
Modeling of Multiple Valued Gene Regulatory Networks

Abhishek Garg, Luis Mendoza, Ioannis Xenarios and Giovanni DeMicheli

Abstract— In silico modeling of Gene Regulatory Networks
has gained a lot of attention recently as it gives a very
powerful tool to experimental biologists to gather the knowledge
gained from different biological experiments and understand
the dynamics of the overall system. One of the key dynamics
that is often interesting is the steady states of the networks
which biologically corresponds to the cellular states. In our
previous paper, we gave an efficient method called GenYsis to
compute these steady states in Boolean representation of Gene
Regulatory Network. It has been observed that protein may
be expressed at more then two level of expression. This may
result in different cellular outcomes. To address this issue, we
present here a multiple-level modeling methodology that allows
us to be more accurate. In this paper we extend our software
GenYsis to model gene regulatory networks where each node
in the network may take multiple values.

I. INTRODUCTION

Modeling the qualitative behaviour of gene regulatory
networks by representing gene expression as ON or OFF
can capture many interesting biological properties as shown
in [Mendoza and Xenarios, 2006, Mendoza, 2006, Mendoza
et al., 1999, Thomas, 1991, Sánchez and Thieffry, 2003].
In our previous paper we gave an efficient method called
genYsis [Garg et al., 2007] for modelling regulatory net-
works as Boolean networks using Binary Decision Diagrams
(BDDs). GenYsis was shown to scale well with large size
of the gene regulatory network when represented as Boolean
networks. In this paper, we extend genYsis to multiple valued
networks where gene expressions are not constrained to
either on or off, but can take multiple values in the range
[0,1]. ‘0’ represent that the gene is completely off and
‘1’ represents the gene being on. All the levels between
‘0’ and ‘1’ represent intermediate gene expression values.
The intermediate expression values may also be due to post
translational modifications (like in EGFR receptor). We use
1-hot encoding and BDDs for modeling the multiple valued
networks.

We show the application of our method on T-Cell [Men-
doza, 2006] and Arabidopsis thaliana [Espinosa-Soto et al.,
2004] networks. On these networks, GenYsis identifies iden-
tical steady states and gives similar perturbation experiments
results as were reported in the literature.

Abhishek Garg and Giovanni DeMicheli are with the Labora-
tory of System Integrated, Faculty of Information and Communi-
cation Sciences, Ecole Polytechnique Fédérale de Lausanne, Sta-
tion 14, 1015 Lausanne, Switzerland abhishek.garg@epfl.ch,
giovanni.demicheli@epfl.ch

Luis Mendoza is with Instituto de Investigaciones Biomédicas, UNAM,
Mexico.lmendoza@biomedicas.unam.mx

Ioannis Xenarios is with Merck Serono, Geneva, Switzer-
land.ioannis.xenarios@merckserono.net

The paper is organised as follows. We first report the
results in section II. In section III, we give the technical
details of the method. Finally, in section IV, we introduce
the method for automatic extraction of rules from multiple
valued networks.

II. RESULTS

We applied genYsis on two well researched gene regu-
latory networks, namely T Helper and Arabidopsis thaliana
cell network.

A. T Helper Cell Network

The vertebrate immune system is made of diverse cell
populations; some of them are antigen presenting cells,
natural killer cells, B and T lymphocytes. There is a sub-
population of T lymphocytes, the T-helper, or Th, cells that
have received much attention from the modeling point of
view. Th cells can be divided into precursor Th0 cells and
effector Th1 and Th2 cells, depending on the pattern of
secreted molecules. Th1 and Th2 cell types play a central role
in cellular immunity and humoral responses, respectively.
Moreover, immune responses biased towards the Th1 phe-
notype result in autoimmune diseases, while enhanced Th2
responses originate allergic reactions. Various mathematical
models have been proposed for the differentiation, activation
and proliferation of Th-lymphocytes. Early models aimed to
describe the interactions between the various immunological
cell populations at a macroscopic level. Other model anal-
yses were aiming at understanding the mechanism of the
generation of antibody and T-cell receptors diversity, as well
as the dynamical properties of the large networks defined by
the interactions between secreted cytokines or between im-
munoglobulins. Recently, there have been some publications
on the regulatory network that controls the differentiation of
Th cells [Mendoza and Xenarios, 2006, Mendoza, 2006]. The
regulatory network presented constitutes the most extensive
attempt to model the regulatory network controlling the
differentiation of Th lymphocytes to date, and it has been
implemented both as a discrete and a continuous dynamical
system. The topology of the network was derived from
published experimental data. The parameters were inferred
from published data for the discrete model, and a set of
default values were used for the continuous model. Despite
the very different approaches of the discrete and continuous
versions, they reach the same qualitative results.

