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Abstract 
The market demand for portable multimedia 

applications has exploded in the recent years.  
Unfortunately, for such applications current compilers and 
software optimization methods often require designers to 
do part of the optimization manually.  Specifically, the 
high-level arithmetic optimizations and the use of complex 
instructions are left to the designers' ingenuity.  In this 
paper, we present a tool flow, SymSoft, that automates the 
optimization of power-intensive algorithmic constructs 
using symbolic algebra techniques combined with energy 
profiling.  SymSoft is used to optimize and tune the 
algorithmic level description of an MPEG Layer III (MP3) 
audio decoder for the SmartBadge [2] portable embedded 
system.  We show that our tool lowers the number of 
instructions and memory accesses and thus lowers the 
system power consumption.  The optimized MP3 audio 
decoder software meets real-time constraints on the 
SmartBadge system with low energy consumption.  
Furthermore, the performance improves by a factor of 7.27 
and the energy consumption decreases by a factor of 4.45 
over the original executable specification. 

1. Introduction 
Low cost with fast time to market is the top requirement 

in system-level design of embedded multimedia appliances. 
In embedded system design environment, the degrees of 
freedom in hardware are often very limited, whereas for 
software much more freedom is available.  As a result, the 
primary requirement for embedded system-level design 
methodology is to effectively support code performance 
and energy consumption optimization.  Automating as many 
steps in the design of software from algorithmic-level 
specification is necessary to meet time to market 
requirements. Unfortunately, current available compilers and 
software optimization tools cannot meet all designers’ 
needs.  Typically, software engineers start with algorithmic 
level C code, often developed by standards groups, and 
manually optimize it to execute on the given hardware 

platform such that power and performance constraints are 
satisfied.  Needless to say, this conversion is a time-
consuming and often error-prone task, which introduces 
undesired delay in the overall development process.  In 
addition, most compilers are unable to compile C code 
efficiently for embedded processors.  Therefore, software 
engineers need to design key routines in assembly [1], 
which is extremely time consuming.   

Our objective is to improve the quality of compiled code 
for embedded systems and facilitate the software design 
process.  In this paper, we propose a new methodology 
based on symbolic manipulation of polynomials and energy 
profiling which reduces manual intervention.  We apply a 
set of techniques previously used in algorithmic-level 
hardware synthesis [22] and combine them with energy 
profiling, floating-point to fixed-point data conversion, and 
polynomial approximation to achieve a new embedded 
software optimization methodology.  The combination of 
these tools and standard compiler optimization techniques 
allow novel automatic code transformations.  

As a motivating example, consider the code segment 
shown below: 

for i=1..3 
 y = y + cos(i*x); 

Using standard loop unrolling, the given code is 
transformed into the following: 

y = cos(x) + cos(2*x) + cos(3*x); 
Now assume that for a given application cos(x) can be 
approximated into a Taylor series with three terms without 
noticeable degradation on the output.  Many multimedia 
applications tolerate computational inaccuracy well, as long 
as the resulting effects (e.g. audio, video degradation) are 
limited.  Therefore, y can be approximated as a polynomial: 
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This polynomial can be further simplified using the expand 
routine in symbolic algebra: 
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Assuming that the embedded processor used to execute 
this code has a multiply accumulate (MAC) instruction, 
another symbolic routine called the Horner transform can be 
used on y:    
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The new equation can be mapped to one multiply 
instruction and two multiply-accumulates.  Obviously, this 
mapping is much more efficient than three calls to the cosine 
library function.  Unfortunately, to our knowledge, there is 
no available tool that performs this simple optimization 
automatically.  Thus, it would be up to designers to 
manually implement such optimizations.  

This paper presents a tool-flow, called SymSoft, that 
automates algebraic manipulations such as the one shown 
in the previous example.  First, the energy critical code 
sections are identified using the energy profiler.  If 
necessary, a tool such as Fridge [4] can be used to 
transform floating-point data types into fixed-point.  Next, 
complex nonlinear arithmetic functions are approximated as 
polynomials such that the final output is within the 
acceptable tolerance limits.  Finally, symbolic algebra is 
used to map the polynomial representations of the critical 
basic blocks to the instruction set available such that 
performance and power consumption are optimized.  Note 
that more complex instructions (such as those developed by 
Tensilica tools  [5]) and hardware accelerators can also be 
used during the mapping step.  

