
Low Power Embedded Software Optimization using Symbolic Algebra

Armita Peymandoust
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

Tajana Simunic
HP Labs & Stanford University
1501 Page Mill Rd., MS 3U-4

Palo Alto, CA 94304

Giovanni De Micheli
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

{armita, tajana, nanni}@stanford.edu

Abstract
The market demand for portable multimedia

applications has exploded in the recent years.
Unfortunately, for such applications current compilers and
software optimization methods often require designers to
do part of the optimization manually. Specifically, the
high-level arithmetic optimizations and the use of complex
instructions are left to the designers' ingenuity. In this
paper, we present a tool flow, SymSoft, that automates the
optimization of power-intensive algorithmic constructs
using symbolic algebra techniques combined with energy
profiling. SymSoft is used to optimize and tune the
algorithmic level description of an MPEG Layer III (MP3)
audio decoder for the SmartBadge [2] portable embedded
system. We show that our tool lowers the number of
instructions and memory accesses and thus lowers the
system power consumption. The optimized MP3 audio
decoder software meets real-time constraints on the
SmartBadge system with low energy consumption.
Furthermore, the performance improves by a factor of 7.27
and the energy consumption decreases by a factor of 4.45
over the original executable specification.

1. Introduction
Low cost with fast time to market is the top requirement

in system-level design of embedded multimedia appliances.
In embedded system design environment, the degrees of
freedom in hardware are often very limited, whereas for
software much more freedom is available. As a result, the
primary requirement for embedded system-level design
methodology is to effectively support code performance
and energy consumption optimization. Automating as many
steps in the design of software from algorithmic-level
specification is necessary to meet time to market
requirements. Unfortunately, current available compilers and
software optimization tools cannot meet all designers’
needs. Typically, software engineers start with algorithmic
level C code, often developed by standards groups, and
manually optimize it to execute on the given hardware

platform such that power and performance constraints are
satisfied. Needless to say, this conversion is a time-
consuming and often error-prone task, which introduces
undesired delay in the overall development process. In
addition, most compilers are unable to compile C code
efficiently for embedded processors. Therefore, software
engineers need to design key routines in assembly [1],
which is extremely time consuming.

Our objective is to improve the quality of compiled code
for embedded systems and facilitate the software design
process. In this paper, we propose a new methodology
based on symbolic manipulation of polynomials and energy
profiling which reduces manual intervention. We apply a
set of techniques previously used in algorithmic-level
hardware synthesis [22] and combine them with energy
profiling, floating-point to fixed-point data conversion, and
polynomial approximation to achieve a new embedded
software optimization methodology. The combination of
these tools and standard compiler optimization techniques
allow novel automatic code transformations.

As a motivating example, consider the code segment
shown below:

for i=1..3
 y = y + cos(i*x);

Using standard loop unrolling, the given code is
transformed into the following:

y = cos(x) + cos(2*x) + cos(3*x);
Now assume that for a given application cos(x) can be
approximated into a Taylor series with three terms without
noticeable degradation on the output. Many multimedia
applications tolerate computational inaccuracy well, as long
as the resulting effects (e.g. audio, video degradation) are
limited. Therefore, y can be approximated as a polynomial:

4422442242 3
24
1

3
2
1

12
24
1

2
2
1

1
24
1

2
1

1 xxxxxxy +−++−++−=

This polynomial can be further simplified using the expand
routine in symbolic algebra:

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

42

12
49

73 xxy +−=

Assuming that the embedded processor used to execute
this code has a multiply accumulate (MAC) instruction,
another symbolic routine called the Horner transform can be
used on y:

22)
12
49

7(3 xxy +−+=

The new equation can be mapped to one multiply
instruction and two multiply-accumulates. Obviously, this
mapping is much more efficient than three calls to the cosine
library function. Unfortunately, to our knowledge, there is
no available tool that performs this simple optimization
automatically. Thus, it would be up to designers to
manually implement such optimizations.

This paper presents a tool-flow, called SymSoft, that
automates algebraic manipulations such as the one shown
in the previous example. First, the energy critical code
sections are identified using the energy profiler. If
necessary, a tool such as Fridge [4] can be used to
transform floating-point data types into fixed-point. Next,
complex nonlinear arithmetic functions are approximated as
polynomials such that the final output is within the
acceptable tolerance limits. Finally, symbolic algebra is
used to map the polynomial representations of the critical
basic blocks to the instruction set available such that
performance and power consumption are optimized. Note
that more complex instructions (such as those developed by
Tensilica tools [5]) and hardware accelerators can also be
used during the mapping step.