We modeled the multi-valued Th Network (Figure 1)
introduced in [Mendoza, 2006] using genYsis. This network
has four genes at three levels of activation : low, medium
and high. All other genes have only two levels : low and

Proceedings of the 29th Annual International
Conference of the IEEE EMBS
Cité Internationale, Lyon, France
August 2326, 2007.

ThD06.5

1424407885/07/$20.00 ©2007 IEEE 1398

Fig. 1. Th Cell Gene Regulatory Network. Shaded Nodes have three levels
of gene expression.Mendoza [2006]

high. The rules relating the expression of different genes are
in the same format as Table I. We do not list the rules here
due to space constraints, but they can be found in [Mendoza,
2006].

When this network was run through the GenYsis, it found
four wild type (without any mutation) steady states shown
in Table II. These steady states match the ones reported
in [Mendoza, 2006]. We also tried two mutations, IFN-
γ− (i.e. IFN-γ knocked out) and IFN-γR−. With these
mutations, similar steady states as reported in [Mendoza,
2006] were discovered. They are listed in Table II. Time
taken by GenYsis to perform each of these experiment was
less then 5 seconds on a 1.8 Ghz Intel Processor machine
running on Linux.

The analysis performed on the Th model permitted the
identification of all the stable states observed in the bio-
logical system, specifically under wild-type conditions. It is
straightforward to modify the model so as to describe the
situation where there are null-mutations. This capacity to
simulate mutants helps both to validate the model and to help
interpret some apparently contradictory phenotypes. Specifi-
cally, the model correctly helps in describing the difference
in the activation patterns found between null-mutants in IFN-
gamma and IFN-gammaR; a difference that originally was
not expected by experimental biologists because one element
belongs to the same circuit and one molecule is directly
downstream of the other.

Published quantitative data on the expression of the
molecules represented in the Th regulatory network is cur-
rently lacking. Hence, it would be very instructive to model
the Th network with different levels of granularity with
respect to the levels of activation of its nodes, so as to know
which stable steady states are obtained regardless of the
underlying modeling approach. Moreover, it is important to

compare the result of mutants in the model, so as to validate
it against experimental data.

GenYsis provides a way to biologists to perform these
experiments in silico and test the validity of the network
with respect to the experimental data.

B. Arabidopsis thaliana Network

Flowers of Arabidopsis thaliana are formed by four con-
centric whorls of organs made of four sepals (the outermost
whorl), four petals, six stamens and two fused carpels (the
innermost whorl). This organization of the flower can be dis-
rupted by mutations in a series of genes. The analysis of such
mutations led to the proposition of a combinatorial schema,
called the “ABC model”, which has been used extensively
to describe the morphology of Arabidopsis flowers, both in
a wild type and mutant backgrounds [Coen and Meyerowitz,
1991]. The ABC model postulates the existence of three
different abstract activities, namely A, B, and C, each of
which is present in sets of two adjacent whorls. Whichever
the nature of the molecular mechanism, the particular combi-
nation of these activities determines the identity of the organs
that will develop in a particular whorl. Specifically, the sole
presence of the A activity will determine the differentiation
of the underlying tissue into sepals. The combination of A
and B activities, however, determine the differentiation of
petals. A combination of B and C leads to a production
of stamens. And finally, the C activity by itself determines
the development of carpels. Additionally, the ABC model
postulates a mutual inhibition between activities A and C,
such that when function A is absent function C substitutes
it and vice versa.

