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Abstract—Machine learning has been largely applied to ana-
lyze data in various domains, but it is still new to personalized
medicine, especially dose individualization. In this paper, we
focus on the prediction of drug concentrations using Support
Vector Machines (SVM) and the analysis of the influence of each
feature to the prediction results. Our study shows that SVM-
based approaches achieve similar prediction results compared
with pharmacokinetic model. The two proposed example-based
SVM methods demonstrate that the individual features help to
increase the accuracy in the predictions of drug concentration
with a reduced library of training data.

I. INTRODUCTION

Nowadays, in clinical pharmacology, the dosage of
medicines are chosen on the basis of clinical monitoring
of patients. However, this experience-based method is not
suitable to all kinds of drugs. There is a small group of
medicines whose effective therapeutic concentration range
is quite narrow and therefore there is a very high risk to
under- or over-dose a patient. Under-dosing will lead to
an ineffective treatment, while over-dosing will expose the
patient to a risk of toxicity. Thus knowing the therapeutic
range of a drug is essential to properly carry out the clinical
monitoring; in other words, it is necessary to know how the
human body affects the disposition of the drug. This area of
research is known as population pharmacokinetics (PK).

There exist two main methodologies applied to data anal-
ysis in the field of pharmacokinetics[1]. One of them uses
mathematically simple techniques to obtain an overview of a
drug disposition, usually by computing a simple AUC (Area
Under the plasma concentration time Curve). This method is
mainly used when there are few patients available but a fair
number of samples per patient. However, in reality, such AUC
could not be accurate if the data cannot support a modeling
approach. The other method uses highly-sophisticated tech-
niques to extract pharmacokinetic information from a sample
of the populations. In this process some model structures may
be ignored due to insufficient data to characterize the process,
e.g. the absorption process after an oral dosage.

Many well-designed studies have been analyzed based on
a structural modeling approach[2][3][4]. Recently, new sta-
tistical approaches have been introduced to pharmacokinetic
analysis, such as Bayesian approaches[5][6]. However, most
existing methods process real values with a pharmacokinetic
model as shown in Figure 1, where Ka and Kel denote
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Fig. 1. Example of a One-Compartment PK Model

respectively the coefficients of a drug absorption and elim-
ination in the body, V stands for volume of distribution.
Boolean variables, such as gender, whether taking multiple
drugs, etc., create strong discontinuities in the models and
are in general not supported. Furthermore, due to the ex-
plicit analytical model, adding or removing a parameter is
complicated. Hence, in this paper, we introduce a machine
learning technology to the domain of personalized medicine,
especially dose individualization.

We give a brief review of four representative machine
learning algorithms in Section 2. Section 3 discusses the prin-
ciples of methodologies, including the introduction of general
PK model, applying LS-SVM to predict drug concentration
and the proposed two example-based SVM strategies. We
demonstrate the quality of our algorithm experimentally in
Section 4 while Section 5 concludes this study.

II. RELATED WORK

Machine learning has been applied with some success to
solve classification problems in computer vision and pattern
recognition in the past few decades[7]. However, there is
very little literature on the utilization of machine learning to
achieve the dose individualization of personalized medicine.

Four of the most representative machine learning tech-
niques are Decision Trees (DT), Neural Networks (NN), Sup-
port Vector Machine (SVM), and Boosting in which Adaptive
Boosting or AdaBoost (AB) is the standard one. With the
extension to solve regression problems, these techniques
became popular in various other domains such as image
superresolution[8], object tracking[11], etc.. Among the four,
DT is the simplest and thus the fastest approach, but it is
not as precise as the other three, especially for regression
to give a prediction on continuous numbers[12]. NN is the
oldest technique of the four inspired from neurobiological
knowledge, but it is often regarded as a black box due to the
high complexity of the model it builds[13]. SVM employs a
hyperplane in a high- or infinite- dimensional space to do
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classification or regression tasks[16]. It is convenient due
to both its clear mathematic understanding and its control
of the overfitting problem. AB is a meta-algorithm used in
conjunction with other weak classifiers iteratively, but it is
sensitive to outliers or noisy data[17].

