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ABSTRACT
In many Systems on Chips (SoCs), the cores are clustered in to
voltage islands. When cores in an island are unused, the entire is-
land can be shutdown to reduce the leakage power consumption.
However, today, the interconnect architecture is a bottleneck in al-
lowing the shutdown of the islands. In this paper, we present a
synthesis approach to obtain customized application-specific Net-
works on Chips (NoCs) that can support the shutdown of voltage
islands. Our results on realistic SoC benchmarks show that the re-
sulting NoC designs only have a negligible overhead in SoC active
power consumption (average of 3%) and area (average of 0.5%) to
support the shutdown of islands. The shutdown support provided
can lead to a significant leakage and hence total power savings.

Categories and Subject Descriptors
B.4.3 [INPUT/OUTPUT AND DATA COMMUNICATIONS]:
Interconnections (Subsystems)—topology

General Terms
Design

Keywords
NoC, voltage islands, shutdown, leakage power, topology

1. INTRODUCTION
Power management is a challenge for modern Systems on Chips

(SoCs), as many of them are destined for the embedded market
and have to operate with low power consumption. With technology
scaling, the leakage power consumption is increasing rapidly as a
fraction of the total power consumption. In fact, leakage power can
be responsible for 40% or more of the total system power [6].

In order to reduce the leakage power consumption, cores that
are not used by an application can be shutdown or placed in sleep
mode, while the other cores can be operational. For example, power
gating using sleep transistors is a popular way to shutdown cores
[6]. To achieve power gating, the sleep transistors are added be-
tween the actual ground lines and the circuit ground (also called
the virtual ground) [6], which are turned off in the sleep mode to
cut-off the leakage path. Due to routing restrictions, separate VDD
and ground lines cannot be used for each core. Instead, cores are
grouped in to Voltage Islands (VIs), with cores in an island using the

same VDD and ground lines [5]-[8]. When all the cores in an island
are unused for an application, the entire island can be shutdown.
For example, the IBM fabrication processes CU-08, CU-65HP and
CU-45HP all support the partitioning of chips into multiple VIs and
power gating of the VIs [4].

In today’s SoCs, the interconnect architecture is a bottleneck
in allowing the shutdown of the islands. There are several ap-
proaches presented to synthesize application-specific Networks on
Chips (NoCs) [12]-[15]. However, none of them consider the is-
sue of shutdown of VIs. These approaches cannot be directly ex-
tended to design NoCs for SoCs with voltage islands. If the NoC
is designed using such approaches, either the whole NoC should be
placed in a separate VI or the islands cannot be shutdown.

Placing the entire NoC in a separate VI is not a feasible solution.
The NoC switches are usually spread across the chip, connecting
the different cores. If the entire NoC is in the same island, it is
difficult to route the VDD and ground lines for the NoC across the
chip. On the other hand, if all the NoC switches are physically
clustered and placed in the center of the chip, then long wires are
needed to connect all the cores to the NoC island. Thus, the rout-
ing congestion would be enormous and the solution is not scalable.
Moreover, additional resources for routing the additional voltage
and ground lines may not even be available in the design. If the
switches are spread across the different VIs and if a VI needs to
be shutdown, then packets between cores on the other VIs that use
the switches in this VI cannot be transmitted. This will prevent the
shutdown of the entire island.

The concept of voltage island should be considered during the
NoC topology synthesis phase itself. In this work, we present a
synthesis approach to determine the best NoC topology points that
are tailored to meet the application performance constraints, mini-
mizing power consumption and supporting the ability to shutdown
voltage islands. To the best of our knowledge, this is the first work
that addresses custom NoC topology synthesis for supporting the
shutdown of voltage islands.

2. RELATED WORK
Power gating of designs has been widely applied in many SoCs

[5]. In [5], the authors present the importance of partitioning cores
in to voltage islands for power reduction. Several methods have
been presented to achieve shutdown of islands [5]-[8]. Any of these
methods can be used in conjunction with our topology synthesis
process to achieve the actual shutdown of cores.

