
Int. J. Embedded Systems, Vol. 3, No. 4, 2008 209

On-chip implementation of multiprocessor networks

and switch fabrics

Terry Tao Ye

R/D Center for Logistics and Supply Chain Management (LSCM),
Hong Kong
E-mail: taoye@cslmail.stanford.edu

Giovanni De Micheli
∗

EPFL, Switzerland
E-mail: giovanni.demicheli@epfl.ch
∗Corresponding author

Abstract:On-chip implementationofmultiprocessor systemsneeds toplanarise the interconnect
networks onto the silicon floorplan. Compared with traditional ASIC/SoC architectures,
Multiprocessor Systems on Chips (MPSoC) node processors are homogeneous, and MPSoC
network topologies are regular. Therefore, traditional ASIC floorplanning methodologies
that perform macro placement are not suitable for MPSoC designs. We propose an
automated MPSoC physical planning methodology. REGULAY can generate an optimal
floorplan for different topologies under different design constraints. Comparedwith traditional
floorplanning approaches, REGULAY shows significant advantages in reducing the total
interconnect wirelength while preserving the regularity and hierarchy of the network topology.

Keywords: NoCs; network on chips; MPSoCs; structures interconnect; network interface;
switch; router; link; physical design; floorplan; network topology.

Reference to this paper should be made as follows: Ye, T.T. andDeMicheli, G. (2008) ‘On-chip
implementation of multiprocessor networks and switch fabrics’, Int. J. Embedded Systems,
Vol. 3, No. 4, pp.209–218.

Biographical notes: Terry Tao Ye received his PhD Degree from the Electrical Engineering
Department of Stanford University in 2003. His research area is on high performance
embedded system design, which can be applied to next generation high performance, low power
consumption wireless communication systems, cellular systems and PDA systems. He received
his BSEE Degree from Tsinghua University, Beijing, in 1993. Starting from January 2007,
he is the Director of Research and Development at Hong Kong R/D Center for Logistics and
Supply Chain Management (LSCM). LSCM was established by the Hong Kong government
in 2006. The center is commissioned to conduct the research, development and deployment
of RFID technology into the logistic and supply chain infrastructure in Hong Kong and the
greater China region.

Giovanni De Micheli is Professor and Director of the EE Institute and the Integrated Systems
Center at EPFL Lausanne. He is also the President of the Scientific Committee of CSEM
in Neuchatel. He was previously Full Professor of EE at Stanford University. His research
activities span logic synethesis, high-level languages and design, low-power design, HW/SW
co-design and network-on-chip design. He is also interested in design with hybrid technologies,
such as silicon nanowires arrays and biosensors. He is a fellow of ACMand IEEE and recipient
of the IEEE Piore TFA in 2003.

1 Introduction

Future VLSI technology will enable hundreds, or even
thousands, of Processing Elements (PEs) being integrated
on the same chip. At the same time, Systems-on-Chip
(SoCs) applications also demand higher data-processing
capability that can perform parallel and multi-threading
tasks. Multiprocessor Systems on Chips (MPSoCs)
combine the advantages of computation-parallelism

of multiprocessors with single chip integration of
SoCs. Thus MPSoCs are widely employed in today’s
(and also tomorrow’s) Network Processors (NPs), Parallel
Multimedia Processors (PMPs) and many Application
Specific Array Processors (ASAPs).

In MPSoCs, on-chip multiprocessors communicate
with each other independently and concurrently
(Dally and Towles, 2001). Traditional SoC shared-
medium communication architectures (e.g., buses) will

Copyright © 2008 Inderscience Enterprises Ltd.



210 T.T. Ye and G. De Micheli

no longer be able to support the massive data traffic
at this scale. In many cluster-level multiprocessor
systems, the processor nodes are connected by an
interconnection network. Similarly, MPSoCs also need to
adopt a dedicated on-chip interconnection network that
can provide reliable and scalable communication (Benini
and De Micheli, 2002).