We used SymSoft to optimize the MP3 software decoder
such that it would meet real-time constraints on the
SmartBadge [2]. The SmartBadge, as shown in Figure 1, is
an embedded system consisting of Sharp’s display,
Lucent’s WLAN link, StrongARM-1100 processor, RAM,
FLASH, sensors, and modem/audio analog front-end on a
PCB powered by batteries through a DC-DC converter. The
outcome of this experiment is a higher performance MP3
decoder software for SmartBadge that uses less power. For
an MP3 player, shorter than real-time execution time implies
that lower voltage and frequency can still meet the real-time

constraint. This in turn translates into longer battery life or
lighter battery requirement for the system.

The paper is organized as follows: Section 2 discusses
previous work in software optimization for energy and
performance. Section 3 presents the SymSoft flow, and
gives an overview of each of its component. The results of
MP3 decoder optimization for SmartBadge are presented in
Section 4. We demonstrate that the MP3 decoder
performance improves by a factor of 7.27 and its energy
consumption decreases by a factor of 4.45 over the original
executable specification. Finally, Section 5 summarizes
contributions of this work.

2. Related Work
Optimization of software performance and size has been

utilized by designers for many years. Code optimization
process translates a high level specification into optimized
machine code for the target processor, often using
compilers. Several researchers have worked on optimizing
compilers in last few years [6]. Prototype research compilers
have shown impressive results [7]. Most optimizing
compilers target high-performance and/or general-purpose
computers. Relatively little effort has been dedicated to
create powerful optimizing compilers for embedded
processors. Even though several researchers are studying
automatic code optimization techniques for embedded
processors [8,9], currently, most embedded processors (or
DSPs) are programmed directly by expert programmers and
code optimization is mostly based on human intuition and
skill. In addition, due to recent growth in market demand for
portable devices, optimization of software for power
consumption is gaining importance. As a result, one of the
primary requirements for system-level design methodology
of embedded devices is to effectively support code energy
consumption optimization.

Several optimization techniques for lowering energy
consumption have been presented in the past. Catthoor et
al presented a methodology that combines automated and
manual software optimizations with main focus on
optimizing memory accesses [10]. Tiwari et al [11,12] use
instruction-level energy models to develop compiler-driven
energy optimizations at assembly level such as instruction
reordering, reduction of memory operands, operand
swapping in the Booth multiplier, efficient usage of memory
banks, and series of processor specific optimizations.
Several other optimizations such as energy efficient register
labeling during the compile phase [13], procedure inlining
and loop unrolling [14] as well as instruction scheduling [15]
have also been suggested. In other work [16], various
compiler optimizations are applied concurrently and the
resulting energy consumption is evaluated via simulation.
All of these techniques focus on automated instruction-
level optimizations driven by the compiler. Unfortunately,
current available compilers have limited capabilities.
Specifically, they are incapable of handling arithmetic
optimizations such as shown in the Introduction example.

UCB1200
Analog &

Digital
Sensors

Microphone
and

Speakers

Memory:
Flash
SRAM

Display

DC-DC
Converter

RF

StrongARM
SA-1100

Ba
tt

er
y

Figure 1. SmartBadge Architecture

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

Our proposed methodology and tools automate the
process of identifying the code sections that would benefit
from algebraic optimizations, and then perform the
optimization using symbolic techniques. Such symbolic
techniques have been previously used in algorithmic level
synthesis of data intensive circuits [22]. SymSoft uses the
same principles previously used for high-level component
mapping of hardware and applies them to the software
optimization problem.

3. SymSoft Flow
 Here we present a tool flow, SymSoft, which aims to

automate most parts of embedded system software
optimization for a given embedded processor. Ideally, the
software designer would write an algorithmic-level
description of the software and have a compiler-like tool
optimize it for the given platform. However, optimum
implementation of calculation intensive routines for the
particular hardware design is not possible with traditional
compiler optimizations alone. Commonly, the designer does
most of such optimizations by hand. Automating even a
portion of this process can save much design time.

