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ABSTRACT
To provide a scalable communication infrastructure for Sys-
tems on Chips (SoCs), Networks on Chips (NoCs), a communi-
cation centric design paradigm is needed. To be cost effective,
SoCs are often programmable and integrate several different
applications or use-cases on to the same chip. For the SoC
platform to support the different use-cases, the NoC architec-
ture should satisfy the performance constraints of each indi-
vidual use-case. In this work we motivate the need to consider
multiple use-cases during the NoC design process. We present
a method to efficiently map the applications on to the NoC ar-
chitecture, satisfying the design constraints of each individual
use-case. We also present novel ways to dynamically recon-
figure the network across the different use-cases and explore
the possibility of integrating Dynamic Voltage and Frequency
Scaling (DVS/DFS) techniques with the use-case centric NoC
design methodology. We validate the performance of the de-
sign methodology on several SoC applications. The dynamic
reconfiguration of the NoC integrated with DVS/DFS schemes
results in large power savings for the resulting NoC systems.
Keywords: Systems on Chips, Networks on chips, Use-
Cases, Multiple application platforms, Dynamic, Reconfig-
uration, Voltage Scaling, Frequency Scaling, Guaranteed
Throughput, Best Effort.

I. INTRODUCTION
As the number of transistors on a chip increases with ev-
ery technological generation, the number of processor, mem-
ory and hardware cores available on the chip also increases.
Thus, functionalities that were carried out by several different
chips are being integrated on to a single chip, forming a Sys-
tems on Chip (SoC). This, coupled together with the increase
in the operating speed of the transistors has created the avail-
ability of large computational power for such systems. The
challenges facing the SoC designer are to efficiently tap the
available computational power under tight power budgets and
meet the tight time-to-market constraints.
As the computational loads on the SoC increases, so does
the load on the communication architecture. To support
the high communication needs of multi-application SoC plat-
forms, scalable on-chip interconnection networks are needed.
A communication centric design paradigm,Networks on Chips
(NoCs), has been presented to address the interconnect issues
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Fig. 1. A fragment of communication for two different use-cases of a set-top
box SoC

of SoCs [2]-[6]. NoCs provide a scalable communication in-
frastructure with structured and modular wiring between the
components. NoCs also help meet the tight time-to-market
constraints, as the scalable architecture can be re-used across
multiple platforms.
To be cost effective, SoCs are often programmable and inte-
grate several different applications or use-cases on to the same
chip. As an example, a SoC for a set-top box has multiple
resolution video processing capabilities (like high definition,
standard definition), multiple picture modes (like split-screen,
picture-in-picture), video recording features, high speed inter-
net access and file transfer services, etc. [9]. Such convergence
of multiple use-cases on to the same device is being observed
in other electronic devices as well, such as the cell-phone or
the personal digital assistant.
The different use-cases run on the SoC, although share many
of the hardware components, could have very different perfor-
mance requirements and design constraints for the communi-
cation architecture. As an example, we consider a simplified
version of a SoC used in television set-top boxes [9], with sup-
port for four different use-cases. The communication band-
width requirements for some of the connections between the
components of the SoC for two of the use-cases are shown in
Figure 1. Although we want the NoC to support all the use-
cases, a NoC that is designed to run exactly one use-case does
not necessarily meet the design constraints of the other user
cases. In many of the existing NoC design methods, the NoC



is designed and optimized for a single use-case or for a single
application-trace of the design [10]-[15]. Such a trace based
approach captures the characteristics and constraints of a sin-
gle use-case very well, but fails to capture the multiple use-
case scenario. Such a method averages out the communication
effects across all the use-cases, which may result in a design
that is unacceptable for many use-cases. As an example, when
such a method is applied to perform NoC mapping for the set-
top box SoC, the resulting NoC violates the design constraints
of all the four use-cases.
Today’s high-end SoCs support several hundred use-cases
and manually checking whether the design constraints of the
individual use-cases are satisfied by the NoC is a tedious pro-
cess. Moreover, if the NoC design for the use-cases is carried
out individually, it is difficult to converge to a single NoC de-
sign that satisfies the design constraints of all the use cases.
In this work we motivate the need to consider the design con-
straints of the individual use-cases during the NoC design pro-
cess. We present a design method for mapping of cores on
to the NoC, considering the NoC configuration (i.e. path se-
lection and resource reservation in the NoC) as sub-problems
during the mapping phase, such that the resulting design satis-
fies the constraints of all the use-cases of the SoC. We then
present methods to decrease the required network resources
by dynamically reconfiguring the network across different use-
cases. We also explore the effect of DVS/DFS techniques for
reducing the power consumption of the network across the dif-
ferent use-cases. The methods are validated by performing ex-
periments on several SoC designs.