Designing the on-chip network will become a major
task for future MPSoCs. A large fraction of the timing
delay is spent on the signal propagation on the
interconnect, and a significant amount of energy is also
dissipated charging and discharging the load capacitance
on the wires (Ho et al., 2001). Therefore, an optimised
interconnect network floorplanwill be of great importance
to MPSoC performance and energy consumption.

Among many MPSoC architectures, homogeneous
MPSoCs. i.e., on-chip multiprocessor systems with regular
fabrics, are of particular interest because of their regular
structures and parallel data computation capability.
Similar to parallel computer clusters, homogeneous
MPSoCsmay also adopt different network topologies and
switch fabrics and implement themonto the chip floorplan.
In this paper, we will address the implementation issues of
homogeneous MPSoC interconnection networks.

With the ever-increasing complexity of MPSoC
integration, manual floorplanning of the processing
elements and switches will become even more time
consuming and inefficient. Automated methods are
needed for large-scale MPSoC designs. Unlike traditional
floorplanning that deals with the circuit macro block
placement and wire routing (Preas and Lorenzetti, 1988),
MPSoC floorplanning needs to solve the problems from
a different perspective, as illustrated in Figure 1. Namely:

Figure 1 MPSoC tiling is different from traditional floorplan
(see online version for colours)

• Folding and planarisation. MPSoC network
topologies are multi-dimensional. MPSoC planar
layout requires that PE blocks are tiled and abutted
on the floorplan in a two-dimensional tile array

(Dally and Towles, 2001). The planarisation process
is also constrained by the pre-defined aspect ratio
and row/column numbers of the tile array.

• Regularity and hierarchy. MPSoC network
topologies are often regular and hierarchical.
The planarisation of the network is not only a simple
packing process: it has to preserve the regularity and
hierarchy on the floorplan.

• Critical path and total wirelength. Interconnect
delays and power consumption are the two critical
issues in MPSoC network design. On the one hand,
inter-node communication latencies are dominated
by the wire propagation delays. Therefore, the
wirelength of the timing-critical links needs to be
minimised. On the other hand, interconnect wires
are the main contributors of the total system power
consumption. Reducing the total wirelength helps
reducing the power dissipated on the
interconnect.

Prior network graph planarisation approaches either
targeted only some specific topologies, or they were
not flexible enough to adapt to many of the floorplan
constraints imposed by the silicon implementation
(Dehon, 2000; Greenberg and Leiserson, 1998). Therefore,
those approaches are not suitable for an automated design
flow.

In this paper, we propose a floorplanning method
and a tool called REGULAY that can automatically
place regularly-configured MPSoC node processors as
well as switch fabrics onto a user-defined tile floorplan.
Given the MPSoC network topology and the physical
dimension of the network nodes as inputs, along with
the floorplan specification (locations of the I/O tiles,
number of rows and columns of the tiles), REGULAY
can create a floorplan that best satisfies different design
constraints.

The paper is organised as follows: Section 2 will
first describe some of the popular topologies used
in MPSoC networks. Based on the characteristics of
these networks, Section 3 generalises and formulates
the MPSoC floorplanning problem. Our proposed
floorplanning method consists of two steps: regularity
extraction (Section 4), and legalisation (Section 5).
A couple of different network topologies are tested by
REGULAY in Section 6. The resulting floorplans are much
more compact as compared with other general ASIC
floorplanning tools.

2 MPSoC network topologies

Because of different performance requirements and cost
metrics,many differentmultiprocessor network topologies
are designed for specific applications. MPSoC networks
canbe categorised asdirect networksand indirect networks
Duato et al. (1997). In direct network MPSoCs, node
processors are connected directly with each other by the



On-chip implementation of multiprocessor networks and switch fabrics 211

network. Each node performs dataflow routing as well as
arbitration. In indirect networkMPSoCs, node processors
are connectedbyone (ormore) intermediate node switches.
The switching nodes perform the routing and arbitration
functions. Therefore, indirect networks are also often
referred to as Multistage Interconnect Networks (MIN).
Although some direct networks and indirect networksmay
be equivalent in functionality, e.g., if each node processor
has one dedicated node switch, this node switch can either
be embedded inside the node processor, or be constructed
outside. Nevertheless, direct and indirect topologies have
different impact on network physical implementation.
In this paper, to avoid confusion, we call the intermediate
switching nodes in indirect networks switch fabrics, and
simply refer to both node processors and node switches as
‘nodes’.