A description of the NoC paradigm with the related benefits and
issues is presented in [1]-[3]. Many works have been presented on
synthesizing bus based systems [16]-[18]. In [9]-[11], algorithms
for mapping application to regular NoC topologies are presented.
In [12]-[15], methods for designing application specific NoCs are
described. However, none of these works address the issue of sup-
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porting shutdown of voltage islands on the chip.
In [24] an architecture for Globally Asynchronous Locally Syn-

chronous (GALS) NoC is presented. In [23] the authors present a
physical implementation of multi-synchronous NoC. In [22], the
authors present a methodology to partition a NoC into multiple
voltage islands. This work is complementary to ours, as we present
a methodology to design a custom NoC topology with VIs. In [19],
the authors present an approach to design NoCs with voltage is-
lands. However, the designs produced by the method do not support
the shutdown of the islands.

In [20], the authors present approaches to route packets even
when parts of the NoC have failed. A similar approach can be used
for handling NoC components that have been shutdown. However,
such methods do not guarantee the availability of paths when el-
ements are shutdown. Moreover, mechanisms for re-routing and
re-transmission can have a large area-power overhead on the NoC
[21] and are difficult to design and verify.

3. PROBLEM DESCRIPTION
In this section, we describe the architectural features of the NoC

and the synthesis problem.

3.1 Architecture Description
An example of the architecture for which our custom NoC syn-

thesis algorithm is designed is presented in Figure 1. The cores of
the design are assigned to different VIs, which is given as an input
to our method. The cores in a VI have the same operating voltage
(same power and ground lines), but could have different operating
frequencies. In order to have a scalable solution, we build NoC
systems, where cores in a VI are connected to switches in the same
VI. We follow an approach similar to the GALS approach, where
the NoC components in a VI are synchronous and operate at the
same frequency. Having a locally synchronous design eases the
integration of the NoC with standard back-end placement&routing
tools and industrial flows. Moreover, if the different switches in a
VI operate at different frequencies, power and latency hungry syn-
chronizers are needed to connect them.

The cores are connected to the NoC switches by means of Net-
work Interfaces (NIs) that convert the protocol of the cores to that
of the network. The NIs also perform clock frequency conversion,
if the cores are running at different frequencies than the switches
in the VI. When a switch in one VI is to be connected to a switch
in another VI, we use a bi-synchronous FIFO to connect them to-
gether. The FIFO takes care of the voltage and frequency conver-
sion across the islands. The frequency conversion is needed be-
cause the switches in the different VIs could be operating at differ-
ent frequencies. Even if they are operating at the same frequency,
the clock tree is usually built separately for each VI. Thus, there
may be a clock skew between the two synchronous islands. We
use over the cell routing with unpipelined links to connect switches
across different VIs, as the wires could be routed on top of other
VIs.

3.2 Synthesis Problem
In our synthesis procedure, we generate switches in each VI to

connect the cores in the VI. Optionally, our method can explore
solutions where a separate NoC VI can be created. We take the
availability of power and ground lines for the intermediate VI as an
input, and our method will use the intermediate island, only if the
resources are available. Our method produces topologies such that
a traffic flow across two different VIs can be routed in two ways: (i)
the flow can go either directly from a switch in the VI containing
the source core to another switch in the VI containing the destina-
tion core, or (ii) it can go through a switch which is placed in the

intermediate NoC VI, if the VI is available. The switches in the in-
termediate VI are never shutdown. The method will automatically
explore both alternatives and choose the best one for meeting the
application constraints.

The objective of our synthesis method is to determine the number
of switches needed in each VI, the size of the switches, their oper-
ating frequency and routing paths across the switches, such that
application constraints are satisfied and VIs can be shutdown, if
needed. Our method determines if an intermediate NoC VI needs
to be used to connect the switches in the different VIs and if so, the
number of switches in the intermediate island, their sizes, frequency
of operation, connectivity and paths. The synthesis method can be
plugged in our design flow presented in [15] in order to generate
fully implementable NoCs

Our method produces several design points that meet the appli-
cation constraints with different switch counts, with each point hav-
ing different power and performance values. The designer can then
choose the best design point from the trade-off curves obtained.

4. TOPOLOGY SYNTHESIS APPROACH
The synthesis algorithm is explained in detail in this section.

From the input specifications, we construct the VI communication
graph defined as follows:

DEFINITION 1. A VI Communication Graph (VCG(V , E, isl))
is a directed graph, each vertex vi ∈ V represents a core in the VI
denoted by isl and the directed edge (vi, vj) representing the com-
munication between the cores vi and vj . The bandwidth of traffic
flow from cores vi to vj is represented by bwi,j and the latency con-
straint for the flow is represented by lati,j . The weight of the edge
(ei, ej), defined by ei,j , is set to a combination of the bandwidth
and the latency constraints of the traffic flow from core vi to vj:
hi,j = α× bwi,j/max_bw +(1−α)× min_lat/lati,j , where
max_bw is the maximum bandwidth value over all flows, min_lat
is the tightest latency constraint over all flows and α is a weight
parameter.