We used SymSoft to optimize the MP3 software decoder 
such that it would meet real-time constraints on the 
SmartBadge [2].  The SmartBadge, as shown in Figure 1, is 
an embedded system consisting of Sharp’s display, 
Lucent’s WLAN link, StrongARM-1100 processor, RAM, 
FLASH, sensors, and modem/audio analog front-end on a 
PCB powered by batteries through a DC-DC converter.  The 
outcome of this experiment is a higher performance MP3 
decoder software for SmartBadge that uses less power.  For 
an MP3 player, shorter than real-time execution time implies 
that lower voltage and frequency can still meet the real-time 

constraint.  This in turn translates into longer battery life or 
lighter battery requirement for the system. 

The paper is organized as follows:  Section 2 discusses 
previous work in software optimization for energy and 
performance.  Section 3 presents the SymSoft flow, and 
gives an overview of each of its component.  The results of 
MP3 decoder optimization for SmartBadge are presented in 
Section 4.  We demonstrate that the MP3 decoder 
performance improves by a factor of 7.27 and its energy 
consumption decreases by a factor of 4.45 over the original 
executable specification. Finally, Section 5 summarizes 
contributions of this work. 

2. Related Work 
Optimization of software performance and size has been 

utilized by designers for many years.  Code optimization 
process translates a high level specification into optimized 
machine code for the target processor, often using 
compilers.  Several researchers have worked on optimizing 
compilers in last few years [6]. Prototype research compilers 
have shown impressive results [7]. Most optimizing 
compilers target high-performance and/or general-purpose 
computers.  Relatively little effort has been dedicated to 
create powerful optimizing compilers for embedded 
processors. Even though several researchers are studying 
automatic code optimization techniques for embedded 
processors [8,9], currently, most embedded processors (or 
DSPs) are programmed directly by expert programmers and 
code optimization is mostly based on human intuition and 
skill.  In addition, due to recent growth in market demand for 
portable devices, optimization of software for power 
consumption is gaining importance.  As a result, one of the 
primary requirements for system-level design methodology 
of embedded devices is to effectively support code energy 
consumption optimization.  

Several optimization techniques for lowering energy 
consumption have been presented in the past.  Catthoor et 
al presented a methodology that combines automated and 
manual software optimizations with main focus on 
optimizing memory accesses [10]. Tiwari et al [11,12] use 
instruction-level energy models to develop compiler-driven 
energy optimizations at assembly level such as instruction 
reordering, reduction of memory operands, operand 
swapping in the Booth multiplier, efficient usage of memory 
banks, and series of processor specific optimizations.  
Several other optimizations such as energy efficient register 
labeling during the compile phase [13], procedure inlining 
and loop unrolling [14] as well as instruction scheduling [15] 
have also been suggested.  In other work [16], various 
compiler optimizations are applied concurrently and the 
resulting energy consumption is evaluated via simulation. 
All of these techniques focus on automated instruction-
level optimizations driven by the compiler. Unfortunately, 
current available compilers have limited capabilities. 
Specifically, they are incapable of handling arithmetic 
optimizations such as shown in the Introduction example.  
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Figure 1. SmartBadge Architecture 
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Our proposed methodology and tools automate the 
process of identifying the code sections that would benefit 
from algebraic optimizations, and then perform the 
optimization using symbolic techniques.  Such symbolic 
techniques have been previously used in algorithmic level 
synthesis of data intensive circuits [22].  SymSoft uses the 
same principles previously used for high-level component 
mapping of hardware and applies them to the software 
optimization problem.   

3. SymSoft Flow 
 Here we present a tool flow, SymSoft, which aims to 

automate most parts of embedded system software 
optimization for a given embedded processor.  Ideally, the 
software designer would write an algorithmic-level 
description of the software and have a compiler-like tool 
optimize it for the given platform.  However, optimum 
implementation of calculation intensive routines for the 
particular hardware design is not possible with traditional 
compiler optimizations alone.  Commonly, the designer does 
most of such optimizations by hand.  Automating even a 
portion of this process can save much design time.    

