet buffers by 42%
which leads to an overall NoC power reduction of 23%.

6. CONCLUSIONS & FUTURE WORK
In this paper we presented the power and performance trade-

offs for the NoC design in the presence of a bottleneck core like
the DRAM controller. We analyzed three designs and showed that
physically separating the DRAM traffic from the non DRAM traf-

fic leads to much lower latency for the non DRAM flows. We also
showed that the power overhead of physically splitting the DRAM
and non DRAM traffic is similar to other solutions like end-to-
end flow control, which makes for the use of a split network to
the DRAM controller an efficient solution. In the presence of het-
erogeneous cores that have different data sizes we show how the
DRAM network can be optimized to reduce the number of data
size converter. We also propose a new architecture for the data size
converter so that it can transfer data at full bandwidth. The opti-
mized network leads to power savings of 23%. As future work we
want to develop a tool for automatic synthesis for DRAM networks
in heterogeneous SoCs.

7. ACKNOWLEDGEMENT
We would like to acknowledge the financial contribution of the

European Research Council under the project ERC-2009-AdG-246810
and of the ARTIST-DESIGN Network of Excellence. This work
has also been supported by the project NaNoC (project label 248972)
which is [partly] funded by the European Commission within the
Research Programme FP7.

8. REFERENCES
[1] L.Benini and G.De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE

Computers, pp. 70-78, Jan. 2002.
[2] G. De Micheli, L. Benini, “Networks on Chips: Technology and Tools”, Morgan

Kaufmann, First Edition, July, 2006.
[3] A.Pinto et al., “Efficient Synthesis of Networks on Chip”, ICCD 2003, pp.

146-150, Oct 2003.
[4] W.H.Ho, T.M.Pinkston, “A Methodology for Designing Efficient On-Chip

Interconnects on Well-Behaved Communication Patterns”, HPCA, 2003.
[5] T. Ahonen et al. "Topology Optimization for Application Specific Networks on

Chip", Proc. SLIP 04.
[6] K. Srinivasan et al., “An Automated Technique for Topology and Route

Generation of Application Specific On-Chip Interconnection Networks”, Proc.
ICCAD ’05.

[7] A. Hansson et al., “A Unified Approach to Mapping and Routing on a Combined
Guaranteed Service and Best-Effort Network-on-Chip Architectures”, Technical
Report No: 2005/00340, Philips Research, April 2005.

[8] K. Srinivasan et al., “A low complexity heuristic for design of custom
network-on-chip architectures”, Proc. DATE 06, pp. 130-135.

[9] X.Zhu, S.Malik, “A Hierarchical Modeling Framework for On-Chip
Communication Architectures”, ICCD 2002, pp. 663-671, Nov 2002.

[10] J. Xu et al., “A design methodology for application-specific networks-on-chip”,
ACM TECS, 2006.

[11] S. Murali et al., “Designing Application-Specific Networks on Chips with
Floorplan Information”, pp. 355-362, ICCAD 2006.

[12] S. Rixner et al., “Memory Access Scheduling”, ISCA, 2000.
[13] J. Ho Ahn et al., “The Design Space of Data-Parallel Memory Systems”, SC

Conference, 2006.
[14] B. Akesson et al., “Predator: A Predictable SDRAM Memory Controller”,

CODES+ISSS, 2007.
[15] K. Lee et al., “An efficient quality-aware memory controller for multimedia

platform SoC”, Circuits and Systems for Video Technology, 2005.
[16] N. Rafique et. al., “Effective Management of DRAM Bandwidth in Multicore

Processors”, PACT, 2007.
[17] D. Wang et al., “DRAMsim: A Memory System Simulator”, ACM SIGARCH

Computer Architecture News, 2005.
[18] W. Jang et al., “An SDRAM-Aware Router for Networks-on-Chip”, TCAD,

2010.
[19] J. Yoo et al., “Multiprocessor System-on-Chip Designs with Active Memory

Processors for High Memory Efficiency”, DAC, 2009.
[20] I. Walter et al., “Access Regulation to Hot-Modules in Wormhole NoCs”,

NOCS, 2007.
[21] D. Kim et al., “A Network Congestion-Aware Memory Controller”, NOCS,

2010.
[22] D. Kim et. al., “Solutions for Real Chip Implementation Issues of NoC and

Their Application to Memory-Centric NoC”, NOCS, 2007.
[23] D. Kim et. al, “Implementation of Memory-Centric NoC for 81.6 GOPS Object

Recognition Processor”, IEEE Asian Solid-State Circuits Conference, 2007.
[24] S. Stergiou et al., “×pipesLite: a Synthesis Oriented Design Library for

Networks on Chips”, pp. 1188-1193, Proc. DATE 2005.

59