SymSoft embodies a set of tools that enable the
optimization process. Figure 2 shows the SymSoft flow.
The first step is to check whether software data
representation matches the hardware implementation. Most
embedded processors support only fixed point computation,
but many multimedia algorithms utilize floating-point
operations. The profiler, described in Section 3.2, detects if
data representation is an issue within several seconds.
Then, if needed, floating point operations can be replaced
with fixed point using a tool such as Fridge [4]. The next
step is to profile the code using the energy profiler.
Profiling identifies target routines for optimization. Next,
basic blocks of the critical routines are identified, and when
necessary, reformulated using polynomial approximation
techniques. Accuracy of optimization has to be checked
against the original code, as both during the data
representation conversion and during the polynomial
formulation, some rounding occurs. Once accuracy is
satisfactory, resulting polynomials are decomposed into a
sequence of instructions available on the particular
hardware by novel symbolic techniques discussed in
Section 3.4. Finally, another check is performed using the
profiler to determine whether the code has been sufficiently
improved in terms of energy consumption and performance.
Typically, it takes a few iterations to fully optimize the code.

Our key contribution in SymSoft is a new method for
basic block optimization using symbolic polynomial
manipulation algorithms. Note that SymSoft is compliant
with other software optimization techniques. Additional
benefits are gained by combining traditional complier
optimization algorithms, such as constant and variable
propagation, dead code elimination, loop unrolling, with
symbolic polynomial decomposition. The next sections
describe each step of SymSoft in detail.

3.1 Data Representation Conversion
Signal processing algorithms are generally developed

using ANSI-C with IEEE floating-point data types.
However, these algorithms are often implemented in
embedded systems using fixed-point data types in order to
meet the power, cost, and performance requirements.
Converting a floating-point algorithm to a fixed-point
algorithm is a time consuming and error prone task.
Facilitating and semi-automating this conversion has been
targeted by tools such as Fridge (a.k.a. CoCentric fixed-
point designer) [4]. Such tools use interpolative analysis to
convert floating point C code into appropriate fixed-point
code to reduce the manual work and the number of
simulations required. The designer annotates the critical
variables of the design with the desired bit width and uses
Fridge to automate the rest of the conversion through
simulation and numerical analysis.

3.2 Energy Profiling
Code optimization requires extensive program execution

analysis to identify energy-critical bottlenecks and to
provide feedback on the impact of code transformations.
Profiling is typically used to relate performance to the
source code for CPU and L1 cache [17]. Energy profiler
enables easy identification of energy-critical procedures. It
also facilitates analysis of code transformations’ impact on

Figure 2. SymSoft Tool Flow

Data
Representation

Conversion

Floating pt.
Problem?

Energy
Profiling

Symbolic Algebra
Decomposition

Polynomial
Formulation

Accuracy
Problem?

Optimization
Done?

Yes

Yes

Yes

No

No

No

Algorithmic-level
C Code

Optimized C Code with
inline Assembly

Critical Basic Blocks

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

the processor energy consumption, the memory hierarchy
and the system busses.

 The profiler exploits a cycle-accurate energy
consumption simulator [18] to relate the embedded system
energy consumption and performance to the source code.
Thus, it can be used for analysis (i.e., to find energy-critical
sections of the code), and for validation (i.e., to assess the
impact of each code optimization). Estimation results were
shown to be within 5% of measured energy consumption on
the SmartBadge hardware.

 The profiler architecture is shown in Figure 3. Source
code is compiled using a compiler for a target processor.
The output of the compiler is the executable represented as
assembly code and a map of locations of each procedure in
the executable. The profiler works concurrently with the
cycle-accurate simulator. It periodically samples the
simulation results (by user defined sampling interval) and
maps the energy and performance to the function executed
using information gathered at the compile time. Sampling is
used to improve profiling speed while maintaining accuracy.
Once the simulation is complete, the energy consumption
and execution time of each function is displayed.

With the profiler, SymSoft can obtain energy
consumption breakdown by procedures in the source code
and thus can quickly identify the sections of the source
code whose optimization can provide the largest energy
savings. In addition, with the cycle-accurate simulator that
is at the heart of the profiler, SymSoft can get detailed
information about performance and energy consumption of
smaller subsections of code. Therefore, in this step, the

critical basic blocks of the power hungry procedures are
identified. These basic blocks are then passed as inputs to
polynomial approximation and symbolic mapping tools
which can optimally map the code section assembly
instructions in few minutes.