Direct networks and indirect networks can have
different topologies (Duato et al., 1997). It is not the
objective of this paper to discuss the functionalities and
performance metrics of these different networks. Rather,
we are going to give only a brief description of some of the
popular network topologies. We will use these topologies
as examples to formulate the MPSoC on-chip network
problems in later sections.

2.1 Direct network topologies

2.1.1 Orthogonal topology

Nodes in orthogonal networks are connected in
k-ary n-dimensional mesh (k-ary n-mesh) or k-ary
n-dimensional torus (k-ary n-cube) formations, as shown
in Figure 2. Because of the simple connection and
easy routing provided by adjacency, mesh and torus
networks are widely used in parallel computing platforms
(Dally, 1990). Orthogonal networks are highly regular.
Therefore, the interconnect length between nodes is
expected to be uniform to ensure the performance
uniformity of the node processors.

Figure 2 Mesh and torus networks (see online version
for colours)

2.1.2 Cube-Connected-Cycles topology

The Cube-Connected-Cycles (CCC) topology is proposed
as an alternative to orthogonal topologies to reduce the
degree of each node (Preparata and Vuillemin, 1981),
as shown in Figure 3(a). Each node has 3 degrees
of connectivity as compared to 2n degrees in mesh
and torus networks. CCC networks have a hierarchical

structure: the three nodes at each corner of the cube form
a local ring.

Figure 3 Cube-Connected-Cycles networks (see online version
for colours)

2.1.3 Octagon topology

The Octagon network is another example of direct
network topologies (Figure 4). It was proposed by
Karim et al. (2001) as an on-chip communication
architecture for network processors. In this architecture,
eight processors are connected by an octagonal ring
and three diameters. The delays between any two node
processors are no more than two stages (through one
intermediate node) within the local ring. The Octagon
network is scalable. If one node processor is used as the
bridge node, more Octagons can be cascaded together,
as shown in Figure 4.

Figure 4 The octagon networks (see online version for colours)

2.2 Indirect network topologies

2.2.1 Crossbar switch fabrics

An N × N crossbar network connects N input ports with
N output ports. Any of theN input ports can be connected
to any of the N output ports by a node switch on the
corresponding crosspoint (Figure 5).



212 T.T. Ye and G. De Micheli

Figure 5 Crossbar switch fabrics (see online version
for colours)

2.2.2 Fully-connected network

An N × N fully-connected network uses MUXes to
aggregate every input to the output (Figure 6). EachMUX
is controlled by the arbiter that determines which input
should be directed to the output.

Similar to the crossbar network (fully connected
switch network is also often referred as crossbar), in
fully connected switch network, each source-destination
connection has its dedicated data path.

Figure 6 Fully-connected switch fabrics (see online version
for colours)

2.2.3 Butterfly topology

The Butterfly network (Figure 7) is an indirect
network architecture. Inside the butterfly fabrics, each
source-destination route uses a dedicated datapath.
The delays between any two node processors are the same,
and the delay is determined by the number of intermediate
stages on the switch fabrics.

Butterfly topology has many different isomorphic
variations, such as Omega Network, Benes Networks, etc.
Because they have similar topologies, these networks can
be tiled with similar floorplans.

Figure 7 The butterfly switch fabrics (see online version
for colours)

2.2.4 Fat-tree topology

Unlike the Butterfly network, a fat-tree network provides
multiple datapaths from source node to destination node.
As shown in Figure 8, the fat-tree network can be regarded
as an expanded n-ary tree network with multiple root
nodes. The network delays are dependent on the depth of
the tree. SPIN network (Adriahantenaina et al., 2003) is
one design example that uses 4-ary fat-tree topology for
the MPSoC on-chip communication.