II. PREVIOUS WORK
Several researchers have proposed different architectures
and design methodologies for the switches, links and Net-
work Interfaces (NI), which are the major components of a
NoC [18, 7, 20, 8]. Design flows that automate many of the
steps of the design process have been presented in [17, 19]. In
[8], theÆthereal architecture that supports Quality-of-Service
(QoS) for applications by using Guaranteed Throughput (GT)
connections for traffic streams that has bandwidth/latency con-
straints and by using Best Effort (BE) connections for the re-
maining traffic streams is presented.
The topology selection process and mapping of applica-
tions on to NoC architectures have been explored by many re-
searchers. In [10, 11], branch-and-bound algorithms to map
cores on to a mesh NoC topology for different routing func-
tions are presented. In [12, 13], design methods and tools for
mapping applications on to regular NoC topologies and au-
tomating the topology selection process has been presented. In
[16], the methods are extended to consider the QoS constraints
during the mapping phase. Building application specific buses
and NoC topologies has been presented in [21, 14]. In [15],
a tool that automates the combined mapping and NoC config-
uration steps for the Æthereal is presented. In all these NoC
design works, the design methods assume a single set of com-
munication constraints, which is obtained either for a single
application or is obtained from a single trace for multiple ap-
plications.
In the RAW chip-multiprocessor, the interconnection net-
work connectivity is reconfigured with the assistance of the
compiler [23]. In the FLEXBUS architecture [22], the au-
thors present methods to dynamically remove the overhead
of bridges in multi-bus communication and provide methods
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Fig. 3. Example input file with design constraints for an MPEG application

where a core can be connected to different buses dynamically.

III. THE USE-CASE CENTRIC DESIGN FLOW
In this section we present the NoC design flow with the sup-
port for multiple use-cases integrated in to the flow (Figure
2). The NoC design flow and the mapping algorithms for the
NoC for a single use-case were presented in [15, 17]. In this
work, we extend the tool chain to support the multiple use-case
scenario that is commonly encountered in SoCs. The commu-
nication design constraints for the different use-cases of the
SoC are input to the design flow in the excel and xml file for-
mats. The communication design constraints for each use-case
includes the required bandwidth for various connections be-
tween the cores in the use-case, the maximum latency allowed
for the connection, the QoS level required for the connection
(like GT or BE), etc. An example fragment of the input file is
presented in Figure 3.
With the different use-cases as input, in the first two phases
of the design flow, the topology exploration andmapping of the
use-cases on to the NoC are performed. The NoC configuration
phase in which path selection and TDMA slot-table allocation
(required for the GT traffic) are performed, is integrated with
the mapping phase. The RTL level VHDL and SystemC mod-
els for the resulting NoC configuration are then automatically
generated, which can then be simulated. The performance of



the NoC can also be verified in parallel by the automatic per-
formance verifier, which analytically checks whether the de-
sign constraints are met. The extension of the tool chain to
support multiple use-cases is performed in a modular fashion
without affecting most of the existing flow. As the multi-use-
case NoC design methods are integrated with the tool chain,
performance validations of the methods can be easily carried
out to analyze the efficiency of the design methods.

IV. THE MAPPING ALGORITHM
In this section, we first present the mapping algorithm for a
single use-case and then present methods to extend the algo-
rithm for multiple use-cases.

