
29
Copyright © Stanford University, Università di Bologna, STMicroelectronics 2001

ARTICLE 2

ST Journal of System Research
vol 3, number 1 April 2002

Low Power System Design

Value-based Source
Code Specialization
for Energy Reduction

Eui-Young Chung(1) - Giovanni De Micheli(1)

Marco Carilli(3)

Luca Benini(2) - lbenini@deis.unibo.it
Gabriele Luculli(3) - gabriele.lucilli@st.com

(1): CSL, Stanford University
(2): DEIS, Università di Bologna
(3): AST, STMicroelectronics

The objective of this research is to create a framework for energy optimization of software programs. In particular, this
paper presents algorithms and a tool flow to reduce the computational effort of programs, using value profiling and partial
evaluation. Such a reduction translates into both energy savings and performance improvement. Namely, our tool reduces
computational effort by specializing a program for highly expected situations.Procedure calls which are frequently executed
with same parameter values are defined as highly expected situations (common cases).
The choice of the best transformation of common cases is achieved by solving three search problems.The first is to identify
common cases to be specialized, the second is to search for an optimal solution for effective common case, and the third is
to examine the interplay among the specialized cases. Experimental results show that our technique improves both energy
consumption and performance of the source code up to more than twice and in average about 35% over the original
program in Lx processor environment. Also, our automatic search pruning techniques reduce the searching time by 80%
compared to exhaustive approach.

1 INTRODUCTION
With the widespread diffusion of processor-based embedded

systems, software design becomes one of the key factors to

determine overall system quality. For this reason, software

design for embedded systems requires aggressive

optimizations to increase the code quality at the cost of

increased development effort.Whereas in the past code quality

was traditionally measured in terms of code size, average

energy and performance of software code has become an

important (if not the most important) design metric [1, 2, 3, 4].

Most previous research on optimizing software compilation

relates to the assembly and/or binary code generation steps.

Indeed, this is the most appropriate level to perform

energy/performance analysis while considering the

underlying hardware. Numerous techniques, targeting

performance and code size, have been proposed, such as

instruction scheduling, code selection, register allocation and

address assignment [25, 21, 22]. The optimizations proposed

in [5, 7, 8] are instruction scheduling techniques especially for

power reduction by minimizing switching activities.

On the other hand, it has been shown that high-level,

architecture-independent, code transformations affect heavily

both performance and energy consumption [6]. Classical

transformation techniques for performance improvement

include loop un-rolling, loop interchange, procedure in-lining

and so on [23, 30].

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

Some approaches for energy reduction also adopt

sophisticated high-level optimization techniques.Their impact

on energy consumption is assessed by instruction-level

simulation to consider the underlying hardware architecture

[9, 10, 11]. Also, numerous source-level transformation

techniques are introduced in [12], with the objective of

reducing the power consumed by memories in data-

dominated applications.

From the approaches mentioned above, two observations

can be drawn. First, the proposed high-level program

transformations tend to impact both energy and

performance in a similar fashion, and it appears that there is

a tight relationship between these two cost metrics. In other

words, transformations effective in reducing energy

consumption improve performance as well, even though the

improvement ratios are different in general.

Second, many high-level transformation techniques largely

benefit from program profiling [18]. The basic idea of

profiling-based approaches is to identify promising code

fragments and optimize them. Additionally, profiling can

provide useful information on the particular flavor of high-

level transformation which is likely to have the largest

impact on code quality. Profiling-based optimization is

advantageous especially for embedded systems on which

only a few programs (often only one program) are running,

thus the time required for profiling is relatively small

compared to general purpose systems, and profiling

precision is higher.

Based on these two facts, we propose an automated source

code transformation framework aiming at reducing the

computational effort (i.e., the average number of executed

instructions) which is a common factor for both

performance and energy consumption, using value profiling

[17] and partial evaluation [14]. Namely, our tool reduces

computational effort by specializing a program for highly

expected situations. Procedure calls which are frequently

executed with same parameter values are defined as highly

expected situations (common cases).

Other approaches have also been proposed to reduce

computational effort by specializing the common cases.

Procedure cloning [13] was proposed to specialize procedure

calls which have constant parameters. In [13], instead of

common case, only constant case was considered and the

optimization strategy for each case was not described. On

the other hand, in [20], common-case specialization was

proposed for hardware synthesis. Also, in [29], redundant

computation (an operation performs the same computation

for the same operand) was defined and result cache was

proposed to avoid redundant computations by reusing the

result from the result cache.

This paper presents algorithms for the automated optimization

of software programs to reduce the computational effort,

which is a common factor for both energy and performance, by

performing code specialization for the highly expected

situations. The proposed framework provides not only a

formal way to identify the highly expected situations

(common cases) from a large set of candidates, but also a

heuristic strategy to reduce the search time for the optimal

code specialization.The overall objective of this research is to

create a framework for the automated optimization of

software. Thus, the techniques presented here fit within a

specific optimization flow (See Figure 2). This research is

complementary, and not alternative, to other techniques for

software optimization, such as loop optimization, which can

be easily incorporated in our framework.

The major research contributions of our optimization

framework are four.

• For a given program, our tool automatically instruments

the program for both execution frequency and value

profiling which provides the basic information necessary

to identify the common cases and provides to estimate

the computational effort for each code fragment.

• For a given program, our tool automatically identifies the

promising candidate code fragments for which the

available set of code optimizations are likely to produce

non-marginal improvements.

30ARTICLE 2

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

• Our framework automatically explores the search space

(promising candidates) with a two-phase procedure. In

the first phase, architecture independent optimization is

performed for each promising candidates and in the

second phase, its impact on the code quality (in terms of

energy or performance) is quantitatively assessed by a

retargetable architecture-sensitive measurement, i.e.

instruction-level simulation.

• Search space pruning strategies are dynamically applied

during search space exploration to direct the

optimization strategy and reduce search time.

In Section 2, we will demonstrate the basic idea and overall

flow of the proposed technique for program specialization

based on partial evaluation and value profiling. Also, search

spaces to be explored are defined. In Section 3, we will

present the profiling method and the computational-effort

estimation technique. In Section 4, common-case selection

technique for specialization based on computational-effort

estimation will be described. In Section 5, specialization for

each common case will be presented and the globally optimal

case selection from multiple specialized cases will be

discussed in Section 5. Finally, we will show the experimental

result in Section 7 and conclude our work in Section 8.

2 BASIC IDEA AND OVERALL FLOW
2.1 Basic idea and problem description

The technique described in the following sections aims at

reducing the computational effort of a given program by

specializing it for situations that are commonly encountered

during its execution.The ultimate goal of this technique is to

improve energy consumption as well as performance by

reducing computational effort. The specialized program

requires substantially reduced computational effort in the

common case, but it still behaves correctly. The “common

situations” that trigger program specialization are detected

by tracking the values passed to the parameters of

procedures.The example in Figure 1 illustrates the basic idea.

Consider the first call of procedure fo o in procedure main .

Suppose the first parameter a is 0 for 90% of its calling

frequency.

Also, suppose the same condition holds for the last

parameter k .

31ARTICLE 2

Figure 1: Example of source code transformation using the proposed
technique

(a) Original program

(b) Specialized program for the first call of foo (a=0 and k = 0)

(c) specialized program for the first call of foo (a=0)

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

Using these common values, a partial evaluator can generate

the specialized procedure sp _fo o as shown in Figure 1 (b)

which reduces the computational effort drastically.

In reality, the values of parameters a and b are not always 0.