Figure 8 The fat-tree networks (see online version for colours)

2.3 MPSoC network floorplan

Although quite different in their topologies, manyMPSoC
networks have some important aspects in common:
regularity and hierarchy. Regular and hierarchical
topologies help to distribute the network traffic and
balance the workload of node processors. Therefore,
preserving the regularity and hierarchy formations in the
silicon floorplan is critical in MPSoC implementation.

Furthermore, on-chip interconnect delays and power
consumption add additional requirements in MPSoC
floorplan design. To reduce wiring delays, MPSoC
floorplans need to limit the wirelength of the critical links



On-chip implementation of multiprocessor networks and switch fabrics 213

(links that are timing sensitive). To reduce the interconnect
energy dissipation, the total network wirelength needs to
be minimised.

3 Problem formulation

In an MPSoC floorplan, each node processor or node
switch is placed as a dedicatedhardblock tile. For example,
in direct networks, as in the case of the Octagon
network design, the node processors can be tiled in a
two-dimensional array, e.g., a 6 × 6 array in Figure 9.
In indirect networks, as in the case of theButterflynetwork,
the tiling of the switch fabrics will be constrained by the
locations of the node processors, as shown in Figure 9.

Formally, we are given a source network S connecting
a set of modules M , M = {mi, i = 1, 2, 3, . . . , p}, and a
target two-dimensional tile array T with col × row tiles.
Since modules cannot overlap, we assume p ≤ col × row.
Each net in N connects two (or more) modules in M ,
and has a weighting factor. For example, net nij,...,k ∈ N
connects modules in mi, mj , . . . , mk and has weight
wij,...,k.

Figure 9 Constraints of floorplan tiling (see online version for
colours)

Different network topologies and application
requirements set different constraints on MPSoC
floorplanning problems. To be more specific, we
summarise the constraints that are relevant for MPSoC
floorplanning:

• Regularity constraints. As shown in Section 2,
MPSoC placement should preserve the regularity of
the original network topology.

• Hierarchy constraints. MPSoC networks may have
hierarchical topologies (clusters), e.g., a cascaded
Octagon network consists of multiple local rings.
The placement should also preserve this hierarchical
clusters.

• I/O constraints. An MPSoC is implemented on a
single chip. Some node processors (or node switches,
in the case of switch fabrics) serve as I/O nodes;

therefore, they need to be placed at the peripherals of
the floorplan. An MPSoC floorplan needs to
accommodate those nodes at their proper locations.

• Aspect-ratio constraints. Chip die size is limited by
the silicon area and aspect ratio. Therefore, node
processor blocks and node switch blocks need to be
packed into a two-dimensional array with predefined
numbers of rows and columns.

• Critical-path constraints. The links between some
node processors may be the critical paths, e.g., the
centre ring in the cascaded Octagon network.
Therefore, the nodes connected by the critical paths
need to be placed closer to each other.

• Total net-length constraints. Reducing the total net
length will achieve shorter interconnect delays with
lower power consumption.

The floorplanning problem is to determine a mapping
from S to T , such that the constraints are met and
the overall wiring length is minimal. Such a problem is
computationally intractable, and has been the object of
extensive investigation in the ASIC domain. We propose
a two-step heuristic approach that takes into account the
special properties of MPSoC topologies.

The proposed approach consists of two steps:

• regularity extraction and determination of tentative
locations

• legalisation.

Thefirst stepgenerates the relative locationsof themodules
based on the regularity and hierarchical information
extracted from the network topology. If some modules
have pre-fixed locations in T , these locations are used
as placement constraints. The total weighted net length
is used as objective function. The second step will pack
the modules onto the floorplan constrained by the I/O
locations and aspect ratio.

4 Regularity extraction

We represent the network topology as a connectivity
matrix, where each element off-diagonal of the matrix
corresponds to an edge of the topology graph. We use the
total square wirelength among the nodes as the objective
function. The minimisation of the objective function can
be calculated through a series of matrix operations.