A. Mapping Algorithm for single use-case
The mapping algorithm for a single use-case is presented
in detail in [15]. In this sub-section, we only present a brief
version of the algorithm highlighting the major phases. As
in general, graph mapping is a NP-Hard problem [10, 13], a
heuristic algorithm is used to perform the mapping. The se-
lection of paths for the different traffic flows and the reserva-
tion of TDMA slot-table entries for the GT traffic flows are
unified with the mapping process. The mapping algorithm is
presented in Algorithm 1. At the outermost level of the al-
gorithm, a NoC topology is generated. In the outer loop, the
size of the topology is increased until a feasible mapping is
obtained in the subsequent phases. Initially, all the cores of
the SoC are unmapped. In the first step of the mapping algo-
rithm, the traffic flows between the communicating cores are
sorted in a non-increasing order. Then for each flow in the or-
der, the source and destination cores of the flow, if they are not
already mapped, are mapped on to the NoC. When performing
the mapping of these cores, the path with the least cost that sat-
isfies the bandwidth and latency constraints for the flow is cho-
sen and the cores are mapped to the NIs in the path. A path is
assumed to originate from a NI, traverse one or more switches
and terminate in a NI. The cost of the path is a combinedmetric
that considers an affine combination of the latency and band-
width requirements for the flow. The slot-table reservation for
the flow is also carried out in this step. The procedure is re-
peated for all the flows in the SoC. The approach also takes in
to account the possibility of multiple cores sharing a single NI
for communication. Note that once the initial mapping step is
performed, the solution space can be explored by considering
swapping of vertices using simulated annealing or tabu search,
as performed in [16].

Algorithm 1Mapping Algorithm for a single use-case
OUTERLOOP: Generate a NoC topology.
1. Sort the traffic flows between the cores in a non-
increasing order of the bandwidth requirements.
2. For each flow in order:
a. Choose a least-cost path for the flow that satisfies the

bandwidth, latency constraints.
b. If the source or destination cores of the flow are not yet
mapped, map them on to the NIs in the path.
c. Reserve the required bandwidth across the ports and

reserve the slot-table entries for the flow.
If the resulting mapping violates design constraints, increase
the size/resources of the topology and go to OUTERLOOP.

We refer the interested reader to [15] for the time complexity
of the algorithm, details of path selection, other optimizations
carried out and for the performance evaluation of the algorithm
for several SoC designs.

B. Mapping Design Approach for Multiple Use-cases
When the SoC has multiple use-cases, we assume that all
of the use-cases utilize the same mapping of cores on to the
NoC components. This is because, if each individual use-case
has a different mapping, then each core potentially needs to be
connected to several different NIs, which may not be feasible
because of physical layout restrictions and wiring complexity.
A direct extension of the single use-case mapping algorithm
to support multiple use-cases would be to perform the mapping
for the most communication intensive use-case and reuse the
mapping for the other use-cases. However, as the design con-
straints of the use-cases can be very different, such a method
may result in a mapping that does not satisfy the performance
constraints of many of the use-cases. As an example, when
such an approach is applied to the SoC considered in section I,
the resulting NoC design satisfies only 2 of the 4 use-cases.
We use the following design method to extend the mapping
design procedure for multiple use-cases (Figure 4(a)). In order
to obtain a mapping that satisfies all the use-cases, we con-
struct a synthetic Worst-Case (WC) use-case from the given
set of input use-cases. For the communication flow between
every pair of cores, the maximum required bandwidth values
and the minimum required latency values for the flow across
all the use-cases are selected and used in the WC use-case. A
small example is presented in Figure 4(b). Thus the design
constraints of all the individual use-cases are subsumed in the
WC use-case and any NoC design that satisfies the constraints
in the WC use-case will satisfy the constraints of each individ-
ual use-case. The WC use-case is then used for the mapping
process. Due to the manner in which the WC use-case is con-
structed, the selected paths and slot-table allocations from the
mapping process will satisfy the design constraints of each in-
dividual use-case.
Once the mapping is obtained from the WC use-case, we
perform an optimization step, where we fix the mapping that
is obtained from the WC use-case, but re-run the path selec-
tion and slot-table reservation phases individually for each use-
case. We perform this for two reasons. First, the WC use-case
had the worst case constraints from each use-case and by re-
running the path selection and slot-table reservation steps and
choosing the maximum values from the individual use-cases
we can reduce the NoC resources, while still satisfying the con-
straints of all the use-cases (experimental evidence presented
in Section VI A). Second, when the configuration time between
the use-cases is large, the frequency and voltage of operation
of the NoC can be scaled to match each individual use-case,
which can result in significant power savings for the system.
In general, when the paths and slot-tables used by the differ-
ent use-cases are different, we need mechanisms to store them
in memory and load them on to the network dynamically or
compute them on the fly for the use-case. This is explored in
the next section.

