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Abstract—Energy consumption of electronic devices has become
a serious concern in recent years. Power management (PM) algo-
rithms aim at reducing energy consumption at the system-level by
selectively placing components into low-power states. Formerly,
two classes of heuristic algorithms have been proposed for PM:
timeout and predictive. Later, a category of algorithms based on
stochastic control was proposed for PM. These algorithms guar-
antee optimal results as long as the system that is power man-
aged can be modeled well with exponential distributions. We show
that there is a large mismatch between measurements and simu-
lation results if the exponential distribution is used to model all
user request arrivals. We develop two new approaches that better
model system behavior for general user request distributions. Our
approaches are event-driven and give optimal results verified by
measurements. The first approach we present is based on renewal
theory. This model assumes that the decision to transition to low-
power state can be made in only one state. Another method we de-
veloped is based on the time-indexed semi-Markov decision process
(TISMDP) model. This model has wider applicability because it as-
sumes that a decision to transition into a lower-power state can be
made upon each event occurrence from any number of states. This
model allows for transitions into low-power states from any state,
but it is also more complex than our other approach. It is impor-
tant to note that the results obtained by renewal model are guar-
anteed to match results obtained by TISMDP model, as both ap-
proaches give globally optimal solutions. We implemented our PM
algorithms on two different classes of devices: two different hard
disks and client–server wireless local area network systems such as
the SmartBadge or a laptop. The measurement results show power
savings ranging from a factor of 1.7 up to 5.0 with insignificant
variation in performance.

Index Terms—Power consumption, stochastic processes, system
analysis.

I. INTRODUCTION

ENERGY consumption has become one of the primary con-
cerns in electronic design due to the recent popularity of

portable devices and environmental concerns related to desktops
and servers. The battery capacity has improved very slowly (a
factor of two to four over the last 30 years), while the compu-
tational demands have drastically increased over the same time
frame. Better low-power circuit design techniques have helped
to increase battery lifetime [1]–[3]. On the other hand, managing
power dissipation at higher levels can considerably reduce en-
ergy consumption and, thus, increase battery lifetime [4].
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System-level energy-conscious design is an effective way to
reduce energy consumption. System-leveldynamic power man-
agement[5] decreases the energy consumption by selectively
placing idle components into lower power states. System re-
sources can be modeled using state-based abstraction where
each state trades off performance for power [6]. For example,
a system may have an active state, an idle state, and a sleep state
that has lower power consumption, but also takes some time
to transition to the active state. The transitions between states
are controlled by commands issued by a power manager (PM)
that observes the workload of the system and decides when and
how to force power state transitions. The PM makes state transi-
tion decisions according to thepower management policy.The
choice of the policy that minimizes power under performance
constraints (or maximizes performance under power constraint)
is a constrained optimization problem.

The most common power management policy at the system
level is atimeout policyimplemented in most operating systems
(OSs). The drawback of this policy is that it wastes power while
waiting for the timeout to expire [7], [8]. Predictive policies de-
veloped for interactive terminals [9], [10] force the transition to
a low-power state as soon as a component becomes idle if the
predictor estimates that the idle period will last long enough.
An incorrect estimate can cause both performance and energy
penalties. Both timeout and predictive policies are heuristic in
nature and, thus, do not guarantee optimal results.

In contrast, approaches based on stochastic models can guar-
antee optimal results. Stochastic models use distributions to de-
scribe the times between arrivals of user requests (interarrival
times), the length of time it takes for a device to service a user’s
request, and the time it takes for the device to transition be-
tween its power states. The system model for stochastic opti-
mization can be described either with just memoryless distri-
butions (exponential or geometric) [11]–[14] or with general
distributions [15]–[18]. Power management policies can also
be classified into two categories by the manner in which de-
cisions are made: discrete time (or clock based) [11], [12] and
event driven [13]–[18]. In addition, policies can be stationary
(the same policy applies at any point in time) or nonstationary
(the policy changes over time). All stochastic approaches ex-
cept for the discrete adaptive approach presented in [12] are sta-
tionary. The optimality of stochastic approaches depends on the
accuracy of the system model and the algorithm used to com-
pute the solution. In both discrete and event-driven approaches
optimality of the algorithm can be guaranteed since the under-
lying theoretical model is based on Markov chains. Approaches
based on the discrete time setting require policy evaluation even
when in low-power state [11], [12], thus wasting energy. On
the other hand, event-driven models based on exponential dis-
tribution [13], [14] show little or no power savings when im-
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plemented in real systems since the exponential model does not
describe well the request interarrival times of users [15]–[18].