Fig. 2. Arabidopsis thaliana Gene Regulatory Network. Taken from
Espinosa-Soto et al. [2004]

1399

Many genes involved in Arabidopsis thaliana flowering
and flower morphogenesis have been identified. This has
permitted the cloning and analysis of expression patterns of
the genes. Moreover, there is already a wealth of information
related to the phenotype associated with alteration in gene
expression, being null mutations of over-expression. All the
known experimental information lead to the proposition of
the regulatory network that controls the flower morphogen-
esis in Arabidopsis [Mendoza and Alvarez-Buylla, 1998,
Mendoza et al., 1999]. This first model was later enlarged by
the incorporation of new genes and interactions [Espinosa-
Soto et al., 2004]. The initial versions of the flowering model
used binary variables to represent the activation of genes.
The more recent version of the model [Espinosa-Soto et al.,
2004] used both two- and three-valued variables to represent
the levels of gene activation. In this case, the model showed
patterns of expression that could be compared directly with
those observed not only in the mature flower, but also in the
inflorescence meristems and floral organ primordia. Finally,
in all versions of the Arabidopsis model it was possible to
simulate the effect of null mutations, obtaining results that
were qualitatively correct with the published experimental
data.

In this paper we show the application of genYsis on
the arabidopsis network published in [Espinosa-Soto et al.,
2004] with both two and three levels of expression of gene
activation. The network used is as shown in Figure 2. The
rules encoding the interactions of genes are in a similar
format as for the Th Cell Network in the previous section. We
do not show the rules in this paper due to space constraints.
Interested readers can find the rules in [Espinosa-Soto et al.,
2004].

GenYsis found 10 wild type steady states on the network
2. These steady states are listed in Table III and match the
ones reported in [Espinosa-Soto et al., 2004]. In addition to
the wild type experiment, we tried two different mutations
: AP2− and AP3−. The steady states reported are listed in
Table III. These steady states match the cell states reported
in experimental data published [Liu and Meyerowitz, 1995,
DeyHoles and Sieburth, 2000] and [Bowman et al., 1989].
The same results were also reported in [Espinosa-Soto et al.,
2004]. Time taken for each of these experiments was less
then 5 seconds.

From these applications it is clear that genYsis is very effi-
cient in modelling the dynamics of gene regulatory networks
and can be used by biologists, to some extent, to understand
the development of complex organisms.

III. BINARY DECISION DIAGRAMS

A. Introduction

A Binary Decision Diagram(BDD) [Bryant, 1986] is a
directed acyclic graph consisting of a root node, intermediate
decision nodes and two terminal nodes, namely 0-terminal
and 1-terminal. BDDs can be used for representing Boolean
functions. Each variable of the function is represented as
a decison node of the graph. Each decision node has two
outgoing edges to represent evaluation of variable to 1 and

f

a

b

1

0

0

0

1

1

Fig. 3. BDD for the function f = (a ∧ b).

0. All paths from root node to 1-terminal gives the variable
evaluations for which the function is true. A simple BDD that
represents the Boolean function f = a AND b is shown in
Figure 3.

Here, we use Reduced Ordered BDDs (ROBDDs), which
are the compact reduced form of BDDs. For the sake of
brevity whenever we say BDD in this paper, we refer to
ROBDDs.

B. BDDs for multiple valued functions

BDDs as defined in section III-A can be used for Boolean
function representation. To extend the same for multiple
valued functions one can introduce the concept of 1-hot
encoding. Using 1-hot encoding, if there are n logic levels
for a variable vi, then we can represent vi using a binary
vector xi of length n. A bit j of vector xi is 1 (i.e. xi

j = 1)
if the variable takes the logic level j. Otherwise xi

j = 0. So,
if a variable has three logic levels : low, medium and high,
then these levels can be represented as 001, 010 and 100
respectively. This encoding scheme is called 1-hot encoding.

To use this definition of 1-hot encoding to represent the
function f = (a∧b) over three logic levels low, medium and
high, we need some additional rules to describe the semantics
of ∧, ∨ and = for multiple valued variables. Let us assume
these rules are as given in Table I. Then the Boolean function
corresponding to f = medium is given by :

f = (a = m ∧ b = m) ∨ (a = l ∧ b = h)
∨(a = h ∧ b = l) (1)

Similar functions exist for f = low and f = high. These
functions are now Boolean and can be represented using
BDDs.