Therefore, the procedure call fo o cannot be completely

substituted by the new procedure sp _foo . Instead, we

replace it by a conditional statement which selects

appropriate procedure call depending on the result of

common value detection (CVD) procedure named cvd _foo

in Figure 1 (b). We call this transformation step source code

alternation. Also, the variable whose value is often constant

(e.g. a) is called constant like argument (CLA).

If we ignore the common value of k , the original code will be

specialized as shown in Figure 1 (c).The sp _fo o in Figure 1

(c) has one more multiplication than the sp _fo o in Figure 1

(b), but the situation that a= 0 will happen more frequently

than the situation that both a and k are 0. For this reason, it

is not clear which specialized code is more effective to reduce

the overall computational effort. This is the first search

problem in our approach.

Next, consider two procedure calls inside the loop of Figure

1 with the assumption that parameter e (the second

parameter of the third procedure call) has single common

value, 200. Each of two procedure calls has a CLA as their

second arguments, respectively.

Partial evaluation can be applied for each procedure call to

reduce computational effort. However, there is not much to

be done by partial evaluator except loop unrolling because all

other parameters are not CLAs.The effect of loop unrolling

can be either positive or negative depending on the system

configuration. For this reason, it is required to find the best

combination of loop unrolling for each call. In this example,

there are four possible combinations for each call, but the

number of combinations is exponentially proportional to the

number of loops. This is the second search problem of our

approach.

After each call is specialized with the best combination of

loop unrolling, it is also necessary to check the interplay

among the specialized calls, because both specialized calls will

increase code size and they may cause cache conflict due to

their alternative calling sequence.Thus, we need a method to

analyze the global effect of the specialized calls caused by

their interplay, which is the third problem of our approach.

This example clearly shows three search problems to be

addressed in this paper.

To summarize, we have three search problems to specialize a

program for the highly expected situations.

1. Common-case selection is to find the most effective

common-case among several common cases for each

procedure call.

2. Common-case specialization is to specialize a procedure

call for the given common case by controlling loop unrolling.

3. Global effective-case selection is to find the most

effective combination of specialized calls.

We will use the term “call site” and “procedure call” inter-

changeably unless there is an explicit explanation.

2.2 Overall code transformation flow

The automated code transformation flow is shown in Figure

2. As shown in Figure 2, a program instrumentation and

profiling is performed at the first step to collect the

information of the three search problems.Also, computation

32ARTICLE 2

Figure 2: Overall source code transformation flow

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

efforts of procedures and procedure calls are estimated in

this step. Based on the profiling information and estimated

computation efforts, each search problem is solved

sequentially. As shown in Figure 2, the first three steps are

architecture-independent, where as the last two steps use

instruction level simulation to consider the underlying

hardware architecture. Once the first three steps are

performed, then any specific architecture can be considered

in the last two steps.

We will briefly describe each step in this section and the

details will be described in the later sections.

• Instrumentation and profiling. Two types of profiling

are performed - execution frequency profiling and value

profiling. Using the information from execution frequency

profiling, the computational efforts of procedures and

procedure calls are estimated. On the other hand, value

profiling identifies CLAs and their common values by

observing the parameter value changes of procedure calls.

• Common-case selection. Based on profiling information,

all detected common cases are represented as a

hierarchical tree (Section 4).To reduce the search space,

normalized computational effort (NCE) is computed for

each object in the hierarchical tree. NCE represents the

relative importance of each object in terms of

computational effort. By defining a user-defined constraint

called computational threshold (CT), trivial common cases

are pruned.

• Common-case specialization. Each case not pruned in the

previous step is specialized. In our framework,

specialization is performed by CMIX [15] which is a

compile-time (off-line) partial evaluator. In addition to the

specialized procedure, the common value detection (CVD)

procedure is generated. Also, source code alternation is

performed so that the original procedure call is replaced

by a conditional statement as shown in Figure 1. For the

specialized code of each common case, instruction-level

simulation is performed to assess the quality of the

specialization and the cases which show improvement by

specialization are selected for the next step. The search

space of this problem is exponentially proportional to the

number of loops and the details of heuristic approaches for

the search space reduction will be described in Section 5.

• Global effective-case selection. This step analyzes the

interplay of the specialized calls chosen at the previous

step and decides the specialized calls to be included for

the final solution.The search space for this analysis is also

exponentially proportional to the number of the

specialized calls, thus a search space reduction technique

based on the branch and bound algorithm is proposed.

3 PROFILING
3.1 The structure of profiler

Many profiling techniques are based on assembler or binary

executable to extract more accurate architecture-dependent

information such as memory address tracing and execution

time estimation. Since they are designed for specific machine

architectures, they have limited flexibility [16].

In our case, it is sufficient to have only relatively accurate

information rather than accurate architecture-dependent

profiles, while keeping source-level information. In other

words, it is more important to identify which piece of code

requires the largest computational effort rather than to

know the exact amount of computational efforts required for

its execution.

We used the SUIF compiler infrastructure [31] for source

code instrumentation. The instrumentation is performed

based on the abstract syntax trees (High-SUIF) which well

represent the control flow of the given program in high level

abstraction. In detail, a program is represented as a graph

G ={ V,E} , where node set V is matched to the high level code

constructs such as for-loop , if-then-else , do-

whit e and denoted as vi∈ V,i ={ 0,1⋅⋅⋅Nv−1} , where, Nv is

the total number of nodes in a program G. Any edge eij ∈ E

connects two different nodes vi and vj and represents their

33ARTICLE 2

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

dependency in terms of either their execution order or

nested relation. Note that vi is hierarchical, thus each vi can

have its subgraph to represent the nested constructs.

For each vi which is a procedure, we insert as many counters

as its descendent nodes to record the visiting frequencies.

And for each descendent node, SUIF instructions for

incrementing the corresponding counter are inserted for

execution frequency profiling. Value profiling requires additional

manipulations such as type checking between formal

parameters and actual parameters of procedure calls,

recording the observed values and so on.

The proposed profiler has ATOM-like structure [32] in the

sense that user supplied library is used for instrumentation,

namely the source code is instrumented with simple

counters and procedure calls. The user supplied library

includes the procedures required for both execution frequency

and value profiling.At the final stage, the instrumented source

code and the user supplied library are linked to generate the

binary executable for profiling.

3.2 Computational-effort estimation

Computational kernel can be identified by execution

frequency profiling and computational-effort estimation.

Execution frequency profiling is a widely used technique to

obtain the visiting frequency of each node (vi in G). This

information only represents how frequently each node is

visited, but does not show the importance of each node in

terms of computational effort.

For this reason, we used a simple estimation technique of

computational efforts for each basic unit using the number of

instructions of each basic unit, where the instruction set used

is the builtin instructions defined in SUIF framework. Due to

the lack of specification of a target architecture, it is assumed

that all the instructions require same computational effort.

But we provide a way to distinguish the cost of each

instruction when the target architecture is determined using

an instruction cost table. Each SUIF instruction is defined

with its cost in the instruction cost table, thus the execution

time of each node vi of graph G can be calculated as follows.