V. DYNAMIC RECONFIGURATION OF THE NOC
For most SoC designs, when the system switches between
use-cases, some configuration time is needed for loading the
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new use-case. This is mostly attributed for loading the use-case
data and code, sending control signals to different parts of the
design and for gracefully shutting down the already running
use-case. In many designs, this use-case switching time is of
the order of few milli-seconds. This configuration time can
be utilized by the NoC for switching to a different path and
slot-table allocation for the mapping. This time delay can also
be utilized to vary the clock frequency/voltage of the NoC to
match the use-case performance level.
In theÆthereal architecture [8], a static path routing scheme
is used, where the paths are selected at the source NI of the
traffic flow. Thus, the NIs maintain the path and slot-tables for
the various connections. When the paths and slot-tables used
by the NIs vary across different use-cases, the tables need to be
stored in memory. As the on-chip memory available is mostly
limited and as the use-case switching time is large, we use the
off-chip memory to store the paths for the different use-cases.
We investigated the overhead for the reconfiguration mech-
anism for the set-top box SoC. The amount of data required
to store the path and slot-table information for each use-case
is around 560 Bytes. With 4 use-cases, the memory require-
ment for the reconfiguration mechanism is 2.24 KB. The time
required to load the data from the memory and spread it around
the NoC for an use-case is of the order of micro-seconds and
the energy dissipation is of the order of micro-Joules. Us-
ing traditional mechanisms to scale the frequency and voltage
of the system may require few milliseconds for configuration.
Thus we can envision three different ways of NoC operation.
First, when the use-cases that run on the SoC switch very fre-
quently or when the initial configuration times are not accept-
able (as in real-time use-cases), the different use-cases can use
the WC use-case configuration. In this configuration, all the
use-cases will use the same set of paths and slot-table alloca-
tions, thereby not requiring the NoC to be re-configured when
the use-cases switch, resulting in seamless switching between

the use-cases. However, this leads to an over-design of the
network when compared to the scenario where the NoC is re-
configured to suit the individual use-cases. Second, when the
use-case switching is not that frequent, the NoC configuration
(path and slot-tables) can be changed dynamically across use-
cases, leading to a smaller NoC design (in terms of network
components or frequency of operation). Third, when the use-
cases are expected to run for a long time, the voltage or fre-
quency of operation of the NoC can be varied to match the
use-cases, resulting in large power savings for the system. The
simulation results for these cases are presented in the next sec-
tion.

VI. SIMULATION RESULTS
We present simulation results on applying the multi-use-
case design procedure on to 4 different SoC designs: P1 (with
2 use-cases), P2 (2 use-cases), P3 (4 use-cases) and P4 (8 use-
cases). The designs P1-P3 are simplified versions of set-top
box SoCs [9] and the design P4 is a video processing SoC used
in TVs. Each use-case has a large number of (50 to 150) com-
municating pairs of components. A fragment of two of the
use-cases used in the P3 design was presented earlier in Figure
1. The set-top box SoCs and the TV processor have different
functionalities and communication patterns. The designs P1-
P3 use an external memory for storing and retrieving data and
the amount of data communicated to the memory is very large
when compared to the rest of the design. The P4 design uses a
streaming architecture with local memories on the chip, there
by distributing the communication load across several compo-
nents. We apply our design method to these SoCs with differ-
ent architectures to validate the generality of the methods.