TABLE I

RULES FOR FUNCTION f = (a ∧ b).

f = low f = medium f = high

a = l, b = l a = m, b = m a = m, b=h

a = l, b = m a = l, b = h a = h, b=m

a = m, b = l a = h, b = l a = h, b=h

C. BDDs for Gene Regulatory Networks

In this section, we show how gene regulatory networks
given as a table of rules can be mapped into BDDs using

1400

1-hot encoding. For each gene i, we define a vector of length
ni, where ni is the number of logic levels for that particular
gene. This way we can have a variable number of logic levels
for different genes. The state of the gene i, at time t is given
by the Boolean vector xni

i (t). We represent each rule in the
table as f

jp

i , which represents pth rule for jth logic level of
ith gene. To represent the evolution in time, we define the
state of a gene at time t + 1 using the following functions:

xj
i (t + 1) =

(mj∨

p=1

f
jp

i (t)

)
(2)

f
jp

i (t) =

(mjp∧

k=1

x
jp

k (t)

)
(3)

mj are the number of rules for jth logic level

mjp are the number of genes in pth rule of jth level

x ∈ {0, 1}
∧ and ∨ represent logical AND and OR

Equation 3 represents a single rule in the rule table and
Equation 2 represents the state of the bit corresponding to
logic level j of gene i at time t + 1 as the logic OR of all
the rules corresponding to level j of gene i.

A snapshot of the activity of all the genes in the network
at a time t is called the state of the network. The state of
the network is represented by a Boolean vector Vt of size
N × p, where N is the number of genes in the network
and p is the sum of number of logic levels of all the genes.
Each gene has ni continuous bits in vector Vt representing
the correponding logic levels. We call these continuous bits
fragments. Only one of these ni bits will be 1 since a gene
can only be at one logic (or expression) level at any given
instance. Another similar Boolean vector Vt+1, is used to
represent status of the genes at next step.

Asynchronous model of the transition between two time
steps is used. In this asynchronous model, we assume that
only one gene can change its state from one step to another
but there is no priority on which gene changes its state. All
the genes are equally likely to change their expression state.
This way one state can have upto N successor states where
each successor state (Vt+1) will differ from the previous
state (Vt) in only one fragment. Another way to look at
this asynchronous model is to say that time points are close
enough, so that only one gene can make a transition between
two time points. This model has been used previously studied
in [Garg et al., 2007, Thomas, 1991].

Let Ti(Vt, Vt+1) be the BDD representing transition of
gene i from Vt to Vt+1 and T (Vt, Vt+1) be the BDD
representing the transition from state of the network at time
t to state at time t + 1. The relation between Ti(Vt, Vt+1)
and T (Vt, Vt+1) is given by Equation 4. Equation 4 says
that all genes make asynchronous transitions and state of the
network at time t can have multiple successor states.

T (Vt, Vt+1) = T0(Vt, Vt+1) ∨ T1(Vt, Vt+1) ∨ ...

∨ TN (Vt, Vt+1) (4)

To impose the constraint that two consecutive states differ
in atmost one gene evaluation, we define Ti(Vt, Vt+1) as in
Equation 5, which states that for gene i, its evaluation at the
next time step vj

i

′
(∈ Vt+1) and function gj

i (Vt)(= xj
i (t+1))

has the same value for all logic levels j, and all the other
genes remain at their activation level from the previous time
step.

Ti(Vt, Vt+1) = {
ni∧

j=1

(
vj

i

′
↔ gj

i (Vt)
)
} ∧

∧

k #=i

{
nk∧

j=1

(
vj

k

′
↔ vj

k

)
} (5)

In Equation 5, ↔ is the logic equivalence operation and
evaluates to 1 if the Boolean variable on left and right of
↔ have the same value. Equation 5 says that gene i takes
the value decided by the function gi at next time step and
all the other genes (k &= i) remain at the same level in next
time step. Equation 5 represents all the transitions (Figure
4) that may exist in the state transition diagram of the gene
regulatory networks. Variables vj

i (∈ Vt) represent the state
at the tail of the edge and vj

i

′
(∈ Vt+1) represents the head

of the edge. If we know the initial state (i.e. vector Vt), then
vector Vt+1 can be determined by the following steps :

1) Construct a BDD ‘X’ which represents the vector Vt.
2) Take logical ‘AND’ of BDD ‘X’ with the BDD

T (Vt, Vt+1).
3) Existentially quantify out (or remove) variables in Vt

from the resulting BDD.
4) Swap variables vj

i

′
∈ Vt+1 with vj

i ∈ Vt in the BDD
got from the last step.