34ARTICLE 2

cei fi i o cji ij
j

N

= ∗ ∑ ∗
=

−

0

1

()

Figure 3: An example
of abstract syntax tree
and instruction cost table

where, cei is the estimated computational effort of node vi, fi
is the execution frequency of node vi from execution

frequency profiling, ii is the average number of iterations for

each visit of node vi, oij is the number of instruction j

observed in node vi, cj is the cost of instruction j, and N is the

total number of instructions defined in SUIF. Note that the

basic unit of our approach includes loop and do-while

constructs. For this reason ii is considered in Equation 1. It is

also worthwhile to mention that the Equation 1 represents

the single level computational-effort estimation. As

mentioned in Section 3.1, the node vi is hierarchical.Thus, the

cumulative computational efforts for each node vi can be

estimated the sum of current level computational effort and

the effort of its descendent nodes.

An example of abstract syntax tree is shown in Figure 3 (a),

where a solid edge represents the dependency of two

nodes and a dotted edge represents their nested relation

and its corresponding instruction cost table is shown in

Figure 3 (b).A pair of numbers assigned to each node is (fi,ii)

which is obtained from the execution frequency profiling.

(1)

(a) An example of abstract
syntax tree

(b) Corresponding instructions cost table

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

Example: Consider node v2 in Figure 3 (a). f2 and i2 are 4

and 1 as shown in the graph.Also, from Figure 3 (b), v2 has

1 addition, 1 multiplication, and 2 load instructions. Among

them, only multiplication has cost twice higher than the

other two instruction. By substituting these values into

Equation 1,

ce2 = 4 x 1 x (1 x 1 + 1 x 2 + 2 x 1) = 20. Similarly, ce0 =

1, ce1= 8, and ce4 = 2.Therefore the computational effort of

procedure fo o is 31 by summing these values.

3.3 Value profiling

As mentioned in Section 2.1, value profiling is performed at

the procedure level. In other words, each procedure call is

profiled, because single procedure can be called in many

different places with different argument values. The reason

why we chose value profiling instead of value tracing is to

avoid huge disk space and disk accesses required for value

tracing.

One of the difficulties in value profiling occurs when the

argument size is dynamic. For example, any size of one-

dimensional integer array can be passed to an integer type

pointer argument whenever the corresponding procedure is

called. Another difficulty occurs when the argument has

complex data type because complex data type requires

hierarchical traversal for value profiling. For this reason,

currently value profiling in our work is restricted to

elementary type scalar and array variables. Note that this

restriction is not applied to the arguments defined at each

procedure, but to the variables passed as arguments for each

procedure call. When a procedure call has both types of

variables as arguments, only the variables which violate this

restriction are excluded from profiling. Pointers to procedures

are not considered in our approach due to its dynamic nature.

Figure 4 shows the internal data structure of value profiling

system. As shown in Figure 4, each procedure has a list of

procedure calls which are activated inside the procedure.

Each procedure call in the list has a list of arguments and

each argument in this list satisfies the type constraint

mentioned above and has its own fixed size value table to

record the values observed and their frequencies. Each row

in the value table consists of three fields - index field, value

field and count (C) field.

The index field represents not only the index of the row, but

also the chronological order of the row in terms of the

updated time relative to other rows. Thus, the larger the

index is, the more recently the corresponding row is

updated. In our representation, each row is denoted as

ri, i∈ { 0,1,⋅⋅⋅S,−1} , where S denotes the size of value table, i.e.

the number of the rows in the table.The value field is used

to store the observed value, and the ci field in ri counts the

number of observations of the corresponding value. The

table is continuously updated whenever the corresponding

procedure call is executed. At the end of profiling, each

argument of the value table is examined to find the values

which are frequently observed and only the argument-value

pairs which satisfy user defined constraint called OT

(Observed Threshold) are reported to the user. For this

purpose, ORi (Observed Ratio) is calculated for each ri in the

value table as follows.

ORi=ci / f (2)

where, f is the visiting frequency of this call site. The larger

ORi is, the more frequently the value is observed.When ORi

is smaller than OT, the value in ri is disregarded.

35ARTICLE 2

Figure 4: Internal data structure of value profiling

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

The key feature of value profiling is the value table

replacement policy [18]. As mentioned above, the size of

each value table is fixed to save memory space and table

update time. ci of each value table is initialized to 0.Thus if a

new value is observed and at least one of ci is 0, the new

value is recorded in ri which has the smallest index among

these rows. On the other hand, when the table is full (there

is no ci which is 0), the following formula is used to select the

row which is to be replaced.

rfi = W * i + (1−W) * ci (3)

where, rfi, i ∈ { 0,1⋅⋅⋅S −1} is replacement factor which is the

metric to decide which row is to be replaced.The smaller rfi
is, the more likely ri will be selected for replacement. The

weighting factor W is used to specify the importance of the

chronological order relative to observed count ci. The

selected ri which has the smallest rfi is deleted from the table

and ri → rj −1, j ∈ { i +1⋅⋅⋅S −1} if j < S−1.

Finally, the new value is stored to a new row rs−1.

4 COMMON-CASE SELECTION
As shown in the example of Section 2.1, every procedure call

which has CLAs can be specialized. Some procedure calls can

be effectively specialized, while others may not show

significant improvement.Also, some CLAs are not useful for

specialization. Thus, it is necessary to search all procedure

calls which can be effectively specialized by using their

common values.

Due to the large search space, we represent all possible

common cases as a hierarchical tree based on profiling

information and prune out the cases which are expected to

show only marginal improvement even after specialization.

4.1 Common case representation

Figure 5 shows the hierarchical tree for the example shown

in Figure 1 based on the profiling information. For the sake

of the simplicity, we ignore the parameter f k which is the

fourth parameter of procedure foo .

36ARTICLE 2

Figure 5: Hierarchical tree representation of common cases

Table 1: Notations for a hierarchical tree

level set element
procedure P pi
call site Ci cij
CLA Aij ai jk
value Vi jk vi jkl
case B bijm = < cv0, cv1,⋅⋅⋅, cvk,⋅⋅⋅, cvAij,-1>

We assume that variable b (the first parameter of the third

call) has two common values - 2 and 3.

In Figure 5, call-site level has two-level sub-hierarchies to

represent the CLAs and their common values. CLA level

represents the mapping relation between CLA parameter

and its corresponding formal parameter and value level is

used for common values of CLAs. In case level, common

values are related to each formal parameter by positional

mapping and “-” represents don’t care - the parameter value

in that position is not considered in this case.

There are seven possible cases, even though the number of

call sites are only three.There is nothing to be examined for

procedure mai n because it does not have any CLA.

We introduce some notations for convenience to indicate

each level and object in a hierarchical tree as shown in Table 1.

As shown in Table 1, procedure level is denoted as P which is

a set of procedures denoted as pi . Each procedure pi has a

set Ci which is a set of procedure calls denoted as cij. And the

same rule is applied to CLA level and value level. Each

common case of cij is denoted as bi jm which is a vector and

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

each element of bi jm (cvk) is one of the common values of cij

or don’t care, namely cvk = vi jkl , l ∈ { 0,1, ⋅⋅⋅ ,Vi jk −1} or “-”.

The overall size of the search space to find common cases

is calculated by summing the size of search space for each

call site. And the number of cases to be examined at each

call site is one less than the product of the number of

common values for all CLAs (the case that all CLAs are

ignored is not considered). Based on the notation in Table

1, the size of the overall search space is denoted as S is

shown in Equation 4.

4.2 Pruning trivial cases

Due to the large size of the common case set, it is necessary

to reduce the search space without missing promising

candidates.We define common cases which are the cases to

be included in the search space after search space reduction.

The search space reduction is performed based on

normalized computational effort (NCE). The computational

effort of each procedure is obtained from execution

frequency profiling and computational-effort estimation

technique described in Section 3. Based on this, NCE of

each common case can be estimated in a hierarchical order.