A. Effect of Mapping on the NoC Frequency
To evaluate the mapped designs, we fixed the topology and
the maximum slot-table size for each design and we found the
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Fig. 6. (a)-(b) The effect of the mapping design procedure on the slot-table size and NoC area, (c)-(d) NoC frequency requirements for individual mapping of
use-cases in designs P3 and P4.

minimum frequency of operation required by the NoC to sup-
port the different use-cases. The results of the mapping proce-
dure for the 4 SoC designs are presented in Figure 5.
The frequency of operation required for the WC use-case is
obtained from applying the NoC configuration (i.e. the path
selection and the slot-table reservation) procedure on the WC
use-case. The frequency of operation of the NoC after re-
applying the configuration procedure for each of the use-cases,
fixing the mapping from the WC use-case is also presented in
the figures. When DVS/DFS techniques are not used and a
single frequency of operation is used for all the use-cases, we
need to take the maximum of the frequencies of each of the in-
dividual use-cases as the operating frequency of each design.
In this case, re-applying the NoC configuration step results in
9% to 38% reduction in the required NoC operating frequency
across the different designs. A lower operating frequency im-
plies lower power consumption and smaller impact of noise
sources.
In the above analysis, we assumed that the slot-table size is
fixed and the NoC frequency is varied to support the use-cases.
We also explored the effect of fixing the NoC frequency (at
500 MHz) and varying the slot-table size. As similar results
were observed for all the designs, we only present the results

for the P3 design (Figure 6(a)). We obtain 58% reduction in the
slot-table size for the design by re-applying the NoC configu-
ration step. A smaller slot-table size usually corresponds to a
lower area for the NoC and lower packet latencies (as the traf-
fic streams wait lesser to get the slots). The NoC area reduction
due to the slot-table reduction (Figure 6(b)) is 10% for this de-
sign (the NoC area includes the area of the switches and the
network interfaces). Trade-offs involving the frequency sav-
ings and area savings can also be explored.

B. Comparisons with the individual use-case mappings
To evaluate the optimality of the NoC design produced by
the above method, we performed individual mappings for each
of the use-cases in the P3 and P4 designs. The required NoC
frequencies for the use-cases in the resulting designs are pre-
sented in Figures 6(c) and 6(d). These frequency values are the
minimum possible values for the use-cases, as we have done
the mappings individually and they provide a lower bound on
the quality of solutions that can be obtained when all the use-
cases share the same mapping1. When the results from Figures
6(c) and 6(d) are compared with the results from Figures 5(c)
1Note that the heuristic nature of the mapping algorithm can sometimes

invalidate this general statement.
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Fig. 7. Effects of DVS/DFS.

and 5(d), we find that the multi-use-case mapping design pro-
cedure results in mappings that require operating frequencies
that are with in 10% of the minimum possible operating fre-
quencies. We also performed experiments fixing the frequency
of operation for the multi-use-case mappings to be the same
as the individually mapped designs and varied the network
resources needed to support all the use-cases in the designs.
The multi-use-case mappings required slightly more resources
(1%-10% increase in the NoC area) to support the same fre-
quency of operation as the individual mappings.

C. Effect of DVS/DFS
When the frequency of the NoC is scaled to match the fre-
quencies required for the individual use-cases, large power
savings can be achieved. As the frequency of the network is
scaled, the supply voltage required for operation can also be
scaled to match the frequency. We use a conservative model
for voltage scaling, where we assume that the square of the
voltage scales linearly with the frequency [24]. The power sav-
ings achieved by the DVS/DFS techniques for the entire SoC
platform depends on the amount of time each use-case is ex-
pected to run. Thus, in this experiment, we present the power
savings achieved for each use-case of the platform separately.
The power consumption of each of the use-cases, normalized
with respect to the power consumption of the WC use-case is
presented in Figure 7. On average, we obtain 59.21% power
savings by using the DVS/DFS techniques across the different
use-cases for the designs.

VII. CONCLUSIONS
As the number of applications or use-cases integrated on to a
single SoC increases, the designer is faced with the challenge
of building an interconnect structure that supports the design
constraints of all the use-cases. In this paper we motivated the
importance of the problem and presented use-case centric de-
sign methods to map applications on to NoC architectures. We
also presented a way to dynamically configure the interconnect
to support multiple use-cases and integrated Dynamic Voltage
and Frequency (DVS/DFS) techniques with the reconfigura-
tion mechanism. In future, we plan to extend the algorithms
for supporting concurrent operation of use-cases and apply the
use-case models for addressing other NoC design issues such
as the application specific topology design.
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