The matrix representation preserves the topological
regularity information, i.e., if the nodes in the original
topology are symmetrical, the corresponding elements
in the matrix are symmetrical as well. Furthermore,
all subsequent matrix operations (e.g., transposition,
vector multiplication, etc.) will preserve regularity.
Therefore, by minimising the total square wirelength with
this model, the regularity information is preserved in the
optimisation process.



214 T.T. Ye and G. De Micheli

4.1 Forming the objective function

We generalise this problem by assigning weights on the
nets, thus allowingus toprivilege theproximity/distanceof
somenodepairs. Thus theweighted total squarewirelength
objective function can be formed in the following way.

Giving a set of modules M , M = {mi, i = 1, 2, 3,
. . . , p}, with locations on (x1, y1), (x2, y2), . . . , (xp, yp),
the total weighted square wire length objective function
can be expressed as

Φ(x, y) =
p∑

i,j=1

wij((xi − xj)2 + (yi − yj)2)

= xTQx + yTQy (1)

where x ∈ Rp and y ∈ Rp are the location vectors for the
modules on X and Y dimensions. Q ∈ Rp×p is the matrix
that represents the weighted connectivity of the topology
graph, where the weight factors {wij , i = 1, 2, . . . , p,
j = 1, 2, . . . , p} are the matrix elements. Q is generated in
the following way:

• wij is 0 if there is no connection between modules mi

and mj .

• When modules mi and mj are connected, the value
of wij is the weighting factor of the net between mi

and mj .

• The diagonal elements {wii, i = 1, 2, . . . , p}, etc., of
the matrix are the opposite of the sums of all
off-diagonal elements on the same row.

wij =




0 i �= j and no connection
between mi and mj

weighting_ i �= j and mi, mj

factor(i, j) are connected

−
p∑

k=1,k �=i

wik i = j (The sum of wik

in the row i)

.

When the network topology graph is connected, it can be
proved that the matrix Q ∈ Rp×p constructed from this
graph has the following properties (Hall, 1970):

• Q is positive positive semi-definite

• is of rank p − 1.

As mentioned in Section 3, MPSoC floorplanning is
sometimes constrained by pre-defined I/O locations.
To address these two different scenarios (with and without
I/O constraints), we develop two approaches, as described
in the following sections.

4.2 Floorplan without I/O constraints

Equation (1) shows that the x and y location vectors are
independent of each other; therefore, we can optimise the
positions on the X and Y coordinates separately.

4.2.1 X-dimension optimisation

Since there is no I/O or boundary condition, we need
to further normalise the objective function on the
X-dimension by using the inner product xTx.

Now the normalised objective function of equation (1)
can be rewritten as

Φ′(x) =
xTQx
xTx

. (2)

From the construction of matrix Q, we note that the
row sums of Q are zero, thus Q has a unit eigenvector
u = (1, 1, 1, . . . , 1)T . The associated eigenvalue is zero.
We also note that Q is symmetrical and has rank p − 1.
Therefore, it has p non-negative real eigenvalues 0 = λ1 ≤
λ2 ≤ · · · ≤ λp ∈ R. The smallest eigenvalue is λ1 = 0.

It can be proven that the first partial derivative with
respect to the vector x of the normalised objective function
is zero when

(Q − λI)x = 0 (3)

which yields a non-trivial solution of x if and only if x
is the eigenvector of the corresponding eigenvalue of λ.
Here I is the identity matrix.

It can be shown that the normalised objective
function is bounded between the minimum and maximum
eigenvalues, or

λmin ≤ Φ′(x) =
xTQx
xTx

≤ λmax. (4)

The minimum eigenvalue, zero, yields the trivial solution
of unit vector, where all nodes are to be placed at one single
point. Therefore, the second smallest eigenvalue and the
associated eigenvector e1 yield the optimal solution.

4.2.2 Y-dimension optimisation

Since we already use e1 to form the location vector x
on the X coordinate, the Y-dimension location vector y
has to be formed from other eigen-vectors, otherwise, the
modules will be placed in a diagonal line on the floorplan.
This condition add one extra constraint to y vector.

yTe1 = 0. (5)

Since the eigenvectors of the symmetrical matrix Q are
orthogonal, we will choose for y the eigenvector
corresponding to the third smallest eigenvalue.