In other words, NCE of each procedure is estimated first

and then NCE of each call site is calculated and so forth.

NCE in a hierarchical tree represents the maximum degree

of improvement to be obtained by specializing all cases

belonging to the given node. For pruning purpose, a user

constraint called computational threshold (CT) is defined in

terms of NCE. We will assume CT = 0.1 for all examples

illustrated in this section.

Usually, maximizing the usage of common values is

considered to be better because more information is

provided to the optimizer. But in our case, maximizing the

usage of common values is not always advantageous (cases

for the third call).

Example: Consider two common cases <2,200,_> and <_,

200,_> for the third call of procedure foo . The profiling

information is shown in Table 2 which is a sample profiling

information used for all examples in this section. From Table

2, b = 2 with the probability of 0.1 and e = 200 with the

probability of` 1.0. Then, the probability that case <2,200,_>

will happen is 0.1, while that of case <_, 200,_> is 1.0.Thus,

the specialized code for case <2,200,_> is useful only when

it reduces the computational effort 10 times more than the

specialized code for case <_, 200,_>.

The cases like case <2,200,_> is pruned out before

progressing to the next step - common-case specialization for

the sake of the computation efficiency. Pruning is not limited

only to case level, but also performed at any other level based

on NCE.We will describe NCE computation and pruning at

each level in the next subsections.

4.2.1 Procedure level pruning

NCE of each procedure is obtained by normalizing its

computational effort to the total computational effort.Because

NCE of procedure mai n is lower than CT, it is eliminated

from the hierarchical tree.Also, the procedure which doesn’t

have any descendant is eliminated.The pruning at this level has

the largest impact on reducing the search space.

4.2.2 Call site level pruning

A similar pruning is performed in this level. The profiler

described in Section 3 can estimate the computational

37ARTICLE 2

Table 2: Profiling information for the hierarchical tree shown in Figure 2

p i c ij a i jk
i proc NCE j site freq. NCE k var value freq.
0 main 5% 0 - 1 5% - - - -

0 1st 100 8% 0 a 0 100
1 2nd 10000 29% 1 100 100 10000

1 foo 95% 54% 0 b 2 1000
2 3rd 10000 3 8000

1 e 200 10000

B
A

Vij

k

ij

ijk= + −
=

−

∏ ()
0

1

1 1

S B
k

P Ci

ij

j

=
=

− −

=
∑ ∑

0

1 1

0

(4)

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

effort of each procedure as well as each procedure call.

Thus, NCE of each procedure can be computed in the same

way as NCE of each procedure computed. In Table 2, the

first call of procedure fo o will be out because its NCE is

less than CT.

We also consider NCE for two sub-hierarchies in call-site

level. NCE of each CLA is calculated by weighting the NCE

of the corresponding procedure call (cij) by its observed ratio

(ORi) and can be represented as Equation 5. Also, NCE of

each common value (vi jkl) also can be computed similarly.

Example: Let us consider case b120 = <2,200,_> which is a

child of c12 (third call in main) and c12 is also a child of p1

(procedure foo). From the example in Section 4.2.2,

NCE(v1200) = 0.0486. Similarly, NCE(v1210) = 0.54 x 10000/

10000 = 0.54. From Equation 6, NCE(b120) = 0.0486 x 0.54 =

0.027, thus b120 is dropped from the search space. But this

pruning does not happen in practice because v1200 is already

pruned out at value level. Also, notice that case <_, 200,_>

which has less information than case <2, 200,_> (from the

view-point of a specializer in the next step) is still in the tree

due to its high NCE (0.54).

To reduce the search space further, we define dominated

cases that can be eliminated from the search space.We say

that bi jm is dominated by bi jt if all common values of bi jm

appear in bi jt and NCE (bi jt) is greater than or equal to

NCE (bi jm).

NCE (bi jm) ≤ NCE (bi jt)

∀ cvk in bi jm ∈ cvk in bi jt (7)

where, a ∈ b is defined as true when a = b or a = −. For

example, b121 is dominated by b124. A dominated case needs

not to be specialized because it has less information and is less

important in terms of NCE than dominant case.

To summarize, pruning is performed at each level, but higher

level pruning is more effective because its all descendants are

removed.Also, notice that pruning sacrifices the amount of the

information useful in the specialization step by increasing the

possibility that the common situation occurs more frequently

(e.g. case <2, 200,_> is pruned, but case <_, 200,_> is not).This

trade-off is controlled by pruning based on the metric - NCE.

5 COMMON-CASE SPECIALIZATION
5.1 Overview

After having pruned out trivial common cases (which show

marginal improvement, even when they are specialized), we

have only common cases (expected to show non-marginal

improvement by specialization) left in the hierarchical tree.

For each remaining case in the hierarchical tree, we perform

38ARTICLE 2

NCE b NCE cvijm k

k

Bij

() ()=
=

−

∏
0

1

(6)

NCE a NCE cijk ij OR

k

Aij

k() ()= ∗
=

−

∑
0

1

(5)

Example: Let us consider the third call of procedure foo ,

where a120 is variable as shown in Table 2. a120 has two

common values - 2 (V1200) and 3(V1201).Also, from Equation

2, OR(v1200) = 100/10000 = 0.1 and OR(v1201) = 8000/10000

= 0.8.Thus, NCE (a120) = 0.54 x (0.1+0.8) = 0.486 which is

larger than CT, thus, a120 is not pruned at CLA level. At value

level, NCE (v1200) = NCE (a120) x OR(v1200) = 0.486 x 0.1 =

0.0486 which is smaller than CT and v1200 is pruned out,

whereas v1201 is not eliminated because its NCE is larger CT.

4.2.3 Case Level Pruning

NCE of each case can be calculated using NCE of common

values.

But NCE at this level cannot be obtained in the same way

used in other levels because each case may depend on

multiple common values such as case <2,200,_>.Thus, NCE

of each case is obtained by multiplying NCE of common

values which are involved in forming the case and

represented as Equation 6.

Remember that cvk is vi jkl , l ∈ { 0,1, ⋅⋅⋅ , vi jk −1} or “-” and

NCE(-) is defined as 1.

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

the specialization using partial evaluation.The common values

of each case are used by partial evaluator for - i) simplifying

control flow (pre-computing if test or unrolling loops), ii)

constant folding and propagation, iii) pre-computing well-

known functions calls such as trigonometric functions and so

on. These optimizations are not performed independently.

Indeed, applying one optimization technique can provide a

better chance to other techniques to succeed. For example,

loop unrolling can provide better chance to constant

propagation/folding by simplifying control dependency and

enlarging basic blocks.

Due to such combined effects, it is not easy to estimate the

quality of the specialized code analytically. For this reason,

this step uses instruction-set level simulator for the purpose

of code quality assessment with the consideration of the

underlying hardware architecture. It differs from the

common-case selection step which performs architecture-

independent analysis.Thus, this step takes much longer time

than effective case selection step due to specialization and

instruction-set level simulation.

Among the techniques mentioned above, loop unrolling

should be used most carefully because its side effect (code

size increase) can severely degrade both performance and

energy consumption. But in traditional applications of

partial evaluation, this fact is not deeply studied, based on

the assumption that taking more space will reduce

computational effort [14].This assumption may be true for

general systems such as workstations, but may not be true

for the resource limited systems such as embedded

systems.Therefore, we need to address our second search

problem by exploring various loop combinations for

unrolling. The size of search space for each case

specialization is simply 2n, where n is the number of loops

inside procedure pi.