Here we have chosen the SVM technique for our modeling
system because of its appropriate complexity, efficiency and
strength in data regularization[9]. In the paper, we propose
two example-based learning approach based on least square
SVM (LS-SVM), which learn from selected smaller train-
ing sample subsets. Instead of solving a convex quadratic
programming problem (QP), the LS-SVM classifier man-
ages to give a solution simply by solving a set of linear
equations[15]. The experimental results show that drug con-
centration predicted by SVM-based approaches are similar or
closer to the measured values than those predicted by the PK
model, depending on the input features that the algorithm
used. Further study also analyzes the importance of each
biological or demographical characteristic of a patient, such
as the gender, age, etc.

III. METHODOLOGY

A. General Pharmacokinetic Model

In the simplest situation, we consider the drug concentra-
tion after a single intravenous (IV) bolus dose, which has
a quick and concentrated drug effect, to a one-compartment
pharmacokinetic model[1]. In the one-compartment model,
the human body is considered as one unique chemical and
biological system and the drug’s concentration is computed
by a first-order linear differential equation as shown in (1)
and (2).

dC

dt
= −kel · C Cinit =

dose
V

(1)

C =
dose
V
· e−kel·t (2)

where V denotes the volume of distribution and kel stands
for the elimination rate of the drug inside a body, which
generally depends of the liver metabolic capacity or of the
renal function (expressed by creatinine clearance), depending
of the drug.

Furthermore, if we assume that the drug is taken orally, we
need to consider one more component, i.e. the mechanism
of absorption from the gastrointestinal (GI) tract to the
arteriovenous system as illustrated in Figure 1. This way after
a single dose, the concentration of the drug is calculated using
(3):

C =
F · dose · ka
V · (ka − kel)

· {e−kel·t − e−ka·t} (3)

where ka is the absorption rate and F is an extent factor
called bioavailability.

Practically, in real clinical scenarios, multiple dose regi-
mens are more interesting to clinicians. After m dosages, the

drug concentration could be estimated as:

C =
F · dose · ka
V · (ka − kel)

· {[ 1− e
−m·kel·τ

1− e−kel·τ
] · e−kel·t

−[ 1− e
−m·ka·τ

1− e−ka·τ
] · e−ka·t}

(4)

where τ stands for the dosage interval and t for the time
when the drug concentration is measured.

In clinical setting, it is often not possible to collect many
data points for each patient. Thus, even though a pharma-
cokinetic model may require two or more parameters, only
one or two data points may be available. In such cases,
nonlinear regression trough the whole samples of the patient
population available is performed, using approach such as
NONMEM[10]. This approach could somehow be compared
to a Bayesian analysis performed to obtain estimations of the
patient pharmacokinetic parameter values by minimizing:

N1∑
i=1

(Cobsi − Ccalci)
2

variancei
+

N2∑
j=1

(Ppop
j
− Pcalcj )

2

variancej
(5)

where C stands for drug concentration, P for some other
parameters, N1 and N2 are the number of data points and
parameters respectively[19]. In Section 3, we compare our
proposed method with the analytical model mainly using
equation (4) and (5).

B. Least Square Support Vector Machine (LS-SVM)

Let’s assume that there are N patients, each of whom
has been examined ni times. Each sample takes into ac-
count d features. Hence the training data are given as
{(x11, y11), (x12, y12), · · · , (x1n1

, y1n1
), · · · , (xNnN , y

N
nN )}, where

yjni denotes the output drug concentration and xjni is the
space of input patterns Rd, e.g. the age, gender, body weight,
dosage of the drug, interval between dosing and measuring,
etc.. Our goal is to find a linear function

f(x) = w · φ(x) + b (6)

which approximates the relationship between the data set
points and can be used to estimate the output y with respect
to a new input patient data. In (6), φ(x) maps the input
samples to a higher-dimensional feature space by finding a
non-linear function in the original space, and w stands for
the the weights of the feature space and b ∈ R an offset
constant.