Figure 10 shows the screen-shot of the initial node
locations of the five-ring Octagon network without I/O
constraints. The locations on the X-Y plane are obtained
directly from the first two non-zero eigenvectors of Q.
From the locations of the nodes, we can see that not only
the regularity formation of the nodes is preserved, but also
the hierarchical clustering of the cascaded Octagon rings
is shown as well.

Figure 11 shows the initial locations of the
cube-connect-cycles obtained from the eigenvectors of the
matrix. Again, the formation of the nodes preserves the
regularity as well as the hierarchy of the original topology.



On-chip implementation of multiprocessor networks and switch fabrics 215

Figure 10 Initial eigenvector locations of 5-ring Octagon
network without I/O constraints (see online version
for colours)

Figure 11 Initial eigenvector locations of CCC without I/O
constraints (see online version for colours)

4.3 Floorplan with I/O constraints

For this problem, we can again decouple the optimisation
in the X and Y directions. We will first describe the
optimisation in the X direction, the optimisation in the
Y direction is similar.

If the positions of some modules are pre-fixed by the
I/O constraints, we denote these modules as Mf ⊂ M ,
and their corresponding location vector in the X direction
is denoted as xf ⊂ x. Similarly, the locations of all
the movable modules are denoted as vector xc ⊂ x.
The objective function can then be re-written as:

Φ(x) = (xc xf )
(

Qcc Qcf

Qfc Qff

)
(xc xf )T. (6)

Solving the zeros of the derivative of the objective function,
we have

Qccxc = −Qcfxf . (7)

Here Qcc is a subset of the original matrix Q. We know
that Q is a symmetrical matrix with the rank of p − 1.
Therefore, if at least one node is fixed, Qcc is non-singular
and invertible, and the equation (7) has real solutions
(Alpert et al., 1997).

Figure 12 shows the initial locations of the five-ring
cascaded Octagon network with I/O constraints. The four
bridge I/O nodes in the center Octagon ring are used as
I/O nodes and placed at the four corners of the floorplan.
The four I/O nodes are used as the fixed locations in the
quadratic equation (6). Under the I/O constraints, the
Octagon network shows a different formation than that
without I/Os (Figure 10). Nevertheless, the regularity as
well as the hierarchical formation of the network is still
preserved.

Figure 12 Initial locations of 5-ring Octagon network with
I/Os on the corners (see online version for colours)

Figure 13 shows the initial locations of the 2-ary 3-fly
Butterfly switch fabrics. There are 8 node processors and
32 node switches in the network. The node processors are
numbered from 0 to 7, as shown in Figure 13. One node
processor connects to two node switches, serving as input
switch and output switch respectively. On the floorplan,
we place the node processors 0, 1, 2, 3 on left side of
the floorplan, while the node processors 4, 5, 6, 7 on the
right side. This arrangement of node processors imposes
I/O constraints on the Butterfly switch fabrics, because
the switching nodes that serve as input and output have
to be placed next to the corresponding node processors.
The regularity formation of the switch fabrics is still
preserved under these I/O constraints, as shown in the
figure.

Figure 13 Initial locations of butterfly network with I/O
constraints (see online version for colours)

5 Legalisation

The node positions solved from the quadratic objective
function optimisation are real-valued numbers. However,
the PE modules of each node are rectangular tiles and
have to be abutted next to each other. The position from
the location vector cannot be used directly in the tiling
placement. Nevertheless, we can still use these values as
relative locations and further legalise (quantise) the node
positions.

The legalisation procedure also consists of two steps:

• sorting, where the nodes are ordered by the X and Y
coordinates

• packing, where the node blocks are assigned to the
corresponding tiles (row and column positions).



216 T.T. Ye and G. De Micheli

In the sorting step, as shown in Figure 14, the nodes are
first sorted according to their X coordinates and evenly
partitioned into several bins. The number of bins is equal
to the number of columns. Then the nodes in each bin
are further sorted according to their Y coordinates. After
this step, the nodes are ordered in both the X and Y
coordinates. The packing step will assign the nodes into
the corresponding tiles in the col × row tile floorplan.
The legalisation procedure involves two linear sorting
operations, which can be implemented with any existing
sorting algorithms.