SymSoft embodies a set of tools that enable the 
optimization process.  Figure 2 shows the SymSoft flow.  
The first step is to check whether software data 
representation matches the hardware implementation.  Most 
embedded processors support only fixed point computation, 
but many multimedia algorithms utilize floating-point 
operations.  The profiler, described in Section 3.2, detects if 
data representation is an issue within several seconds.  
Then, if needed, floating point operations can be replaced 
with fixed point using a tool such as Fridge [4].  The next 
step is to profile the code using the energy profiler.  
Profiling identifies target routines for optimization.   Next, 
basic blocks of the critical routines are identified, and when 
necessary, reformulated using polynomial approximation 
techniques.  Accuracy of optimization has to be checked 
against the original code, as both during the data 
representation conversion and during the polynomial 
formulation, some rounding occurs.  Once accuracy is 
satisfactory, resulting polynomials are decomposed into a 
sequence of instructions available on the particular 
hardware by novel symbolic techniques discussed in 
Section 3.4.  Finally, another check is performed using the 
profiler to determine whether the code has been sufficiently 
improved in terms of energy consumption and performance.  
Typically, it takes a few iterations to fully optimize the code.   

Our key contribution in SymSoft is a new method for 
basic block optimization using symbolic polynomial 
manipulation algorithms.  Note that SymSoft is compliant 
with other software optimization techniques.  Additional 
benefits are gained by combining traditional complier 
optimization algorithms, such as constant and variable 
propagation, dead code elimination, loop unrolling, with 
symbolic polynomial decomposition.  The next sections 
describe each step of SymSoft in detail. 

3.1  Data Representation Conversion 
Signal processing algorithms are generally developed 

using ANSI-C with IEEE floating-point data types.  
However, these algorithms are often implemented in 
embedded systems using fixed-point data types in order to 
meet the power, cost, and performance requirements.  
Converting a floating-point algorithm to a fixed-point 
algorithm is a time consuming and error prone task.  
Facilitating and semi-automating this conversion has been 
targeted by tools such as Fridge (a.k.a. CoCentric fixed-
point designer) [4].  Such tools use interpolative analysis to 
convert floating point C code into appropriate fixed-point 
code to reduce the manual work and the number of 
simulations required.  The designer annotates the critical 
variables of the design with the desired bit width and uses 
Fridge to automate the rest of the conversion through 
simulation and numerical analysis. 

3.2 Energy Profiling 
Code optimization requires extensive program execution 

analysis to identify energy-critical bottlenecks and to 
provide feedback on the impact of code transformations.  
Profiling is typically used to relate performance to the 
source code for CPU and L1 cache [17]. Energy profiler 
enables easy identification of energy-critical procedures.  It 
also facilitates analysis of code transformations’ impact on 

 

Figure 2. SymSoft Tool Flow 
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the processor energy consumption, the memory hierarchy 
and the system busses.  

 The profiler exploits a cycle-accurate energy 
consumption simulator [18] to relate the embedded system 
energy consumption and performance to the source code. 
Thus, it can be used for analysis  (i.e., to find energy-critical 
sections of the code), and for validation (i.e., to assess the 
impact of each code optimization). Estimation results were 
shown to be within 5% of measured energy consumption on 
the SmartBadge hardware.   

 The profiler architecture is shown in Figure 3.  Source 
code is compiled using a compiler for a target processor. 
The output of the compiler is the executable represented as 
assembly code and a map of locations of each procedure in 
the executable.  The profiler works concurrently with the 
cycle-accurate simulator.  It periodically samples the 
simulation results (by user defined sampling interval) and 
maps the energy and performance to the function executed 
using information gathered at the compile time.  Sampling is 
used to improve profiling speed while maintaining accuracy.  
Once the simulation is complete, the energy consumption 
and execution time of each function is displayed.   

With the profiler, SymSoft can obtain energy 
consumption breakdown by procedures in the source code 
and thus can quickly identify the sections of the source 
code whose optimization can provide the largest energy 
savings.  In addition, with the cycle-accurate simulator that 
is at the heart of the profiler, SymSoft can get detailed 
information about performance and energy consumption of 
smaller subsections of code.  Therefore, in this step, the 

critical basic blocks of the power hungry procedures are 
identified.  These basic blocks are then passed as inputs to 
polynomial approximation and symbolic mapping tools 
which can optimally map the code section assembly 
instructions in few minutes.  