In case of exhaustive search, the specialization of each case

is iteratively performed for the overall search space and

each iteration requires instruction-set level simulation to

assess the specialized code quality. In our framework, loop

unrolling can be suppressed by declaring the corresponding

loop index variable as a residual variable. It means that the

residual variable will not be specialized, henceforth the

corresponding loop construct will not be affected by

specialization either. Because the search space is

exponentially proportional to the number of loops, two

heuristic approaches are proposed in this section.These two

approaches may provide lower quality of specialization over

the exponential approach, but reduce the search space (both

specializations and instruction-set level simulations)

drastically.

5.2 Semi-exhaustive approach

Unlike pure exhaustive search, semi-exhaustive approach

performs an exhaustive search for each loop nest rather than

for the entire set of loops. Thus, pure exhaustive search

guarantees a globally optimal solution, while semi-exhaustive

approach can provide a sub-optimal solution. This is the

trade-off between the searching time and the code quality.

The trade-off efficiency will be shown in the experimental

part (Section 7).

For this purpose,we represent the entire loop structure inside

a procedure as a loop graph and an example of loop graph is

shown in Figure 6. To construct such loop graph, we first

levelize the loop structure.The outermost loop is assigned to

level 0 and the next outermost loop is assigned to level 1 and

so on. Next we represent each loop as a node and place each

39ARTICLE 2

Figure 6: An example of loop graph

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

node to its assigned level. Finally, we represent the nested

relation between two nodes as an edge connecting these two

nodes. Notice that if a loop has multiple loop nests, the

connecting edges are identified as a branch which has as many

subgraphs as the number of loop nests. For example, the

edge between L0 and L4 and the edge between L0 and L1

forms a branch. Each node is represented as vi(k), where i is

the level to which the node belongs and k is the index of the

nodes that have the same parent. Thus, if a node is not

connected to a branch, k is always 0.

After constructing a loop graph, the best loop combination

for unrolling is searched for each subgraph in a bottom up

fashion (i.e. the branch in the lower level is visited first). For

a given branch, we visit the subgraphs in the order of their

computational efforts.

While searching the best solution of each subgraph, we

exclude the loop combinations which are expected to

increase the code size drastically, because such loop

combinations increase specialization, compilation, and

simulation time drastically. Furthermore, such combinations

provide very low quality of specialized code due to the high

instruction cache misses. To identify such undesirable cases,

we use a code size constraint and a code size estimation

technique.The code size constraint is set to the cache size of

the target architecture because the code size larger than the

cache size will increase the instruction cache miss drastically.

Also, the code size is estimated as shown in Equation 8.

Example: Consider the loop graph shown in Figure 6, and

suppose the subgraph on the right branch (L1) has higher

computational effort than the one on the left branch (L4).

In case of pure exhaustive approach, there are 64 (26)

combinations of loop unrolling, thus the given case should

be specialized and simulated 64 times to find the best

combination. In case of semi-exhaustive approach, we first

visit the right subgraph (L4) because it has higher

computational effort. Because the right subgraph is a

three-level loop nest (L1, L2, and L3), there are eight

combinations of loop unrolling and all combinations are

examined to find the best loop combination for the

subgraph. While examining these eight combinations, the

code size of each combination is estimated using Equation

8. If the estimated code size is larger than the code size

constraint, the combination is excluded from the

specialization.

After finding the best combination for the right subgraph

(L1), we visit the left subgraph (L4) which has four

possible loop combinations and find the best solution in

the same way.

After loop unrolling for both subgraphs is decided, we

move to the top node (L0). There are only two

combinations for this node because loop unrolling for all

its descendent nodes is already decided.Thus, we need to

examine total 14 loop combinations using semi-

exhaustive approach.

40ARTICLE 2

csi k cs j NI k I k U ki i

j

Ki

i i() () () () / ()()= + + ∗
=

+ −

∑ 1
0

1 1

where, csi(k) the cumulated code size of the descendent

nodes of node vi(k) in addition to the code size of vi(k) itself.

Also, NIi(k) represents the number of instructions of node

vi(k), Ii(k) represents the average number of iterations per

each visiting of node vi(k). Finally, Ui(k) returns 1 when node

vi(k) is unrolled, and Ii(k) when vi(k) is not unrolled. In other

words, we estimate the code size to be linearly increased by

a factor of Ii(k) when vi(k) is unrolled. Notice that Ii(k) and

NIi(k) are available from the profiler in Section 3.

(8)

Figure 7: A more complex example for global effective-case selection

i i i i i

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

5.3 One-shot approach

This approach is close to semi-exhaustive approach, but differs

because the choice of the best combination for each

subgraph depends on just code size estimation instead of

exhaustive search.

The code size estimation is performed in depth first search

fashion for each subgraph. We will illustrate this approach

using the following example.

Example: Let us consider the loop graph shown in Figure 6.

The subgraph (L1) is visited first due to the same reason in

exhaustive approach (higher computational effort). Initially, all

are assumed not to be unrolled. However, at this time, all 8

possible combinations are not examined. Instead, unrolled

code size is estimated in depth first order (from the lowest

level (L3) to the highest level (L1)). First, L3 is visited and the

unrolled code size is estimated. If the unrolled code size is

larger than the code size constraint, the code estimation

procedure is terminated and the node is decided not to be

unrolled. Also, all nodes in the higher level of this subgraph

are decided not to be unrolled.

Otherwise (estimated code size is smaller than code size

constraint), we decide to unroll this node and move up to

node L2.The same procedure is repeated until it reaches to

the top of the subgraph. After all nodes in the right graph are

traversed, we move to the left graph and the same decision

procedure is applied. Finally, we move up to the top node and

the same procedure is repeated.

To summarize, this approach requires only single

specialization and simulation, but it is more limited in

improving the quality of partial evaluation.

6 GLOBAL EFFECTIVE-CASE SELECTION
The last search problem is to analyze the interplay among the

specialized calls to maximize the specialization effect in a

global perspective. We already described this problem in

Section 2 using simple example in Figure 1.

Let us consider a more complex situation in Figure 7.

Suppose that the call of procedure fo o and both calls of

procedure bar 2 inside procedure bar are computationally

expensive and have common cases. Then, all three call sites

are specialized independently in the common-case

specialization step. If we analyze their interplay in a local

scope (intra-procedural analysis), two calls inside procedure

bar will interfere with each other marginally. Furthermore,

the interplay between procedure call bar 2 and procedure

fo o is not detected because their interplay occurs in inter-

procedure level, even though they may affect to each other

severely. Thus, the interplay among the specialized calls

should be analyzed in a global scope (inter-procedural

analysis). Such an analysis may reveal that the combination of

multiple specialized calls may yield a gain inferior to the sum

of the gains of the individual specialized calls, because of

mutual interference such as I-cache conflict. Also, it is not

obvious to estimate their interference analytically. For this

reason, each combination should be assessed by instruction-

set level simulation and the best combination is chosen for

the final solution.

We represent each specialized call mk ∈ M,k = { 0,1, ⋅⋅⋅,M−1} .

Each mk has an attribute called gain, gk which is the amount

of improvement in terms of the given cost metric (either

energy consumption or performance) and obtained when

each call is specialized at the common-case specialization

step.We always sort mk’s in descending order for gk, i.e. gk ≥
gk+1. And we deonte a combination of the specialized calls as

ci ∈ C, i = { 0,1, ⋅⋅⋅,C−1} and C = 2M , thus the search space

is exponentially large. Each ci is a binary vector to represent

41ARTICLE 2

Figure 8: An example of binary tree for M

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

which specialized calls are included in this combination. For

example, c0 = <1,1,1> means m0, m1, and m2 are included in

the combination c0. Also, c1 = <1,1,0> means only m0 and m1

are included in the combination c1. Each ci has two gain

attributes ideal_gi and actual_gi which are ideal gain and actual

gain, respectively.