Resulting BDD from step 3 above gives the vector Vt+1.
To compute states reachable from this new state, change the
variable names vj

i

′
(∈ Vt+1) with vj

i (∈ Vt) as in step 4 and
repeat steps 1-3. If these, steps are repeated many times, then
at one stage Vt will be same as Vt+1. This state Vt is then
the steady state of the system, as once reached it can not be
escaped.

Steps 1-4, is the standard procedure used in the field
of Model Checking and Verification for doing reachability
analysis to compute reachable states in a state transition
diagram. In our previous paper [Garg et al., 2007], we had
explained the algorithm based on these steps to compute
genuine steady states in the state transition diagram for the
Boolean Network. The beauty of the formulation presented
in this paper is that the same set of algorithms can be used
with modified BDD structure to compute the steady states in
multi-valued networks. To make this paper self complete, we
explain in brief the algorithms proposed in [Garg et al., 2007]
in next section, without repeating the technical explanation
which can be obtained in [Garg et al., 2007].

D. Steady State Computation

All the steady states in the state transition diagram can be
computed efficiently by Algorithm 1, which is based on the
following set of definitions and theorems.

1401

Fig. 4. A sample transition in state transition diagram.

Definiton 1: Forward image, If
T (S(Vt)) is the set of

immediate successors of the states in S(Vt) on the state
transition graph.

Definiton 2: Backward image, Ib
T (S(Vt)) is the set of

immediate predecessors of the states in S(Vt) on the state
transition graph.

Definiton 3: Forward reachable states FR(S0) from the
states S0 are all the states that can be reached from S0 by
iteratively computing forward image in the transition relation
T (Vt, Vt+1) until no new states are reachable.

Definiton 4: Backward reachable states, BR(S0), are all
the states in T (Vt, Vt+1) whose forward reachable states
contain S0.

Definiton 5: Steady State is the set of states SS(Vt)
having the following two properties :

1) Forward image If
T (SS(Vt)) is same as SS(Vt).

2) For all the states in SS(Vt), if that state is reached
once, then the probability of revisiting that state is one.
[Hachtel et al., 1996]

Theorem 1: A state i ∈ S is a steady state if and only
if FR(i) ⊆ BR(i). State i is transient otherwise. [Xie and
Beerel, 1998].

Theorem 2: If state i ∈ S is transient, then states in BR(i)
are all transient. If state i is steady, then all the states in
FR(i) are steady states. In the latter case set {BR(i) −
FR(i)} are all transient. [Xie and Beerel, 1998].

Based on the point 1 and 2 of definition 5 of steady state,
three kinds of steady states as shown in Figure 5, can be
defined. Based on the definitions 1-5 and Theorems 1 and
2, Algorithms 1 can list all the steady states. More details
about the Algorithm 1 can be found in [Garg et al., 2007],
where they are explained in detail.

IV. AUTOMATIC EXTRACTION OF RULES

A lot of work has been reported in literature, where the
multiple valued rules like the ones given in section II-A and
II-B can be found. However, often extracting these rules is
not very straightforward. In such a situation, one has the
knowledge about the connectivity of the network but no
knowledge about the rules. We have extended genYsis to au-
tomatically extract rules from the gene regulatory networks,
given the mathematical function that relates the expression
of output gene as a function of expression of its input genes.

To give an example, we used the sigmoid function (Equa-
tion 6) introduced in Mendoza [2006], to represent the
relationship between the expression of input genes and the
output gene.

(a) Self Loop

(b) Simple Loop

(c) Complex Loop

Fig. 5. Different types of steady states.

xj(t + 1) =
−e0.5h + e−h(ωj−0.5)

(1 − e0.5h)(1 + e−h(ωj−0.5))
(6)

ωj =

(
1 − ki

j

(
1+

P
βnP

βn

) (P
βnxi

n
1+

P
βnxi

n

))
×

ka
j

(
1+

P
αnP

αn

)(P
αnxa

n
1+

P
αnxa

n

)

(
1 −

(
1+

P
βnP

βn

) (P
βnxi

n
1+

P
βnxi

n

))

(
1+

P
αnP

αn

) (P
αnxa

n
1+

P
αnxa

n

)
(7)