3.3 Polynomial Formulation
The energy profiler detects the critical basic blocks of the

code. The next step is to map the critical basic blocks to
assembly instructions such that optimum power
consumption and performance are achieved. The mapping
algorithm, described in Section 3.4, uses the principles of
symbolic algebra and Gröbner basis [23]. The inputs to the
mapping algorithm are the polynomial representations of the
critical basic blocks and the polynomial equivalence of the
arithmetic assembly instructions. This step prepares the
input to the symbolic mapping algorithm by calculating a
polynomial representation for the critical basic blocks.

The polynomial representation of a basic block can be
directly extracted from the C code if the basic block
calculates a linear function. If the basic block performs a
series of bit manipulations or Boolean functions,
interpolation-based algorithms [24] can be used to formulate
the equivalent polynomial representation. When the basic
block implements a nonlinear function, we use an
approximation, such as the Taylor or Chebyshev series
expansion, as its polynomial. The chosen polynomial
approximation has to be verified by simulation to ensure
that the software constraints, such as audio quality, are
satisfied. A good approximation can result in large
performance and power improvements for multimedia
applications, since these applications can tolerate a slight
degradation in the output. For example, to verify the
accuracy of the MP3 decoder we have used the compliance
test provided by the MPEG standard where the range of
RMS error between the samples defines the compliance
level [19]. If the approximation is not sufficient to satisfy
the accuracy constraints, the quality of approximation is
changed and verified again through simulation. This step of
SymSoft flow is not yet automated.

3.4 Symbolic Optimization
 At this step, the polynomial representations for critical

basic blocks of the code are available. Arithmetic assembly
instructions of the target embedded processor are also
represented as polynomials. The goal of the symbolic
optimization step is to decompose the polynomial
representations of the basic blocks into the polynomial
representations of available assembly instruction such that
power consumption and performance are optimized. Such
decomposition is done with the help of symbolic computer
algebra routines and algorithms. As opposed to tree
covering based algorithms, in our method decomposition is
performed simultaneously with instruction mapping and
algebraic simplification of the given polynomial.

Symbolic computer algebra is a set of algorithms capable
of algebraic manipulation of expressions containing

ARM Instruction-level Simulator

Processor & L1 Cache Energy Model

Interconnect Energy Model

L2 Cache Memory

L1 Cache

Energy Model Energy Model

Processor Core Model

DC-DC
Converter

Energy
Model Ba

tte
ry

AddressData

AddressData

AddressCycle Type

L2 Cache Current

Memory Current

Processor
Current

Battery
Current

Interconnect
Current

Cycle Type

Cycle Type

Data

Profiler

Source Code

 for (i=0; i<30; i++)
 {

x[i] = y[i] + 2 * x[i + 1];
z[i] -= x[i];
y[i] = x[i] + z[i];

 }

LD R21, #30;
ADD R21, R23,R27;
...

Energy
Consumption

Software Profile

 fun energy

 getD 15%
 sort 10%
 init 2%
 ...

Figure 3. Profiler Architecture

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

undetermined values (symbols), such as variable x in
(x+1)*(x-1). Several commercial symbolic computer
algebra softwares are available on the market; Maple [20]
and Mathematica [21] are most widely used. The algebraic
object to be symbolically manipulated is a multivariate
polynomial that represents a critical basic block identified in
the profiling step. Most interesting symbolic polynomial
manipulations are based on Gröbner bases [23]. Gröbner
bases also solve variable elimination in a set of polynomials
and ideal membership problems, which is the core of
simplification modulo set of polynomials [23].

In order to show the power of symbolic algebra, consider
a basic block implementing Equation 1:

))12)(
2

12(
72

cos(+++= mNpd π

(1)

 Equation 1 is approximated using Pade approximation to
the polynomials shown in Equation 2 in the previous step of
the SymSoft flow as described in Section 3.3.

642

642

39251520
127

2360
1

7788
229

1

7850304
2923

25960
711

7788
3665

1

)12)(
2

12(
72

xxx

xxx
d

m
N

px

+++

−+−
≅

+++=
π

 (2)

The simplification modulo set of polynomials routine
can be used to map the numerator and denominator of
Equation 2 to the available instruction set. In order to
comply with Maple terminology, we call the routine simplify
and the set of polynomials side relations. Let dn be the
numerator of Equation 2 with a, b, and c the constants of
the polynomial. Also, we define siderels as a subset of
the available instructions with renamed variables. We have:

> dn:=1+a*x^2+b*x^4+c*x^6:
 siderels:={w=x^2, y=b+c*w, z=a+y*w}

> simplify(dn, siderels,[x,w,y,z]);
 1+z*w

Note that the first element of the side relation set (w=x^2)
corresponds to the square or multiply instruction and the
other two elements of the set (y=b+c*w, z=a+y*w) and the
result of simplify (1+z*w) correspond to the MAC
instruction. The side relation set can be any subset of the
available instruction set with proper renaming of the
variables. Different side relation sets result in finding other
possible solutions for the specification. The above implies:

dn=1+a*x^2+b*x^4+c*x^6=1+z*w
=1+(a+y*x^2)*x^2=1+(a+(b+c*x^2)*x^2)*x^2

Therefore, the numerator of Equation 2 can be mapped to
one square and three MACs instructions. Assuming R1,
R2, R3, R4, and R5 hold 1, a, b, c, and x, respectively, the
resulting assembly code is:

MULT R6, R5, R5
MAC R7, R3, R4, R6
 MAC R8, R2, R7, R6
MAC R7, R1, R8, R6

 In the MP3 decoder program, the basic block evaluating
Equation 1 uses floating-point and takes 2384 cycles to run
on the StrongARM-1100 processor. The approximation
represented in Equation 2 calculates x using floating-point
and d using fixed-point arithmetic and nested MACs as
suggested by the symbolic optimization. This
approximation executes in 1257 cycles. Thus we have
achieved an improvement of 47% for this simple example.

 Choosing the side relation set is a non-trivial task. In
previous work [22], an algorithm was introduced to select
the side relation set such that the hardware implementation
of a (portion of) data path with a given component library
has minimal critical path delay. In this paper, we use the
algorithm to optimize mapping of the critical basic blocks of
software to assembly instructions. This method performs
even more effectively when a rich instruction set (e.g. ASIP
or hardware accelerator) is available.

Figure 4 gives a brief overview of the mapping algorithm.
Inputs to the algorithm are the polynomial representations
of the critical basic blocks and the polynomial
representations of the given instruction set. The goal of the
symbolic mapping algorithm is to decompose the
polynomial representation of the critical basic block (CBB)
into polynomial representations of the instruction set (IS)
such that power consumption and delay are minimized. The
power and number of cycles the processor takes to execute
each instruction in the IS are given to the mapping algorithm
as constants. Decomposing CBB into elements of IS is
synonymous to simplifying CBB modulo subset of the IS as
side relation set. Thus, the symbolic algebra routine used
for this decomposition is simplification modulo set of
polynomials. Since different side relation sets result in
different mappings of a basic block [22], the algorithm uses
branch-and-bound method to reduce the search space. The

Figure 4. Overview of the mapping algorithm

Polynomial Representation of Basic Block

THR Factor Horner

Select Side
Relation Set

Simplify

Mapped?

Add to Side
Relation Set

Polynomial Rep.
of Instruction Set

Select Best Solution

No

Yes

Expand

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

bounding function is the best execution time or power
dissipation seen so far. Expression manipulation techniques
available in symbolic algebra are used as heuristic
guidelines for choosing the side relation set. Initially, tree-
height reduction, factorization, expansion, and Horner-
based transform are applied to CBB resulting in several
polynomial representations of the same basic block. Each of
these representations suggests an initial side relation set
based on the available instruction set to accelerate the
mapping process. This algorithm was implemented in C with
calls to Maple V for symbolic manipulations.

4. Results
We have optimized several portions of the algorithmic

level C program of an MP3 decoder using SymSoft for the
SmartBadge embedded system [1] shown in Figure 1. We
obtained the original MP3 audio decoder software from the
International Organization for Standardization (ISO) [3]. Our
design goal was to obtain real-time performance with low
energy consumption while keeping full compliance with the
MPEG standard. The first step in decoding MP3 stream is
synchronizing the incoming bitstream and the decoder.
Huffman decoding of the subband coefficients is performed
before requantization. Stereo processing, if applicable,
occurs before the inverse mapping which consists of an
inverse modified cosine transform (IMDCT) followed by a
polyphase synthesis filterbank.

The manual optimization for MP3 decode on the
SmartBadge [18] required the designer to implement a fixed-
point library and replace all floating-point operations with
fixed-point. Then, designer fully understood the details of
the SmartBadge’s design to be able to manually optimize the
critical arithmetic sections of the code, often with inline
assembly code. The manual optimization process took
several days. In contrast, SymSoft automates all steps of
the same process and iterations take only a few minutes. It
also enables new manual optimizations with the polynomial
approximation step for nonlinear functions.