The value of the weight parameter α can be set experimentally
or obtained as an input from the user, depending on the importance
of performance and power consumption objectives.

Algorithm 1 Core-to-switch connectivity
1: Determine the frequency at which the NoC will operate in each

VI and max_sw_sizej , ∀j ∈ [1 · · ·NV I ]
2: min_swj = |V CG(V,E, j)|/max_sw_sizej , ∀j
3: {Vary number of switches in each VI}
4: for i = 1 to max∀j∈1···NV I |Vj | do
5: for j = 1 to NV F do
6: if i+min_swj < |Vj | then
7: k = i+min_swj

8: else
9: k = |Vj |

10: end if
11: Perform k min-cut partitions of V CG(V,E, j).
12: end for
13: {Vary number of switches in intermediate NoC VI}
14: for k = 0 to max∀j∈1···NV I do
15: Compute least cost paths for inter-switch flows. Choose

flows in bandwidth order and find the paths.
16: If paths found for all flows save design point
17: end for
18: end for

The algorithm for topology synthesis is presented in Algorithm
1. In the first step of the algorithm, the frequencies of operation
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Figure 1: Example Input
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Figure 2: VI count vs. power
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Figure 3: VI count vs. latency

of the switches in each of the islands are determined. In our NoC
design, a core is connected to only one switch, through a NI. The
links connecting the NI and the switch determine the frequency at
which the NoC elements have to run in an island. The bandwidth
available on a link is a product of the link data width and the fre-
quency. In our synthesis procedure, without loss of generality, we
fix the data width of the NoC links to a user-defined value. Please
note that it could be varied in a range and more design points could
be explored, which does not affect the algorithm steps. For a fixed
data width, the frequency of the switches in an island is determined
by the link that has to carry the highest bandwidth from or to a core
in the island.

A larger switch will have a longer critical path in the crossbar
and therefore will have to operate at a smaller frequency. The fre-
quency at which a switch has to operate determines the maximum
size (number of inputs and outputs) of the switch that can be al-
lowed, denoted as max_sw_sizej . As the switches in the different
VIs can operate at different frequencies, the maximum switch size
is different for the different VIs. Once the maximum switch sizes
are determined, based on the number of cores in each VI, the mini-
mum number of switches required for each island is determined in
step 2 of the algorithm. Let NV I denote the total number of VIs in
the design. In steps 4 to 10 of the algorithm, the number of switches
in each island is varied from the minimum value (computed in step
2) to the maximum number of cores in the island. In step 11, for
the current switch count of the VI, that many min-cut partitions of
the VCG corresponding to the VI are obtained. Cores in a partition
share the same switch. As min-cut partitioning is used, cores that
communicate heavily or that have tighter latency constraints would
be connected to the same switch, thereby reducing the power con-
sumption and latency.

At this point, the connectivity of the cores with the different
NoC switches is obtained. We still need to connect the switches
together and find paths for the inter-switch traffic flows. If the
switches from a VI are directly connected to the switches on the
other VIs, then several switch-to-switch links would be needed.
This may lead to large switch sizes, which may lead to violation
of the max_sw_sizej constraint. By using switches in an inter-
mediate NoC island, the number of switch-to-switch links can be
reduced. These switches act as indirect switches, as they are not
directly connected to the cores, but only connect other switches. If
the design constraints permit the usage of another VI, then we ex-
plore the solution space (step 14) with varying number of switches
on the intermediate NoC VI.

For each combination of direct and indirect switches, the cost of
opening links is calculated and the minimum cost paths are chosen
for all the flows (step 15). The traffic flows are ordered based on
the bandwidth values and the paths for each flow in the order is

computed. The cost of using a link is a linear combination of the
power consumption increase in opening a new link or reusing an
existing link and the latency constraint of the flow. When opening
links, we ensure that the links are either established directly across
the switches in the source and destination VIs or to the switches in
the intermediate NoC island.