In this paper, we introduce two new models for power man-
agement at the system level that enable modeling system tran-
sitions with general distributions, but are still event driven and
guarantee optimal results. In order to verify our models, we im-
plemented our power management algorithms on two different
classes of devices: two different hard disks and client–server
wireless local area network (WLAN) systems such as the Smart-
Badge [19] or a laptop. For each of these devices, we collected a
set of traces that model typical user behavior well. We found the
interarrival times between user requests are best modeled with a
nonexponential distribution (a Pareto distribution shows the best
fit, although our model applies to any distribution or direct data).
These results are consistent with the observations on network
traffic interarrival times presented in [20]. In addition, we mea-
sured the distributions of transition times between active, idle,
and low-power states for each of the systems and found nonex-
ponential transition times into or out of a low-power state. Tra-
ditional Markov chain models presented in previous work do not
apply to these devices since user request arrivals and the tran-
sition times of a device are best modeled with nonexponential
distributions. As a result, we formulated the policy optimization
problem using two different stochastic approaches.

The first approach is based on renewal theory [21], [22]. It is
more concise, but also is limited to systems that have only one
decision state. The second approach is based on the time-indexed
semi-Markov decision process (TISMDP) model. This model is
moregeneral,butalsomorecomplex. Inbothcases, thepolicyop-
timization problem can be solvedexactlyand in polynomial time
by solving a linear program (LP). Clearly, since both approaches
guarantee optimal solutions, they will give the same solution to
a given optimization problem. Note that both approaches can
handlegeneraluser request interarrivaldistributions,eventhough
in the particular examples presented in this work we use the
Pareto distribution since it showed a good fit to the data collected
experimentally. The policy decisions are made only upon request
arrivalorupon finishingservingarequest, insteadofatevery time
increment as in discrete-time model. Since policy decisions are
made in event-driven manner, more power is saved by not forcing
policyre-evaluationsasindiscrete-timemodels.

We obtain globally optimal results for policy optimization
using our models and in addition we present simulation and,
more importantly, real measurement results. Our results show
that the reduction in power can be as large as 2.4 times with
a small performance penalty when power managing the laptop
hard disk and 1.7 times for the desktop hard disk. This power
reduction, which is compared against the Windows OS default
timeout policy, is very significant and shows the overall ben-
efits of our approach. Our algorithms perform better than any
other power management algorithms tested in [23]. The mea-
surements of optimal policy implemented on a laptop for the
WLAN card show that the reduction in power can be as large
as a factor of five with a small performance penalty. Finally,
power management results on the SmartBadge show savings of
as much as 70% in power consumption.

The remainder of the paper is organized as follows. Section III
describes the stochastic models of the system components based

on the experimental data collected. We develop the model for
power management based on renewal theory in Section IV. Next,
we present the TISMDP model for the dynamic power manage-
ment policy optimization problem in Section V. We show sim-
ulation results for the SmartBadge, measured results for power
managing WLAN card on a laptop, and both simulated and mea-
sured results for power managing a hard disk on a laptop and a
desktop running Windows OS in Section VI. Finally, we sum-
marize our findings and outline future directions of research in
Section VII.

II. RELATED WORK

The fundamental premise for the applicability of power
management schemes is that systems or system components,
experience nonuniform workloads during normal operation
time. Nonuniform workloads are common in communication
networks and in almost any interactive system. In the recent
past, several researchers have realized the importance of power
management for large classes of applications. Chip-level power
management features have been implemented in mainstream
commercial microprocessors [24]–[27]. Techniques for the
automatic synthesis of chip-level power management logic are
surveyed in [5].

Predictive policies for hard disks [28]–[32] and for interac-
tive terminals [9], [10], [33] force the transition to a low-power
state as soon as a component becomes idle if the predictor es-
timates that the idle period will last long enough. An incorrect
estimate can cause both performance and energy penalties. The
distribution of idle and busy periods for an interactive terminal
is represented as a time series in [9] and approximated with a
least-squares regression model. The regression model is used
for predicting the duration of future idle periods. A simplified
power management policy predicts the duration of an idle period
based on the duration of the last activity period. The authors of
[9] claim that the simple policy performs almost as well as the
complex regression model and it is much easier to implement.
In [10], an improvement over the prediction algorithm of [9] is
presented, where idleness prediction is based on a weighted sum
of the duration of past idle periods with geometrically decaying
weights. The policy is augmented by a technique that reduces
the likelihood of multiple mispredictions. All these policies are
formulated heuristically, then tested with simulations or mea-
surements to assess their effectiveness.

Another good example of heuristic power management policy
is defined in the new IEEE 802.11 standard for wireless LAN
at medium access control and physical layers [34]. The standard
requires that a central access point (AP) send out a beacon every
100 ms followed by a traffic indication map (TIM). Each card
that desires to communicate has to actively listen for the beacon
in order to synchronize the clock with the AP and for the TIM
to find out if any data is arriving for it. If it does not need to
transmit or receive, the card can then go to the doze state until
the next beacon. The IEEE standard does not address the need
for power management at the system level. If the card is turned
off when it is not being used, much larger power savings can be
observed.
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Stochastic models have also been introduced to obtain
optimal power management algorithms. The optimality is
guaranteed only under a set of assumptions that may or may
not hold in real cases. Beniniet al. [11] formulated a proba-
bilistic system model based on discrete-time Markov decision
processes (DTMDPs). They rigorously formulate the policy
optimization problem and showed that it can be solved exactly
and in polynomial time in the size of the system model. The
DTMDP approach requires that all state transitions follow
stationary geometric distributions, which is not true in many
practical cases. Nonstationary user request rates can be treated
using an adaptive policy interpolation procedure presented in
[12]. A limitation of both stationary and adaptive DTMDP
policies is that decision evaluation is repeated periodically,
even when the system is idle, thus wasting power. For example,
for a 10-W processor, the DTMDP policy with evaluation
period of 1 s would waste as much as 1800 J of energy from the
battery during a 30-min break. The advantage of the discrete
time approach is that decisions are reevaluated periodically
so the decision can be reconsidered, thus adapting better to
arrivals that are not truly geometrically distributed.