The first step in the symbolic software optimization
(SymSoft) flow is to check if floating-point data types are
suitable for the given platform. Since SmartBadge’s
processor, StrongARM 1100, can only emulate the floating-
point operations, there is a need for data representation
transformation. The code was converted to use fixed-point
arithmetic. It was verified through simulation that 27-bit
precision fixed-point data-types are sufficient to meet the
compliance test provided by MPEG standard [19].
Automating floating-point to fixed-point data type
conversion has been targeted by the tool Fridge[4]. The
result of this step shows significant improvement over the
original code. However, the resulting code does not satisfy
given power and timing constraints.

 Energy profile of the original source code highlights the
critical procedures of the code and their critical basic blocks.
Table 1 shows a list of critical procedures and their impact
on the final power consumption. These sections of the

code are selected for further optimization. In the next step,
we use polynomial approximations for the non-linear
calculations in the critical basic blocks. Once more, we
validate that these approximations satisfy the MPEG
compliance test [19]. The polynomial representations of the
critical basic blocks are next mapped into the assembly
instructions by algorithm described in Section 3.4. It is
important to note that StrongARM compiler was not
capable of using the MAC instruction effectively. However,
our symbolic algorithm was able to effectively use this
instruction. The result of the decomposing algorithm was
inserted as inline assembly in the C code.

The results of optimizing critical functions of the MP3
code by SymSoft are compared with the original results from
straightforward compilation in Table 2. As we can see, 12-
70% improvement has been achieved using the SymSoft
methodology. Such improvement was previously possible
only thorough manual software optimization. The
automation introduced by SymSoft drastically reduces the
embedded software optimization cycle.

Table 3 compares the power consumption and

performance of four versions of the MP3 decoder running
on the SmartBadge. The first column corresponds to the
original MP3 code obtained from the ISO. The second
column shows the impact of changing floating-point
operations to fixed point. The third column corresponds to
the optimized code using the SymSoft flow. The fourth
column is the hand-optimized code. It can be seen that
SymSoft flow can achieve results close to manually
optimized software. However, manual optimization of the
code took several days while SymSoft optimization was
completed in few hours.

Table 1. Profiling the Original MP3 Code

Function % Power
SubBand 49%
IMDCT 26%
Dequant 5%
Antialias 0.74%
Hufman 0.47%
SynFilter 0.26%

Table 2. MP3 Results by Optimized Function

 Performance (#cycles) Energy Consumption (mJ)

Function original optimized %imp original optimized %imp

MDCTCoeff 1454550 957051 34.2 1.051 0.922 12.2
FilterS 5263831 4196853 20.3 3.630 3.319 8.6
Power3/4 14135 5380 61.9 0.040 0.009 76.6
Dequant 650894 421976 35.2 0.940 0.747 20.5
SubBandSyn 155204 70633 54.5 1.015 0.306 69.8

MDCT 63583 31954 49.7 0.101 0.051 49.6

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

5. Conclusion
The contribution of this paper is a tool flow, SymSoft,

that automates energy and performance optimization of
arithmetic sections of code for implementation on a given
embedded processor. Our tool combines energy profiling,
automated data representation conversion, derivation of
polynomial representation and symbolic algebra. Energy
profiling is necessary to identify critical sections of code
that need to be optimized. For more complex arithmetic
functions, the conversion into a polynomial representation
is needed in order to enable symbolic algebra techniques.
Symbolic computer algebra decomposes the polynomial
representation of the basic blocks into a set of instructions
available on the embedded processor.

We demonstrated application of our tool, SymSoft, to the
optimization of MP3 audio decoding for the SmartBadge [2]
embedded system as an example. The optimized MP3 audio
decoder is fully compliant with the MPEG standard and runs
in real time with low energy consumption. Using SymSoft
for source code optimization we have been able to increase
performance by a factor of 7.27 while decreasing energy
consumption by a factor of 4.45. This improvement is
primary achieved by reducing the number of memory
accesses and instructions executed in critical basic blocks.
The technique presented in this paper can be easily used in
conjunction with other compiler optimization techniques [6].

6. Acknowledgments
This research is supported by ARPA/MARCO Gigascale

Research Center, HP Labs, and Synopsys Inc. We would
like to thank all organizations for their support.