Any regression problem uses a loss function L(y, f(x)) to
describe how the predicted values deviate from the measured
ones. We can find many forms of loss functions in the
literature. For our purposes, we apply the quadratic loss
function which is defined as:

L(y, f(x)) = (y − f(x))2 (7)

In order to find the optimal solution, function (7) has to be
minimized. Besides the task of minimizing the loss function,
we also need to make sure that the function f is as flat
as possible in order to prevent overfitting the problem. The
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flatness of the function f can be ensured by keeping the norm
‖w‖2 small. Thus the regression problem can be rewritten as
optimizing the following objective function:

min
w,b

1

2
‖w‖2 + C0

N∑
j=1

nj∑
i=1

[yji − w · φ(x
j
i )− b]

2 (8)

where the constant C0 determines the tradeoff between the
flatness of f and the amount up to which deviations between
the predicted and measured values are tolerated. According
to [15], the optimal w can always be expressed by w =∑N
j=1

∑nj
i=1 α

j
iφ(x

j
i ), where α and b are found by solving

the linear system:[
K+ 1

C0
I 1

1T 0

]
︸ ︷︷ ︸

H

[
α
b

]
=

[
y
0

]
(9)

where K is the kernel matrix and is defined as Kab =
φ(xjaia )

Tφ(xjbib ). The use of the kernel matrix greatly helps
reducing the computational complexity without explicitly
computing φ(x), making use of the fact that the SVM
algorithm depends only on dot products between sample
patterns [18]. Hence, after defining the kernel function, the
least-square optimization problem could be solved simply by
inverting the first term H in the left-hand side of (9).

Once the α and b have been obtained, the output could be
estimated via the following prediction function:

f(x) =

N∑
j=1

nj∑
i=1

αjiK(xji , x) + b (10)

Till now, LS-SVM trains the inputs as a whole and applies
the model to new patient indifferently. Experiments show that
this improves the prediction results but degrades greatly with
the decrease of input data samples.

C. Optimization Using Example-based SVM (E-SVM)

Similarly to the scenario described above, we introduce the
idea of example-based SVM. Although LS-SVM approach
could estimate the drug concentration with a large number
of input features and also manage to simplify the addition
or deletion of a new feature, it still treats the input training
samples without selection for each of the new testing sample
before running the algorithm. However, when comparing to
other fields of using SVM, such as computer vision or pattern
recognition, clinical samples are more often much fewer than
the data in these domains. Therefore, bad samples are going
to greatly affect the model built by SVM, which could cause
an inaccuracy in the predictions.

Hence we propose our Example-based SVM approach
to optimize the prediction, which carefully selects useful
training patients in the library to be our examples and builds
the personalized model specifically for a new patient. As
illustrated in Figure 2, our system first takes all the features
fd from a new patient and extracts a subset of them fs to
be the selection criteria for training samples. The weights for
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Fig. 2. Flow of Example-based SVM Approach

each feature in fs are denoted by β. For each training patient
in the library, we assign a coefficient ε according to:

εji =

{
0 ‖β · (fs − fj)‖a > ts
1 ‖β · (fs − fj)‖a ≤ ts

(11)

where i, j stands for the ith sample of the jth patient in
the library, ts is the threshold, and fj is the corresponding
criteria features. Both fj and fs are normalized in advance
by subtracting the mean and dividing the standard deviation
of each feature. We indicate a as an la-norm having the form
‖x‖a = a

√∑n
i=1 |xi|a .

Two strategies are used in our approach to select the
training examples:

1) Uniform strategy. In this strategy, we consider that
the features of a patient remain constant throughout
the whole monitoring phase, e.g. the weight and age
of a patient are supposed to be unchanged. Therefore,
the value of ε follows εj1 = εj2 = · · · = εjnj . In practice,
we take the average values of each feature from all the
samples of a patient, compare in a brute force way to
find the closest example of the patient in the patients
library. This guarantees the experiments to be closer to
the real scenarios.

2) Discriminatory strategy. When we do not have
sufficient training patients data, the uniform strategy
will give less accurate results because the chances of
choosing an example that is far from the new patient
are high. Therefore, we propose this discriminatory
strategy, in which we treat each sample of a new
patient as a separate set of data and search in the
patients library the closest training samples; thus, for
each sample the ε could be different. Moreover, the
use of this strategy could give more precise predictions,
especially in the case of a smaller number of training
data in the patients library.

Both strategies try to find the closest training samples in
the patients library to build the model for a new patient
under different situations. The selection of the training data
via feature comparisons is the simplest and fastest way to
remove the outliers. When the data increases, the first strategy
is faster than the second one but requires the model for a
patient to remain unchanged. The second strategy tries to
find the closest data for each sample of a new patient, and is
therefore more time-consuming, but it is more accurate when
doing predictions of drug concentration.