• ideal gain (ideal_gi) is the sum of gains of the individual

specialized calls in each combination by assuming that

there is no interference with each other.Thus, this is the

maximum gain that can be achieved for the given

combination.

• actual gain (actual_gi) is the sum of gains of specialized

calls in each combination with the consideration of their

interference.Thus, it is always less than or equal to (when

there is no interference) the ideal gain and can be

obtained by instruction-set level simulation.

We represent each combination c1 as a path in a binary tree

as shown in Figure 8. The rightmost path represents c0 =

<1,1,1> and the second rightmost path represents c1 =

<1,1,0> and so on. Each level of the tree corresponds to each

element of the vector c1 and the right edge and the left edge

correspond to “1” and “0”, respectively.Thus, the number of

levels in the binary tree is always M . Each edge ei (l), i = { 0,1,

⋅⋅⋅,2(l+1) −1} and l = { 0,1, ⋅⋅⋅, M −1} , also has a gain attribute,

gi (l). Where, l is the level to which the edge belongs and i is

the index of an edge in level l (from left to right).

Initially, gi (M−1) (the gain of each edge connected to the

leaf nodes) is set to ideal_gi. And gi (l) is set to max (g2i (l+1),

g2i+1 (l+1)) namely the edges above than leaf-level inherit the

maximum gain of their children. After the gain initialization

as shown in Figure 8,we perform the search procedure based

on branch and bound algorithm in Figure 9.We will illustrate

the how the procedure works using the following example.

Example: g7(2) (the gain for the right edge of n6) is initially set

to 45 (ideal_g0) because this path corresponds to c0 = <1,1,1>

which means m0, m1, and m2 are included in the combination

c0. Similarly, g6(2) (the gain for the left edge of n6) is set to 35

(corresponds to c1 = <1,1,0>). Also, g3(1) = max (g6(2), g7(2))

= 45 and the gains of other edges are also decided in the same

way. Next, we apply the procedure in Figure 9. First, we visit

the rightmost path (c0). For c0, we perform instruction-set

level simulation to get actual_ g0 and g7(2) is updated to _g0.

We compare g7(2) to g6(2) which is the maximum gain that

can be achieved by combination c1. If g7(2) ≥ g6(2), it is obvious

that c0 is better than c1, thus we eliminate the left edge of n6

(identical to eliminate c1). On the other hand, if g7(2) < g6(2),

c1 can be better than c0.Thus,we perform instruction-set level

simulation for c1 and update g6(2) with actual_g1.Then, we can

decide which combination is better and prune out the worse

combination. Next, we move to node n2 in the next level by

updating g6(1) to max (g6(2), g7(2)) without simulation

because we already selected either c0 or c1 in level 2.

If g3(1) ≥ g2(1), we can prune out the left descendent of n2

(c2 and c3) due to the same reason. But, if g3(1) < g2(1), we

visit node n5 to choose the better combination from c2 and

c3 by performing the same procedure as we did for c0 and c1.

After choosing either c2 or c3, we compare two edges of

node n2 and select better one.

We repeat the same procedure until there remains only one

path in the binary tree.

42ARTICLE 2

Figure 9:
Search
procedure
for the
given
binary
tree

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

7 EXPERIMENTAL RESULTS
Even though source code transformations are applicable to

a wide set of architecture, we consider now two specific

hardware platforms to be able to quantify the results. The

Smart Badge, an ARM processor based portable device [19]

and Lx processor developed by STMicroelectronics and

Hewlett-Packard [33] were selected as the target

architectures. For these target architectures, applied the

proposed technique to seven DSP application C programs -

Compress , Expand , Edetect , and Convolv e from

[27], g721 encod e from [26], and FFT from [28], FIR

[34], and turbo code .

Compres s compresses a pixel image by a factor of 4:1 while

preserving its information content using DCT and Expand

performs the reverse process using IDCT. Edetect

detects the edges in a 256 gray-level pixel image using Sobel

operators and Convolv e convolves an image relying on

2D-convolution routine.

g721 is CCITT ADPCM encoder. FFT performs FFT using

Duhamel-Hollman method for floating-point type complex

numbers (16-point). Finally, turbo cod e is iterative

(de)coding algorithm of two-dimensional systematic

convolutional codes using log-likelihood algebra.

The experiment was conducted for two aspects - search

space reduction and quality of the transformed code.

The quality of transformed code was analyzed in terms of

energy saving, performance improvement, and code size

increase. Each application program was profiled to collect

computational effort and CLAs with their common values.

There exist two important parameters in value profiling as

described in Section 3.3. First, OR(Observed Ratio) is the ratio

of the observation frequency of a specific value over the total

call site visiting frequency for a given parameter.

Second, OT(Observed Threshold) is a threshold value and the

value of which OR is lower than OT is disregarded from the

common case values. In this experiment, OT was set to 0. 5.

First, we analyzed the effectiveness of the proposed search

space reduction techniques. Figure 10 shows the pruning

ratio achieved by each step with computation threshold,

CT=0.1. Notice that this step is architecture-independent as

shown in Figure 2, thus Figure 10 is common to both

SmartBadge and Lx processors.

The procedure pruning step always plays an important role to

reduce the search space, but call-site pruning step shows large

variation depending on the property of the application

programs.This is because the computational kernels of some

programs such as compres s and FFT were called only once,

while the kernel of g712 encod e was called several times

in different sites with different calling frequencies. Thus, this

step is useful for the kernels called frequently in different sites

with different frequencies.

43ARTICLE 2

Figure 10: Search space reduction using common-case selection

Figure 11: Search space reduction ratio in common-case and global
effective-case selection step

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

The ineffectiveness of the case pruning step was due to high

OT which was set to 0.5 for value profiling.Under this OT, the

OR of each common value is usually large enough not to be

pruned out due to small CT. It is interesting that dominated

case pruning was effective for most of application programs

because at least one of the CLAs per each program had a

common value with OR=1.0.

Next, the pruning methods used in common-case

specialization and global effective-case selection were

evaluated. Figure 11 shows the pruning ratios of these two

steps for SmartBadge environment. Our technique in Lx

processor environment also showed the similar results. As

shown in Figure 11, both semi-exhaustive and one-shot

approach drastically reduced the search space by 57% and

86%, respectively. Also, pruning technique in global effective-

case selection step showed 46% of search space reduction and

large variation of pruning ratio depending on the property of

application programs. There was nothing to be pruned for

Compress , FFT and g721 encode programs because

only one case was passed from common case specialization

step. But, it was effective when multiple cases were passed.

Next, both one-shot and semi-exhaustive approaches were

compared to exhaustive approach in terms of code quality

and specialization time. Common-case selection step was

commonly used for each approach to avoid large search

space. Also, global effective-case selection step was used in

all three specializations because it always guaranteed the

optimal solution and its worst case run time was same to

exhaustive approach. As expected, the one-shot approach

showed the smallest running time and semi-exhaustive

approach was ranked at second. In average, both one-shot

approach and semi-exhaustive approach are about 8.3 (8.0)

times and 2.7 (2.5) times faster than exhaustive approach in

Smart-Badge (Lx processor) environment, respectively.