3.3 Polynomial Formulation 
The energy profiler detects the critical basic blocks of the 

code.  The next step is to map the critical basic blocks to 
assembly instructions such that optimum power 
consumption and performance are achieved.  The mapping 
algorithm, described in Section 3.4, uses the principles of 
symbolic algebra and Gröbner basis [23].  The inputs to the 
mapping algorithm are the polynomial representations of the 
critical basic blocks and the polynomial equivalence of the 
arithmetic assembly instructions.  This step prepares the 
input to the symbolic mapping algorithm by calculating a 
polynomial representation for the critical basic blocks.   

The polynomial representation of a basic block can be 
directly extracted from the C code if the basic block 
calculates a linear function.  If the basic block performs a 
series of bit manipulations or Boolean functions, 
interpolation-based algorithms [24] can be used to formulate 
the equivalent polynomial representation.  When the basic 
block implements a nonlinear function, we use an 
approximation, such as the Taylor or Chebyshev series 
expansion, as its polynomial.  The chosen polynomial 
approximation has to be verified by simulation to ensure 
that the software constraints, such as audio quality, are 
satisfied.  A good approximation can result in large 
performance and power improvements for multimedia 
applications, since these applications can tolerate a slight 
degradation in the output. For example, to verify the 
accuracy of the MP3 decoder we have used the compliance 
test provided by the MPEG standard where the range of 
RMS error between the samples defines the compliance 
level [19].  If the approximation is not sufficient to satisfy 
the accuracy constraints, the quality of approximation is 
changed and verified again through simulation.  This step of 
SymSoft flow is not yet automated.   

3.4 Symbolic Optimization 
 At this step, the polynomial representations for critical 

basic blocks of the code are available. Arithmetic assembly 
instructions of the target embedded processor are also 
represented as polynomials. The goal of the symbolic 
optimization step is to decompose the polynomial 
representations of the basic blocks into the polynomial 
representations of available assembly instruction such that 
power consumption and performance are optimized.  Such 
decomposition is done with the help of symbolic computer 
algebra routines and algorithms. As opposed to tree 
covering based algorithms, in our method decomposition is 
performed simultaneously with instruction mapping and 
algebraic simplification of the given polynomial.   

Symbolic computer algebra is a set of algorithms capable 
of algebraic manipulation of expressions containing 
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undetermined values (symbols), such as variable x in  
(x+1)*(x-1).  Several commercial symbolic computer 
algebra softwares are available on the market; Maple [20] 
and Mathematica [21] are most widely used.  The algebraic 
object to be symbolically manipulated is a multivariate 
polynomial that represents a critical basic block identified in 
the profiling step.  Most interesting symbolic polynomial 
manipulations are based on Gröbner bases [23].  Gröbner 
bases also solve variable elimination in a set of polynomials 
and ideal membership problems, which is the core of 
simplification modulo set of polynomials [23].  

In order to show the power of symbolic algebra, consider 
a basic block implementing Equation 1: 
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  Equation 1 is approximated using Pade approximation to 
the polynomials shown in Equation 2 in the previous step of 
the SymSoft flow as described in Section 3.3. 
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The simplification modulo set of polynomials routine 
can be used to map the numerator and denominator of 
Equation 2 to the available instruction set.  In order to 
comply with Maple terminology, we call the routine simplify  
and the set of polynomials side relations.  Let dn be the 
numerator of Equation 2 with a, b, and c the constants of 
the polynomial.  Also, we define siderels as a subset of 
the available instructions with renamed variables.  We have:   

> dn:=1+a*x^2+b*x^4+c*x^6:   
 siderels:={w=x^2, y=b+c*w, z=a+y*w} 

> simplify(dn, siderels,[x,w,y,z]); 
   1+z*w 

Note that the first element of the side relation set (w=x^2) 
corresponds to the square or multiply instruction and the 
other two elements of the set (y=b+c*w, z=a+y*w) and the 
result of simplify (1+z*w) correspond to the MAC 
instruction.  The side relation set can be any subset of the 
available instruction set with proper renaming of the 
variables.  Different side relation sets result in finding other 
possible solutions for the specification.  The above implies: 

dn=1+a*x^2+b*x^4+c*x^6=1+z*w 
=1+(a+y*x^2)*x^2=1+(a+(b+c*x^2)*x^2)*x^2 

Therefore, the numerator of Equation 2 can be mapped to 
one square and three MACs instructions.  Assuming R1, 
R2, R3, R4, and R5 hold 1, a, b, c, and x, respectively, the 
resulting assembly code is: 