After obtaining ε for each patient, w could then be
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calculated by:

w =

N∑
j=1

nj∑
i=1

εjiα
j
iφ(x

j
i ) (12)

where the equation still satisfies the εjiα
j
i ≥ 0. For those

patients samples with εji = 0, they are regarded as faraway
data in advance for a specified new patient in order not to
affect the personalized model. Hence equation (9) could be
written as: [

(K+ 1
C0
I)ε 1

ε 0

] [
α
b

]
=

[
y
0

]
(13)

The values of α and b could be computed similarly by adding
ε to Equation (10). The accuracy of the method has been
shown experimentally in Section 4 to be more precise and
stable than the traditional PK modeling or LS-SVM method.

Once the system gets the prediction of the drug concen-
tration, it checks the value to be effective or not according
to the drug’s therapeutic range table. If it is above the range,
the dosage has to be reduced. After considering the amount
of reduction, the system will redo the modeling step to give
a new concentration prediction. The dose has to be increased
respectively for the case of under-dosing.

IV. EXPERIMENTS AND COMPARISONS

Our approaches have been evaluated on a set of data
related to the anticancer drug imatinib, which was designed
to treat chronic myeloid leukemia and gastrointestinal stromal
tumors[20]. The training data set consists of 54 patients and
252 samples (obtained at time of a previous clinical trial[20]),
while the validation set contains the data of 65 patients and
209 samples (patients followed latter on a routine basis, in the
context of an amendment of the initial trial). We compare the
prediction results of our system to the ones using a general
population pharmacokinetic model.

As shown in equations (8), (10) and (11), we need to
determine several parameters both for LS-SVM and the
Example-based SVM method as follows:

1) K: the effectiveness of the SVM method depends on
the choice of the kernel function. A common choice is
to use a Gaussian Kernel which has a single parameter
σ that has to be estimated.

2) C0 and σ: after selecting the kernel, the performance
of SVM highly depends on the kernel parameters and
the margin factor C0. The best combination of C0 and
σ is found by a grid-search with exponentially growing
sequences via 10-fold cross validation. In practice,
our C0, σ ∈ {10−2, 10−1, · · · , 103, 104}. The 10-fold
cross validation is done by separating randomly the
original training data into 10 subsample groups. In our
experiment, one of the subsamples is used as the set of
validation data while the remaining 9 groups are used
as training sets.

3) fs: determines the features used to find the closest
training examples. In our experiments, the selected
feature set is composed of {gender, age, weight}.

4) β and a: both parameters β and a are critical to the
selection of training data by determining the value of ε.

Fig. 3. Comparison between Pharmacokinetic Modeling and LS-SVM
Methods based on 100% Utilization of the Patients Library, x-axis: Predicted
Concentration Values, y-axis: Measured Concentration Values.

Fig. 4. Histogram of the Mean Absolute Difference in the Drug Concentra-
tion Predictions Among the four Approaches: (a) PK Model, (b) LS-SVM,
(c) E-SVM Uniform, (d) E-SVM Discriminatory [bar unit = 200mcg/L]

In our experiments, both values are also estimated by
10-fold cross validation on the training data set before
running the SVM approaches.

5) ts: is the threshold used to decide whether one training
data is an outlier or not. This parameter could be
set as a constant regardless of the different physical
conditions of the testing patients. However, to make
our system adaptive to each specific patient, we choose
a specific value that for each data set. Practically, it
performs as a filter to pass only the first M% closest
training data.

6) fd: decides the features to be used in the training data
samples and to perform the prediction of drug concen-
tration as well. As the main advantage of using SVM-
based approaches, adding or removing one feature in
building up the model is simpler than the classical
pharmacokinetic method. The features to be considered
as training data are: {Amount of Dosage, Time of
Measuring, Gender, Age, Body Weight}, which cor-
respond to {A, B, C, D, E} in Table I. Additionally,
we also compare the influence of using subsets of these
features.