Notice that Figure 11 only shows the reduction ratio of the

search space, which is different from the specialization time

44ARTICLE 2

Table 3: Quality of the code transformed with different approaches (normalized to original code)

C programs Code Quality
exhaustive semi-exhaustive one-shot

energy performance code size energy performance code size energy performance code size
Compress 0.91 0.91 1.01 0.91 0.91 1.01 0.93 0.93 1.15
Expand 0.84 0.83 1.15 0.84 0.83 1.15 0.90 0.90 1.12
Edetect 0.44 0.37 1.20 0.44 0.37 1.20 0.44 0.37 1.20
FFT 0.86 0.86 1.16 0.86 0.86 1.16 0.86 0.86 1.16
g721 encode 0.88 0.88 1.04 0.88 0.88 1.04 0.88 0.88 1.04
Convolve 0.54 0.48 1.18 0.54 0.48 1.18 0.54 0.48 1.18
FIR 0.53 0.53 1.12 0.53 0.53 1.12 0.53 0.53 1.12
turbo code - - - 0.89 0.90 1.22 0.89 0.90 1.22
Average 0.71 0.69 1.12 0.74 0.72 1.13 0.75 0.73 1.15

(a) Specialized code quality in SmartBadge environment

C programs Code Quality
exhaustive semi-exhaustive one-shot

energy performance code size energy performance code size energy performance code size
Compress 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Expand 0.94 0.95 1.08 0.94 0.95 1.08 1.00 1.00 1.00
Edetect 0.27 0.26 1.04 0.27 0.26 1.04 0.27 0.26 1.04
FFT 0.18 0.19 1.14 0.18 0.19 1.14 0.18 0.19 1.14
g721 encode 0.91 0.95 1.01 0.91 0.95 1.01 0.91 0.95 1.01
Convolve 0.65 0.68 1.04 0.65 0.68 1.04 0.65 0.68 1.04
FIR 0.38 0.35 1.06 0.38 0.35 1.06 0.38 0.35 1.06
turbo code - - - 0.82 0.82 1.23 0.82 0.82 1.23
Average 0.62 0.62 1.05 0.65 0.65 1.07 0.66 0.66 1.06

(b) Specialized code quality in Lx processor environment

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

in the sense that search space reduction ratio only implies

the reduction ratio of the number of specializations, while the

specialization time includes partial evaluation, compilation,

and instruction-set level simulation.

It is interesting that exhaustive approach often generated a

huge size of code which is one of the main problems in

partial evaluation.

For the code, compilation or simulation was not terminated

within a few hours, which is a bottleneck for automation. For

this reason, we adopted time-out approach especially for the

exhaustive approach by assuming that the code requiring

long simulation time would be very huge and require large

energy consumption.

Table 3 shows the quality of transformed code in terms of

energy, performance, and code size for the three approaches.

As shown in Table 3, semi-exhaustive approach is comparable

to exhaustive approach in terms of transformed code quality

with much less computation time (63% for SmartBadge and

60% for Lx processor). One-shot solution is also useful by

trading off its code quality and computation time. (About 8.0

times faster and 2% consumes more energy compared to

exhaustive approach). We could not perform exhaustive

approach for turbo code because its computational

kernel had too many loops (18) which yielded a huge number

of loop combinations (218 = 524288). It is also worthwhile to

mention that the deviation of improvement is largely

depending on the nature of the programs. For the best case,

the improvement is more than twice (Edetect), but for the

worst case, about 10% (0%) is improved (Compress) in

SmartBadge (Lx processor) environment.

It is interesting that our tool specialized Compress and

Expand in different ways depending on the target architecture.

Compres s and Expand show non-marginal improvement in

SmartBadge environment, whereas their improvement ratio

in Lx processor is marginal. Also, the improvement ratio of

FFT is much larger in Lx processor environment than in

SmartBadge environment, even though the specialized

programs for both architectures are identical.

45ARTICLE 2

Table 4: Quality improvement ratio of floating-point versions
and fixed-point versions by semi-exhaustive approach

programs SmartBadge Lx processor
energy perf. energy perf.

Compress float 0.91 0.91 1.0 1.0
Compress fixed 0.80 0.79 0.91 0.91
Expand float 0.84 0.83 0.94 0.95
Expand fixed 0.55 0.53 0.73 0.76

The common feature of these programs is that the

computational kernels of all three programs have floating-

point operations which are not directly supported by the

hardware in both architectures, but they are handled by

floating-point emulation.

From the careful analysis of these programs, we found two

reasons for this fact. First, the computation cost of floating-

point emulation in Lx processor is much more expensive

than in Smart-Badge environment (relative to their integer

operations). Notice that floating-point emulation is

performed by the built-in library functions which is out of the

scope in our technique. Second, the loop overhead in

SmartBadge is larger than in Lx processor.

The results in Table 4 support this claim. Compress_

floa t and Expand_floa t are the floating-point versions

used in Table 3 and Compress_fixed and

Expand_fixe d are their fixed-point versions, respectively.

Notice that the improvement by the specialization is mainly

due to loop unrolling for both versions of two programs.As

shown in Table 4, the improvement ratio using our technique

is about 2.5 times larger for the fixed-point version

compared to the floating-point version in SmartBadge

environment. On the other hand, it is about 5 times larger in

Lx processor environment. It means that the relative cost of

floating-point emulation in Lx processor environment is

twice larger than that in SmartBadge environment. But, the

improvement ratio using our technique in SmartBadge

environment is still larger than in Lx processor environment.

It implies that the loop overhead elimination by our

technique is more effective (about twice) in SmartBadge

environment rather than in Lx processor environment.

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

In case of FFT, the specialization step eliminates

trigonometric functions such as cos .The computation cost

of co s function is four times expensive in Lx processor

environment than in Smart-Badge environment in terms of

number of clock cycles (measured by simulators). Thus, the

elimination of such functions is more advantageous in Lx

processor than in SmartBadge environment.

In summary, our technique is more effective in fixed-point

arithmetic programs, therefore it is desirable to apply our

technique after transforming the floating-point arithmetic

programs into the fixed-point arithmetic programs as

proposed in [35]. Also, the computation cost of the built-in

functions such as trigonometric functions is architecture

dependent, thus the impact of the specialization varies largely

depending on the underlying hardware architecture.

As a final remark, the run time of the optimization flow

depends on the two user-defined constraints CT and OT that

drive the pruning. Also, program size and loop depth are

critical factors in specialization step, because our approach

uses instruction set-level simulation. Nevertheless, it is

important to remember that low energy and fast execution of

the target code is the overall objective, which can be achieved

at the expense of longer optimization time for large programs.

8 CONCLUSION
We presented algorithms and a tool flow to reduce the

computational effort of software programs, by using value

profiling and partial evaluation.We showed that the average

energy and run time of the optimized programs is drastically

reduced. The main contribution of this work is the

automation of an optimization flow for software programs.

Such a flow operates at the source level, and is compatible

with other software optimization techniques, e.g., loop

optimizations and procedure in-lining.

Within our approach, a first tool performs program

instrumentation and profiling to collect useful information

for transformations, such as execution frequency and

commonly-observed values at each call site. Using the

profiling information, another tool selects common cases

based on the estimated computational effort.

Each selected case is specialized independently using a partial

evaluator. In the selection step, code explosion due to loop

unrolling - which may hamper partial evaluation - is avoided by

code size estimation technique and pruning. Finally, the inter-

play among the multiple specialized cases is analyzed based on

instruction-set level simulation.