7. References
[1] P. G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens,

“Embedded software in real-time signal processing systems:
application and architecture trends,” Proc. IEEE, vol. 85, no. 3,
pp. 419-435, Mar. 1997.

[2] G. Q. Maguire, M. Smith, H. W. Peter Beadle, “SmartBadges: a
wearable computer and communication system”, 6th International
Workshop on Hardware/Software Codesign, Invited talk, 1998.

[3] “Coded representation of audio, picture, multimedia and
hypermedia information”, ISO/IEC JTC/SC 29/WG 11, Part 3.,
May 1993.

[4] M. Willems, H. Keding, T. Grötket, and H. Meyr, “Fridge: An
interactive Fixed-Point Code Generation Environment for
HW/SW CoDesign”, Proceedings of Int. Conf. On Acoustics,
Speech, and Signal Processing, 1997.

[5] Albert Wang, Earl Killian, Dror Maydan, Chris Rowen,
“Hardware/Software Instruction Set Configurability for System-on-
Chip Processors”, Design Automation Conference, pp. 184-190,
2001.

[6] S. Muchnick, Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1997.

[7] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E.
Bugnion, M. Lam, “Maximizing multiprocessor performance with
the SUIF compiler”, IEEE Computer vol. 29, no. 12, pp. 84-89,
Dec. 1996.

[8] P. Marwedel and G. Goossens. Code Generation for Embedded
Processors. Kluwer Academic Publishers, 1995.

[9] R. Leupers, Retargetable Code Generation for Digital Signal
Processors, Kluwer Academic Publishers, 1997

[10] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele,
A. Vanduoppelle, Custom Memory Management Methodology:
Exploration of Memory Organisation for Embedded Multimedia
System Design, 1998, Kluwer Academic Pub.

[11] V. Tiwari, S. Malik, A. Wolfe, M. Lee, “Instruction Level Power
Analysis and Optimization of Software”, Journal of VLSI Signal
Processing Systems, vol 13, no.2-3, pp.223-2383, 1996.

[12] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization”,
IEEE Transactions on VLSI Systems, vol. 2, no.4, pp.437-445,
December 1994.

[13] H. Mehta, R.M. Owens, M.J. Irvin, R. Chen, D. Ghosh,
“Techniques for Low Energy Software”, International Symposium
on Low Power Electronics and Design, pp. 72-75, 1997.

[14] Y. Li and J. Henkel, “A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems”, Design
Automation Conference, pp.188-193, 1998.

[15] H. Tomyiama, H., T. Ishihara, A. Inoue, H. Yasuura, “Inst ruction
scheduling for power reduction in processor-based system design”,
Design, Automation and Test in Europe, pp. 23-26, Feb. 1998.

[16] M. Kandemir, N. Vijaykrishnan, M. Irwin, W. Ye, “Influence of
Compiler Optimizations on System Power”, The 27th International
Symposium on Computer Architecture, pp.35-41, 2000.

[17] Advanced RISC Machines Ltd (ARM), ARM Software Development
Toolkit Version 2.11, 1996.

[18] T. Simunic, L. Benini, G. De Micheli, “Energy-Efficient Design of
Battery-Powered Embedded Systems”, Special Issue of IEEE
Transactions on VLSI, pp. 18-28, May 2001.

[19] ISO/IEC JTC 1/SC 29/WG 11 13818-4, “Information Technology,
Generic Coding of Moving Pictures and Associated Audio:
Conformance”, International Organization for Standardization,
1996.

[20] Maple, Waterloo Maple Inc., www.maplesoft.com, 1988.

[21] Mathematica, Wolfram Research Inc., www.wri.com, 1987.

[22] A. Peymandoust and G. De Micheli, “Symbolic Algebra and
Timing Driven Data-flow Synthesis”, Proceedings of the
International Conference on Computer Aided Design, 2001.

[23] T. Becker and V. Weispfenning, Gröbner Bases, Springer-Verlag,
New York, NY, 1993.

[24] J. Smith and G. De Micheli, “Polynomial Methods for Component
Matching and Verification”, Proceedings of the International
Conference on Computer Aided Design, 1998.`

Table 3. MP3 Combined Optimization Results

Comparison Original Fixed SymSoft Manual

Energy (mWhr) 1.67 1.51 0.375 0.36

improvement
factor 1 1.104 4.453 4.639

Performance (s) 68.5 17.9 9.42 8.2

improvement
factor 1 3.827 7.272 8.354

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