MULT R6, R5, R5 
MAC  R7, R3, R4, R6 
 MAC  R8, R2, R7, R6 
MAC  R7, R1, R8, R6 

 In the MP3 decoder program, the basic block evaluating 
Equation 1 uses floating-point and takes 2384 cycles to run 
on the StrongARM-1100 processor.  The approximation 
represented in Equation 2 calculates x using floating-point 
and d using fixed-point arithmetic and nested MACs as 
suggested by the symbolic optimization.  This 
approximation executes in 1257 cycles.  Thus we have 
achieved an improvement of 47% for this simple example.  

 Choosing the side relation set is a non-trivial task.  In 
previous work [22], an algorithm was introduced to select 
the side relation set such that the hardware implementation 
of a (portion of) data path with a given component library 
has minimal critical path delay.  In this paper, we use the 
algorithm to optimize mapping of the critical basic blocks of 
software to assembly instructions.  This method performs 
even more effectively when a rich instruction set (e.g. ASIP 
or hardware accelerator) is available.   

Figure 4 gives a brief overview of the mapping algorithm.  
Inputs to the algorithm are the polynomial representations 
of the critical basic blocks and the polynomial 
representations of the given instruction set.  The goal of the 
symbolic mapping algorithm is to decompose the 
polynomial representation of the critical basic block (CBB) 
into polynomial representations of the instruction set (IS) 
such that power consumption and delay are minimized.  The 
power and number of cycles the processor takes to execute 
each instruction in the IS are given to the mapping algorithm 
as constants.  Decomposing CBB into elements of IS is 
synonymous to simplifying CBB modulo subset of the IS as 
side relation set.  Thus, the symbolic algebra routine used 
for this decomposition is simplification modulo set of 
polynomials.  Since different side relation sets result in 
different mappings of a basic block [22], the algorithm uses 
branch-and-bound method to reduce the search space.   The 
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bounding function is the best execution time or power 
dissipation seen so far.  Expression manipulation techniques 
available in symbolic algebra are used as heuristic 
guidelines for choosing the side relation set.  Initially, tree-
height reduction, factorization, expansion, and Horner-
based transform are applied to CBB resulting in several 
polynomial representations of the same basic block.  Each of 
these representations suggests  an initial side relation set 
based on the available instruction set to accelerate the 
mapping process.  This algorithm was implemented in C with 
calls to Maple V for symbolic manipulations.   

4. Results 
We have optimized several portions of the algorithmic 

level C program of an MP3 decoder using SymSoft for the 
SmartBadge embedded system [1] shown in Figure 1.  We 
obtained the original MP3 audio decoder software from the 
International Organization for Standardization (ISO) [3].  Our 
design goal was to obtain real-time performance with low 
energy consumption while keeping full compliance with the 
MPEG standard.  The first step in decoding MP3 stream is 
synchronizing the incoming bitstream and the decoder.  
Huffman decoding of the subband coefficients is performed 
before requantization.  Stereo processing, if applicable, 
occurs before the inverse mapping which consists of an 
inverse modified cosine transform (IMDCT) followed by a 
polyphase synthesis filterbank. 

The manual optimization for MP3 decode on the 
SmartBadge [18] required the designer to implement a fixed-
point library and replace all floating-point operations with 
fixed-point.  Then, designer fully understood the details of 
the SmartBadge’s design to be able to manually optimize the 
critical arithmetic sections of the code, often with inline 
assembly code.  The manual optimization process took 
several days.  In contrast, SymSoft automates all steps of 
the same process and iterations take only a few minutes. It 
also enables new manual optimizations with the polynomial 
approximation step for nonlinear functions. 

The first step in the symbolic software optimization 
(SymSoft) flow is to check if floating-point data types are 
suitable for the given platform.  Since SmartBadge’s 
processor, StrongARM 1100, can only emulate the floating-
point operations, there is a need for data representation 
transformation.  The code was converted to use fixed-point 
arithmetic.  It was verified through simulation that 27-bit 
precision fixed-point data-types are sufficient to meet the 
compliance test provided by MPEG standard [19]. 
Automating floating-point to fixed-point data type 
conversion has been targeted by the tool Fridge[4].  The 
result of this step shows significant improvement over the 
original code.  However, the resulting code does not satisfy 
given power and timing constraints.  