The transformed code shows in average 35% (26%) energy

saving and 38%(31%) in average performance improvement

with 7% (13%) code size increase in Lx processor

(SmartBadge) environment.

Currently, our approach has two limitations. First, the

common cases only in procedure level are considered.

Second, complex data type and/or pointer type parameters

are not supported due to their dynamic nature. However, we

believe that the first problem can be solved by extending our

technique to the lower level common cases (i.e. loop level)

which may provide better quality of code specialization, while

the second problem still remains as a challenging topic.Also,

the specialization technique can be extended to consider

more architecture dependent characteristics.

REFERENCES
[1] J.R. Lorch,A.J. Smith,

“Software Strategies for Portable Computer Energy

Management”, IEEE Personal Communications,

vol. 5, issue 3, pp.60-73, Jun. 1998

[2] N.Vijaykrishnan, M. Kandemir, M. Irwin,

H. Kim, and W.Ye,“Energy-driven Integrated

Hardware-Software Optimizations using SimplePower”,

ISCA, pp.95-106

[3] V.Tiwari, S. Malik, and A.Wolfe,

“Compilation Techniques for Low Energy: An Overview”,

IEEE Symposium on Low Power Electronics,

pp. 38-39, 1994

46ARTICLE 2

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

[4] J. M. Rabaey and M. Pedram (editors),

Low-Power Design Methodologies. Kluwer, 1996.

[5] V.Tiwari, S. Malik,A.Wolfe,

“Instruction Level Power Analysis and Optimization

of Software”, Journal of VLSI Signal Processing Systems,

vol. 13, no.1-2, pp.223-233, 1996

[6] L. Benini and G. De Micheli,

“System-Level Power Optimization Techniques and Tools”,

ACM TODAES, vol. 5, issue 2,

pp.115-192,Apr. 2000

[7] H.Tomiyama, H. Ishihara,A. Inoue, and H.Yasuura,

“Instruction Scheduling for Power Reduction

in Processor-Based System Design”,

Design Automation and Test in Europe,

pp.855-860, 1998

[8] C.L. Su, C.Y.Tsui, and A.M. Despain,

“Saving Power in the Control Path

of Embedded Processors”,

IEEE Design and Test of Computers,

vol. 11, no. 4, pp.24-30,Winter 1994

[9] H. Mehta, R. Owens, M. Irwin, R. Chen, and D. Ghosh,

“Techniques for Low Energy Software”,

ISLPED, pp.72-75, 1997

[10] G. Esakkimuthu, N.Vijaykrishnan, M. Kandemir,

M. Irwin,“Memory system energy: influence

of hardware-software optimizations,”

International Symposium on Low Power Electronics

and Design, pp. 244-246, 2000.

[11] Y. Li and J. Henkel,

“A Framework for Estimating and Minimizing Energy

Dissipation of Embedded HW/SW Systems”,

Design Automation Conference,

pp.188-193, 1997

[12] F. Catthoor, S.Wuytack, E. De Greef, L. Nachtergaele,

and H. De Man,“System-Level Transformation

for Low Power Data Transfer and Storage”,

A. Chandrakasan, R. Brodersen eds.

Low-Power CMOS Design, IEEE Press, 1998

[13] K. Cooper, M. Hall, and K. Kennedy,

“A Methodology for Procedure Cloning”, Computer

Languages, vol. 19, no. 2, pp 105-117,Apr., 1993

[14] C. Consel and O. Denvy,“Tutorial Notes on Partial

Evaluation”,ACM Symposium on Principles

of Programming Languages, pp.493-501, 1993

[15] L. O.Andersen, Program Analysis and Specialization

for the C Programming Language, PhD thesis.

DIKU, University of Copenhagen. May, 1994.

[16] J. Pierce, M. Smith, and T. Mudge. Instrumentation tools.

in Fast Simulation of Computer Architectures

(T. Conte and C. Gimarc, eds.),

Kluwer, Boston, MA, 1995, pp. 47-86.

[17] T. Ball and J. Larus,“Optimally Profiling and Tracing

Programs”, Proceedings of the 19th Annual Symposium

on Principles of Programming Languages, Jan. 1992

[18] B. Calder, P. Feller, and A. Eustace,“Value Profiling

and Optimization”, Journal of Instruction-Level

Parallelism, vol. 1, Mar. 1999

[19] T. Simunic, L. Benini, and G. De Micheli, “Cycle Accurate

Simulation of Energy Consumption in Embedded Systems”,

Design Automation Conference, pp.867-872, 1999

[20] G. Lakshminarayana,A. Raghunathan, K. Khouri,

K. Jha, and S.Dey,“Common-Case Computation:

A High-Level Technique for Power and Performance

Optimization”, Design Automation Conference,

pp.56-61, 1999

47ARTICLE 2

ST Journal of System Research
vol 3,number 1 April 2002

Low Power System Design

[21] C. Liem,T. May, and P. Paulin,“Instruction-Set Matching

and Selection for DSP and ASIP Code Generation”,

European Design and Test Conference, pp. 31-37, 1994

[22] G.Araujo and S. Malik,“Optimal Code Generation

for Embedded Memory Non-Homogeneous Resister

Architectures”, Intl. Symposium on System Synthesis,

pp. 36-41, 1995

[23] D. Bacon, S, Graham, and O. Sharp,“Compiler

Transformation for High-Performance Computing”,ACM

Computing Surveys, pp.345-420, vol26,No. 4,Dec. 1994

[24] B. Rau, M. Lee, P.Tirumalai, and M. Schlarsker,

“Register Allocation for Modulo Scheduled Loops: Strategies,

algorithms, and Heuristics”, PLDI, pp.283-299, 1992

[25] http://www.cs.ucla.edu/ leec/mediabench

[26] http://www.eecg.toronto.edu/

stoodla/benchmarks/benchmarks.html

[27] P. Duhamel and H. Hollman,“Split-Radix FFT Algorithm”,

Electronics Leters, vol. 20, no. 1, pp.14-16, Jan. 5, 1984

[28] S.E. Richardson,“Caching Function Results: Faster

Arithmetic by Avoiding Unnecessary Computation”,

Tech. report, Sun Microsystems Laboratories, 1992

[29] M.Wolfe, High Performance Compilers for Parallel

Computing,Addison-Wesley, 1996

[30] Stanford Compiler Group,The SUIF Library:

A set of core routines for manipulating SUIF

data structures, Stanford University, 1994

[31] A. Srivastava and A. Eustace,

“ATOM:A System for Building Customized

Programming Analysis Tools”,

Proceedings of the SIG-PLAN 1994

Conference on PLDI, pp.196-205, Jun. 1994

[32] Lx Architecture Manual,Version 0.92,

August, 17, 1998

[33] Lx Programming and Benchmarking Guide,

Version 1.00, 2000

[34] T. Simunic, L. Benini, G. De Micheli, and M. Hans,

“Source Code Optimization and Profiling of Energy

Consumption in Embedded Systems”,

ISSS, pp. 193-198, 2000.

[35] J. Hagenauer, E. Offer, and L. Papke,

“Iterative Decoding of Binary Block and Convolutional

Codes”, IEEE trans. on Information Theory,

vol. 42, no.2, March, 1996

ACKNOWLEDGMENT
The authors would like to thank D. Mestdagh,T. B. Ismail, A.

Avenel and J. M. Brossier who provided us the turbo code

benchmark program.

48ARTICLE 2