0 ≤ α,β, k, x ≤ 1

Equation 6 has the value of expression of a gene between
‘0’ and ‘1’. The first expression for ω is used if both acti-
vators and inhibitors are acting on a gene, second and third
expressions are used if only inhibitors and only activators
respectively are acting on a gene. In the former case, the gene
may have some weight associated to inhibiting effect and
activating effect, given by ki

j and ka
j respectively. α and β

are the weights on each transition in the signaling network.
If all the gene expressions xj are discretized to nj discrete

1402

Algorithm 1: Algorithm to compute all Steady States
all Steady States(T)1
begin2

T ′ ←− T3
while T ′ $= ∅ do4

s ←− initial state(T ′)5
FR(s) ←− forward set(s, T ′)6
BR(s) ←− backward set(s, T ′)7
if FR(s) ∧ BR(s) = ∅ then8

report s ∨ FR(s) as a steady state9
else10

report s ∨ BR(s) as all transient states11

T ′ ←− T ′ ∧ s ∨ BR(s)12

end13

initial state(T)14
begin15

P = random path to 1 node(T)16
s(Vt) = ∃v∈VtP17
RS(0) ←− ∅, FS(0) ←− {s}18
k ←− 019
while FS(k) $= ∅ do20

FS(k+1) = If (FS(k))(Vt+1 ← Vt) ∧ RS(k)21
RS(k+1) = RS(k) ∨ FS(k+1)22
k ←− k + 123

s ←− random path to 1 node(FS(k−1))24
return s25

end26

levels, then the Equations 6 and 7 can be discretized at these
discrete levels to give rules in the format used in section II.

The benefit of computing gene expression evolution using
the Equations 6 and 7 is that the expression is continuous
between ‘0’ and ‘1’ level and the rules can be automatically
generated even if there is no prior knowledge about the multi-
valued interactions is available. The choice of sigmoid is due
to the fact that it is the closest non-linear continuous function
to the Boolean function.

In genYsis, the number of discretization of each gene
can be chosen to be different. We applied genYsis on the
T-Cell Network reported in section II-A, by automatically
generating rules using the sigmoid function above. Three
wild type steady states were reported by genYsis. These
three states are contained in the four steady states reported
in [Mendoza, 2006] and correspond to the first three states
of wild type in Table II.

V. CONCLUSION

The methodology presented here was tested on two biolog-
ically significant networks, the T helper cell network and the
Arabidopsis thaliana network. Results reported in the paper
were corroborated by the same reported in the literature.
Enhanced model representation maintains the efficiency of
the core algorithm of GenYsis. In future, we will extend our
approach to bring discrete modelling closer to experimentally
generated data.

REFERENCES

J.L. Bowman, D.R. Smyth, and E.M. Meyerowitz. Genes
directing flower development in arabidopsis. Plant Cell,
(1):37–52, 1989.

Randal E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers,
35(8):677–691, 1986.

E. Coen and E.M. Meyerowitz. The war of the whorls: ge-
netic interactions controlling flower development. Nature,
(353):31–37, 1991.

M.K. DeyHoles and L.E. Sieburth. Seperable whorl-specific
expression and negetive regulation by enhancer elements
within the agamous second intron. Plant Cell, (12):1799–
1810, 2000.

C. Espinosa-Soto, P. Padilla-Longoria, and E.R. Alvarez-
Buylla. A gene regulatory network model for cell fate de-
termination during arabidopsis thalina flower development
that is robust and recovers experimental gene expression
profiles. Plant Cell, (16):2923–2939, 2004.

A. Garg, I. Xenarios, L. Mendoza, and G.. DeMicheli. Ef-
ficient methods for dynamic analysis of genetic networks
and in silico gene perturbation experiments. Lecture Notes
in Bioinformatics, (4453):62–76, 2007.

G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian
analysis of large finite state machines. IEEE Transactions
on Computer-Aided Design, 15:1479–1493, 1996.

Z. Liu and E.M. Meyerowitz. LEUNIG regulates agamous
expression in arabidopsis flowers. Development, (121):
975–991, 1995.

L. Mendoza. A network model for the control of the
differentiation process in th cells. BioSystems, (84):101–
114, 2006.

L. Mendoza and E.R. Alvarez-Buylla. Dynamics of the
genetic regulatory network for arabidopsis thalina flower
morphogenesis. J. theor. Biol., (193):307–319, 1998.