Figure 3 shows the comparison of drug concentration
predictions (x-axis) versus the measured concentration (y-
axis) between LS-SVM method and the traditional pharma-
cokinetic modeling approach using 100% of the data in the
patient library. From this figure we see that the prediction
based on LS-SVM provides results similar to the ones of the
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TABLE I
COMPARISONS OF THE MEAN ABSOLUTE DIFFERENCES AMONG LS-SVM (LS), E-SVM UNIFORM (E1) AND E-SVM DISCRIMINATORY (E2)

(FEATURES: A-DOSAGE, B-MEASURING TIME, C-GENDER, D-AGE, E-BODY WEIGHT) [UNIT : mcg/L]

M% 100% 70% 50% 30% 10%
Features LS E1 E2 LS E1 E2 LS E1 E2 LS E1 E2 LS E1 E2

A+B 822.3 850.4 830.6 836.3 858.2 832.4 832.7 857.0 843.5 849.9 971.9 957.0 938.9
A+B+C 835.3 848.0 837.6 838.3 893.5 833.6 833.5 856.7 848.1 848.9 982.1 957.2 942.3

A+B+C+D 846.5 867.1 851.8 855.8 834.6 876.3 853.5 951.4 876.7 859.9 980.6 986.8 960.3
A+B+D 853.0 878.2 853.4 852.8 890.1 853.3 851.5 904.0 853.1 868.1 973.4 953.5 945.6
A+B+E 853.8 837.5 860.2 851.6 882.2 855.9 852.0 880.5 872.1 868.1 995.8 964.8 940.7

A+B+D+E 868.1 880.6 889.3 885.3 882.1 909.5 893.1 860.7 895.8 890.4 979.0 991.9 963.6
A+B+C+D+E 903.6 882.7 879.1 875.2 867.8 915.1 884.9 855.5 891.3 885.7 984.2 991.9 963.6

A+B+C+E 849.1 865.6 851.9 855.8 854.0 876.3 853.5 926.4 876.7 859.9 975.9 986.8 960.3

traditional PK model in predicting a high drug concentration
values as shown in the red dash ellipse. However, as to the
data in the blue solid circle, the Figure 4 shows that the
three SVM-based approaches are better than the PK modeling
method at predicting the drug concentration to be close to the
measured value. The red dash rectangle highlights the number
of the prediction difference within [−200, 200]mcg/L, in
which the number of predictions for the PK modeling method
is 78.1% less than the LS-SVM method, and the number
for LS-SVM method is 14.0% and 12.3% less than the two
example-based methods respectively.

Another disadvantage of using traditional PK model is that
it is often unable to consider Boolean inputs. Neither could it
be modified easily to analyze the importance of each feature.
Nevertheless, SVM-based approaches could deal with such
problems. As shown in Table I, we compare the mean
absolute difference between the measured drug concentration
and the predicted ones using LS-SVM (LS), E-SVM Uniform
(E1), and E-SVM Discriminatory (E2). Feature A and B stand
for dosage and measuring time after one dose respectively,
which are thought to be the key features and are used through
all the experiments. Using the PK model, the mean value
of the differences between the predicted concentrations and
the real values is 842.1. Hence the 3 SVM-based methods
provide predictions of similar accuracy.

Moreover, Table I reveals that the best (lowest) differences
for each subset of the data are the ones using only Feature A
and Feature B. Therefore, when applying the SVM method
to build a model for a new patient with 100% of the library,
knowing only the dosage and the measuring time is sufficient
to obtain comparable results, while the PK model depends on
analyzing all the parameters needed in Equation (2), (3) or
(4). In addition, with a reduced library of patients, the two
E-SVM approaches surpass the LS-SVM thanks to a search
of the closest patients (or samples) to be the training data
set instead of a random selection. Table I also shows that
as an overall, E2 method obtains better results than E1 for
75% of all the experiments, while E1 is better than E2 if
we consider the features {Gender, Age, Body Weight} only
during the training patients’ selection phase.

V. CONCLUSIONS

Assisting the prediction of drug concentrations in clinical
situation with support vector machine was proved to yield
some similar results as the traditional pharmacokinetic model.
Despite its advantages, the limitation of this approach resides
in the high dependency of the results to the quality of the

initial data obtained from patients. Indeed, no assumption
on the theoretical disposition of the drug in the body, ac-
cording to the classical pharmacokinetic behavior of drugs,
is made. Under certain conditions, it, however, improves the
predictions using fewer input features. Two example-based
SVM strategies have been analyzed in the paper and both
are superior to the LS-SVM method when dealing with a
reduced library of patients. This approach however deserves
formal clinical validation with more data sets from various
drugs undergoing TDM. Future work has also shown that
SVM-based approached could build personalized model for
each individual patient.
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