If for all the flows, paths that do not violate the latency con-
straints are found, then the design point is saved. Finally, for each
valid design point, the NoC components are inserted on the floor-
plan and the wire lengths, wire power and delay are calculated. The
time complexity of our algorithm is O(V 2E2ln(V )), however in
practice the algorithm runs quite fast as the input graphs typically
are not fully connected.

5. EXPERIMENTAL RESULTS
Experiments are performed using the power, area and latency

models for the NoC components based on the architecture from
[25]. The models are built for 65nm technology node. We ex-
tended the library with models for the bi-synchronous voltage and
frequency converters.

When the NoC has to be designed to support power gating of
islands, there is an additional overhead on the dynamic power con-
sumption of the NoC. To study the impact of the overhead and to
see the impact of different core assignment to islands and differ-
ent number of islands, we consider a case-study on a realistic SoC
benchmark. The SoC design is used for mobile communication and
multimedia applications. The benchmark has 26 cores, consisting
of several processors, DSPs, caches, DMA controller, integrated
memory, video decoder engines and a multitude of peripheral I/O
ports.

We consider two ways of assigning the cores to different VIs.
One way, designated as logical partitioning, is based on the func-
tionality of the cores. For example, shared memories are placed
in the same VI, as they have the same functionality and therefore
are expected to operate at the same frequency and voltage. The is-
land with the shared memories is also expected not to be shutdown,
since memories are shared and should be accessible at any time
and this is another reason to cluster them in the same VI. Similar
reasoning was used to partition all the cores for the case of logical
partitioning. Another way we considered for partitioning is based
on communication and is called communication based partition-
ing. In this case, cores that have high bandwidth communication
with one another will be placed in the same VI. Please note that
the assignment of cores to the VIs is an input to our synthesis algo-
rithm.

In Figure 2, we show how the dynamic power consumption of the
NoC varies when the cores are partitioned in to different number of
VIs. The power consumption values comprise the consumption on
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Figure 4: Topology example Figure 5: Floorplan example

switches, links and the synchronizers. In the x-axis, the first point
(1 island) is actually a design point with all the cores in the same
island, which is the reference point. The last point on the graph
corresponds to 26 VIs, which is the point when each core is in its
own island. It can be seen that in the case of logical partitioning,
we have to pay a some overhead in NoC dynamic power, as there
are more high bandwidth flows that have to go across islands. In the
case of the communication based partitioning, the NoC consumes
less power than the reference point with 1 island, as the NoC can
run at a slower frequency in some of the islands. In this case most
of the high bandwidth flows are inside an island, so the power over-
head is less. In Figure 3, we show the average packet latencies for
the different design points. The latency quoted is the number of cy-
cles needed to transfer a single chunk of the packet from the output
of the source NI until the input of the destination NI under zero-
load conditions. When packets cross the islands, a 4 cycle delay is
incurred on the voltage-frequency converters. Thus, with increas-
ing number of islands, the latencies increase. A topology for the
6 VI logic partitioning case is shown in Figure 4 and a floorplan
example is presented in Figure 5.

We studied the support of voltage islands on a variety of SoC
benchmarks. For the different SoC benchmarks, we found that the
topologies synthesized to support multiple VIs incur a 3% over-
head on the total system’s dynamic power. We found that the area
overhead is also negligible, with less than 0.5% increase in the total
SoC area. In many SoCs, the shutdown of cores can lead to large
reduction in leakage power, leading to even 25% or more reduction
in overall system power [6]. Thus, compared to the power savings
achieved, the penalty incurred in the NoC design is negligible.

The exploration of the design points for all the benchmark took
only a few hours on a 2 GHz Linux machine. To be noted that the
synthesis process is only run once at design time and therefor the
computational time required by the algorithm is negligible.

6. CONCLUSIONS
Stand by and leakage power consumption of the SoC is becom-

ing a large fraction of the total power consumption. Clustering of
cores in to voltage islands and shutdown of unused islands is an ef-
fective way to reduce the leakage power consumption. The system
interconnect has to be designed to ensure proper operation when
shutting down voltage islands. In this paper, we presented an ap-
proach to synthesize application specific Networks on Chip (NoC)
interconnects that can effectively support shutdown of islands. The
topologies synthesized by our methods have negligible power and
area overhead (3% power and 0.5% area, on average), in order to
support shutdown. The presented approach also allows the design

space exploration of NoCs with different power-performance val-
ues that meet the application constraints.
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