 Energy profile of the original source code highlights the 
critical procedures of the code and their critical basic blocks.  
Table 1 shows a list of critical procedures and their impact 
on the final power consumption.  These sections of the 

code are selected for further optimization.  In the next step, 
we use polynomial approximations for the non-linear 
calculations in the critical basic blocks.  Once more, we 
validate that these approximations satisfy the MPEG 
compliance test [19].  The polynomial representations of the 
critical basic blocks are next mapped into the assembly 
instructions by algorithm described in Section 3.4.  It is 
important to note that StrongARM compiler was not 
capable of using the MAC instruction effectively.  However, 
our symbolic algorithm was able to effectively use this 
instruction.  The result of the decomposing algorithm was 
inserted as inline assembly in the C code.  

The results of optimizing critical functions of the MP3 
code by SymSoft are compared with the original results from 
straightforward compilation in Table 2.  As we can see, 12-
70% improvement has been achieved using the SymSoft 
methodology.  Such improvement was previously possible 
only thorough manual software optimization.  The 
automation introduced by SymSoft drastically reduces the 
embedded software optimization cycle. 

 
Table 3 compares the power consumption and 

performance of four versions of the MP3 decoder running 
on the SmartBadge.  The first column corresponds to the 
original MP3 code obtained from the ISO.  The second 
column shows the impact of changing floating-point 
operations to fixed point.  The third column corresponds to 
the optimized code using the SymSoft flow.  The fourth 
column is the hand-optimized code.  It can be seen that 
SymSoft flow can achieve results close to manually 
optimized software.  However, manual optimization of the 
code took several days while SymSoft optimization was 
completed in few hours.   

Table 1.  Profiling the Original MP3 Code 
 

Function % Power 
SubBand 49% 
IMDCT 26% 
Dequant 5% 
Antialias 0.74% 
Hufman 0.47% 
SynFilter 0.26% 

Table 2. MP3 Results by Optimized Function 

 Performance (#cycles)  Energy Consumption (mJ)

Function original optimized %imp original optimized %imp 

MDCTCoeff 1454550 957051 34.2 1.051 0.922 12.2 
FilterS 5263831 4196853 20.3 3.630 3.319 8.6 
Power3/4 14135 5380 61.9 0.040 0.009 76.6 
Dequant 650894 421976 35.2 0.940 0.747 20.5 
SubBandSyn 155204 70633 54.5 1.015 0.306 69.8 

MDCT  63583 31954 49.7 0.101 0.051 49.6  

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02) 
1530-1591/02 $17.00 © 2002 IEEE 



5.  Conclusion 
The contribution of this paper is a tool flow, SymSoft, 

that automates energy and performance optimization of 
arithmetic sections of code for implementation on a given 
embedded processor. Our tool combines energy profiling, 
automated data representation conversion, derivation of 
polynomial representation and symbolic algebra.  Energy 
profiling is necessary to identify critical sections of code 
that need to be optimized.  For more complex arithmetic 
functions, the conversion into a polynomial representation 
is needed in order to enable symbolic algebra techniques.  
Symbolic computer algebra decomposes the polynomial 
representation of the basic blocks into a set of instructions 
available on the embedded processor.     

We demonstrated application of our tool, SymSoft, to the 
optimization of MP3 audio decoding for the SmartBadge [2] 
embedded system as an example.  The optimized MP3 audio 
decoder is fully compliant with the MPEG standard and runs 
in real time with low energy consumption. Using SymSoft 
for source code optimization we have been able to increase 
performance by a factor of 7.27 while decreasing energy 
consumption by a factor of 4.45.  This improvement is 
primary achieved by reducing the number of memory 
accesses  and instructions executed in critical basic blocks.  
The technique presented in this paper can be easily used in 
conjunction with other compiler optimization techniques [6]. 
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Table 3. MP3 Combined Optimization Results  
 

Comparison Original Fixed SymSoft Manual

Energy (mWhr) 1.67 1.51 0.375 0.36 

improvement 
factor 1 1.104 4.453 4.639 

Performance (s)  68.5 17.9 9.42 8.2 

improvement 
factor 1 3.827 7.272 8.354 
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