Figure 15 shows the legalisation results. Figure 15(a)
is the legalised floorplan from Figures 10 and 15(b)
is legalised from Figure 12. Both floorplans preserve
the regularity and hierarchy formations of the original
topologies. Furthermore, the floorplan also achieves a
shorter total interconnect wirelength compared with other
macro cell floorplanning approaches. We will show this
comparison in details through several experiments.

Figure 14 Legalisation of the node locations by sorting and
packing (see online version for colours)

Figure 15 Legalised floorplan of octagon networks with and
without I/O constraints (see online version for
colours)

6 Experiments

We have built a tool called REGULAY that implements
the proposed floorplanning method. REGULAY is written

in C++ with GUI written in Tcl/Tk. To the best of our
knowledge, therewere noprior tools that target specifically
on the MPSoC network floorplanning applications.
Therefore, we compare the resulting floorplan and the
total interconnect wirelength with the results obtained
from ASIC floorplanning approaches. We choose UCLA
MCMfloorplanner (Cong et al., 1999) for this comparison.
MCM is an open-source non-commercial tool that was
originally designed to solve general ASIC floorplanning
problems. Nevertheless, we perform this comparison to
show that our method is particularly advantageous for
MPSoC floorplans.

Figure 16 shows the floorplan result of the CCC by
REGULAY. There are total 24 nodes and 36 nets in the
topology. For a better visualisation of the regularity and
hierarchy of the resulting floorplan, we assign different
colours (or shades, if viewed in black and white displays)
to different groups of nodes. There are no I/O constraints
for the floorplan. From the floorplan formation, we can
see that regularity information of the topology is well
preserved by REGULAY.

Figure 16 Floorplan of Cube-Connected-Cycles network
(see online version for colours)

The 4-ary 3-mesh network floorplan result is shown in
Figure 17. There are 64 nodes and 144 interconnects in this
network, and the floorplan is an 8 × 8 tile array. Both the
original 4-ary 3-mesh topology and the resulting floorplan
are shown in the figure. Again, different groups of nodes
are assigned different colours for a better visualisation
(In black and white displays, the nodes are shown in four
different shades). As shown from the figure, REGULAY
creates a satisfying results for this topology. All the nodes
are placed into a regular and clustered formation on the
floorplan.The locations of yellownodes andblue nodes are
symmetrical to each other, and the green nodes and white
nodes are symmetrical too. This is because that yellow
and blue nodes are ‘sandwiched’ between green and white
nodes in the original topology.
Figure 18 shows the floorplan of 4-ary 3-cube torus
network. There are total 64 node processors and 192 nets
in this network, and they are also mapped into the same
8 × 8 tile floorplan. For a clearer view of the original
network topology, we do not show all the 192 nets in the
figure. No I/O locations are constrained. Compared with
the 4-ary 3-mesh network, the torus floorplan shows a
different formation of regularity and clustering. As shown
in this figure, the green and yellow nodes locations are
symmetrical to each other, while the blue and white nodes



On-chip implementation of multiprocessor networks and switch fabrics 217

Figure 17 Floorplan of 4-ary 3-mesh network (see online
version for colours)

are symmetrical too. This difference is caused by the
‘wrap around’ nets added in the torus topology.

A 2-ary 3-fly Butterfly switch fabrics is tested as an
example for indirect network. We use the same I/O
constraints as described in Section 4.3, and the floorplan
is legalised from the initial locations shown in Figure 13.
As illustrated in Figure 19, under these I/O constraints,
REGULAY creates a very dense arrangement of the switch
fabrics, the regularity of the topology, aswell as the locality
of the I/O switches are well preserved.