L. Mendoza and I. Xenarios. A method for the generation of
standardized qualitative dynamical systems of regulatory
networks. Theoretical Biology and Medical Modelling, 3,
2006.

L. Mendoza, D. Thieffry, and E.R. Alvarez-Buylla. Genetic
control of flower morphogenesis in arabidopsis thaliana: a
logical analysis. Bioinformatics, 15:593–606., 1999.

L. Sánchez and D. Thieffry. Segmenting the fly embryo: a
logical analysis of the pair-rule cross-regulatory module.
J. Theor. Biol., 224:517–537, 2003.

R. Thomas. Regulatory networks seen as asynchronous
automata: a logical description. J. Theor. Biol., 153:1–23,
1991.

Aiguo Xie and Peter A. Beerel. Efficient state classification
of finite state markov chains. In Design Automation
Conference, pages 605–610, 1998.

1403

TABLE II

STEADY STATES OBSERVED IN WILD TYPE AND MUTATED TH GENE NETWORK

Mutation Gene Name

IFN-γ IRAK IL4 STAT1 GATA3 IFN-γR SOCS1 IL4R IL12R STAT6 IL18R STAT4 T-bet

h l l m l m h l l l l l h

l l h l h l l h l h l l l

Wild Type l l l l l l l l l l l l l

m l l m l m h l l l l l m

l l l l l l h l l l l l h

l l l l l l l l l l l l l

IFN-γ− l l l l l l h l l l l l m

l l h l h l l h l h l l l

h l l l l l h l l l l l h

m l l l l l h l l l l l m

IFN-γR− l l l l l l l l l l l l l

l l h l h l l h l h l l l

TABLE III

STEADY STATES OBSERVED IN WILD TYPE AND MUTATED ARABIDOPSIS GENE NETWORK

Mutation Gene Name Cell Type
FT EMF1 LFY TFL1 AP1 FUL AP2 SEP AG PI AP3 WUS LUG CLF UFO

0 1 0 2 0 0 0 0 0 0 0 1 1 1 1 Infl3

1 0 2 0 0 2 1 1 2 2 2 0 1 1 1 St1

1 0 2 0 0 2 1 1 2 1 0 0 1 1 0 Car

1 0 2 0 2 0 1 1 0 2 2 0 1 1 1 Pe1

Wild Type 0 1 0 2 0 0 0 0 0 0 0 1 1 1 0 Infl4

0 1 0 2 0 0 0 0 0 0 0 0 1 1 1 Infl2

1 0 2 0 2 0 1 1 0 0 0 0 1 1 0 Sep

1 0 2 0 0 2 1 1 2 2 2 0 1 1 0 Pe2

1 0 2 0 2 0 1 1 0 2 2 0 1 1 0 St2

0 1 0 2 0 0 0 0 0 0 0 0 1 1 0 Infl1

0 1 0 2 0 0 0 0 0 0 0 1 1 1 0 Infl4

1 0 2 0 2 0 1 1 0 0 0 0 1 1 0 Sep

1 0 2 0 0 2 1 1 2 1 0 0 1 1 0 Car

AP3− 1 0 2 0 2 0 1 1 0 0 0 0 1 1 1 Sep

1 0 2 0 0 2 1 1 2 1 0 0 1 1 1 Car

0 1 0 2 0 0 0 0 0 0 0 1 1 1 1 Infl3

0 1 0 2 0 0 0 0 0 0 0 0 1 1 0 Infl1

0 1 0 2 0 0 0 0 0 0 0 0 1 1 1 Infl2

0 1 0 2 0 0 0 0 0 0 0 0 1 1 1 Infl2

1 0 2 0 0 2 0 1 2 2 2 0 1 1 1 St1

0 1 0 2 0 0 0 0 0 0 0 1 1 1 1 Infl3

AP2− 1 0 2 0 0 2 0 1 2 1 0 0 1 1 0 Car

0 1 0 2 0 0 0 0 0 0 0 1 1 1 0 Infl4

1 0 2 0 0 2 0 1 2 2 2 0 1 1 0 St2

0 1 0 2 0 0 0 0 0 0 0 0 1 1 0 Infl1

1404