Figure 18 Floorplan of 4-ary 3-cube torus network
(see online version for colours)

Figure 19 Floorplan comparison of constrained butterfly
network (see online version for colours)

Furthermore, we compare the total network wirelength
and average net wirelength between REGULAY and
UCLA MCM. Each PE in the network is 100 × 100�m
in size. The wirelength is the Manhattan distance
between two connected PEs. The results are compared
in Table 1. We further calculate the wirelength reduction
(both total and average) achieved by REGULAY over
UCLA MCM. As shown in the table, the wirelength
created by Regular is 1.8 × to 6.5 × smaller in all the

benchmarks. Particularly, REGULAY shows even greater
advantages in those more complex networks: the 4-ary
3-mesh and torus network and the Octagon network
achieve much higher wirelength reduction than those
simpler networks.

Table 1 Wirelength comparison between REGULAY and
UCLAMCM

REGULAY UCLA MCM

Total Average Total Average
wire- wire- wire- wire-
length length length length Improvement

5-ring Oct 12400 206 54000 900 4.4
CCC 6000 166 10800 300 1.8
4-ary 3-mesh 28800 200 115200 800 4.0
4-ary 3-torus 60800 422 393600 2733 6.5
2-ary 3-fly 9600 200 19200 400 2.0

7 Conclusion

In this paper, we proposed a physical floorplanning
method for MPSoC on-chip network and switch fabrics,
and introduced REGULAY, a network floorplanning tool
that implements the proposed methodology. Experiments
show that REGULAY can automatically create an
optimal floorplan that preserves the regularity and
hierarchy formation of the network topology, while
achieving significantly reduced total wirelength compared
to traditional floorplanning tools.

References

Adriahantenaina, A., Charlery, H., Greiner, A., Mortiez, L.
and Zeferino, C.A. (2003) ‘SPIN: a scalable, packet
switched, on-chip micro-network’, Proceedings of the
Design Automation and Test in Europe, March, pp.70–73.

Alpert, C.J., Chan, T., Huang, D.J-H., Markov, I.L. and Yan, K.
(1997) ‘Quadratic placement revisited’, Proceedings of the
Design Automation Conference, June, pp.752–757.

Benini, L. and De Micheli, G. (2002) ‘Networks on chips: a new
SoC paradigm’, IEEE Computer, Vol. 35, No. 1, January,
pp.70–78.

Cong, J. et al. (1999) ‘Relaxed simulated tempering for VLSI
floorplan designs’, Proceedings of ASP Design Automation
Conference, January, pp.13–16.

Dally, W. and Towles, B. (2001) ‘Route packets, not wires:
on-chip interconnection networks’, Proceedings of the 38th
Design Automation Conference, June, pp.684–689.

Dally, W.J. (1990) ‘Performance analysis of a k-ary n-cube
interconnect networks’, IEEE Transactions on Computers,
June, pp.775–785.

Dehon, A. (2000) ‘Compact, multilayer layout for butterfly
fat-tree’, ACM Symposium on Parallel Algorithms and
Architectures, pp.206–215.

Duato, J., Yalamanchili, S. and Ni, L. (1997) Interconnection
Networks, an Engineering Approach, IEEE Computer
Society Press.



218 T.T. Ye and G. De Micheli

Greenberg, R.I. andLeiserson, C.E. (1998) ‘A compact layout for
the three-dimensional treeofmeshes’,AppliedMathLetters,
pp.171–176.

Hall, K. (1970) ‘An r-dimensional quadratic placement
algorithm’,Management Science, Vol. 17,No. 3,November,
pp.219–229.

Ho, R., Mai, K. and Horowitz, M. (2001) ‘The future of wires’,
Proceedings of the IEEE, April, pp.490–504.

Karim, F., Nguyen, A. and Dey, S. (2001) ‘On-chip
communication architecture for OC-768 network
processors’, Proceedings of 38th Design Automation
Conference, June, pp.678–683.

Preas, B. and Lorenzetti, M. (1988) Physical Design Automation
of VLSI Systems, The Benjamin Cummings Publishing
Company.

Preparata, F.P. and Vuillemin, J. (1981) ‘The cube-connected
cycles: a versatile network for parallel computation’,
Comm. ACM, May, pp.300–309.