An alternative to the DTMDP model is a continuous-time
Markov decision process (CTMDP) model [13], [14]. In a
CTMDP, the PM issues commands upon event occurrences
instead of at discrete time settings. As a result, more energy
can be saved since there is no need to continually reevaluate the
policy in the low-power state. Results are guaranteed optimal
assuming that the exponential distribution describes well the
system behavior. Unfortunately, in many practical cases the
transition times may be distributed according to a more general
distribution. As a result, in real implementation the results
are far from optimal [16]–[18]. Work presented in [14] uses
series and parallel combinations of exponential distributions to
approximate general distribution of transition times. Unfortu-
nately, this approach is very complex and also gives a very poor
approximation for the bursty behavior observed in real systems
[16]–[18], [20]. In fact, the authors present only simulation
results exclusively based on the exponential distribution.

In this paper, we present two new models for power manage-
ment at the system level that accurately model system behavior,
are event driven, and guarantee optimal results. In addition, we
not only simulate, but also implement our power management
policies on real systems, thus allowing us to get measurements
of real power consumption. In the next section, we will develop
our system model based on actual measurement results using
realistic workloads.

III. SYSTEM MODEL

In this paper, we focus on the systems that can be modeled
with three components: the user, device, and the queue as
shown in Fig. 1. While the methods presented in this paper
are general, the optimization of energy consumption under
performance constraints (or vice versa) is applied to and
measured on two different classes of devices: two hard disks
and client–server WLAN systems such as the SmartBadge [19]
or a laptop [35]. The SmartBadge can be used as a corporate
identity card, attached (or built in) to devices such as personal

Fig. 1. System model.

digital assistants (PDA) and mobile telephones, or incorporated
in computing systems. In this paper, we use it as a PDA.
The WLAN card is used as an internet access on the laptop
computer. The hard disks are both part of Windows machines,
one in the desktop and the other in the laptop. The queue
models a memory buffer associated with each device. In all
examples, the user is an application that accesses each device
by sending requests via an OS.

Power management aims at reducing energy consumption
in systems by selectively placing components into low-power
states. Thus, at runtime, the PM observes user request arrivals,
the state of the device’s buffer, the power state, and the activity
level of the device. When all user requests have been serviced,
the PM can choose to place the device into a low-power state.
This choice is made based on a policy. Once the device is in a
low-power state, it returns to active state only upon arrival of
a new request from a user. Note that a user request can come
directly from a human user, from the OS, or even from another
device.

Each system component is described probabilistically. The
user behavior is modeled by a request interarrival distribution.
Similarly, the service time distribution describes the behavior of
the device in the active state. The transition distribution models
the time taken by the device to transition between its power
states. Finally, the combination of interarrival time distribution
(incoming jobs to the queue) and service time distribution (jobs
leaving the queue) appropriately characterizes well the behavior
of the queue. These three categories of distributions completely
characterize the stochastic optimization problem. The details of
each system component are described in the next sections.

A. User Model

As the user’s stochastic model is defined by the request inter-
arrival time distribution, it is of critical importance to collect a
good set of traces that do a good job of representing typical user
behavior. We collected an 11-h user request trace for the PC
hard disks running a Windows OS with standard software (e.g.,
Excel, Word, Visual C ). In the case of the SmartBadge, we
monitored the accesses to the server during multiple long ses-
sions. For the WLAN card, we used thetcpdumputility [36] to
get the user request arrival times for two different applications
(telnet and web browser).

The request interarrival times in the active state (the state
where one or more requests are in the queue) for all three de-
vices are exponential in nature. Fig. 2 shows the exponential cu-
mulative distribution fitted to measured results of the hard disk.
Similar results have been observed for the other two devices in
the active state. Thus, we can model the user in active state with
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Fig. 2. User request arrivals in active state for hard disk.

rate and the mean request interarrival time , where the
probability of the hard disk or the SmartBadge receiving a user
request within time intervalfollows the cumulative probability
distribution shown below

(1)

The exponential distribution does not model well arrivals in
the idle state. The model we use needs to accurately describe the
behavior of long idle times as the largest power savings are pos-
sible over the long low-power periods. We first filter out short
user request interarrival times in the idle state in order to focus
on the longer idle times. The filter interval is based on the par-
ticular device characteristics and not on the pattern of user ac-
cess to the device. Filter interval is defined as a fraction of the
break-eventime of the device. Break-even time is the time the
device has to stay in the low-power state in order to recuperate
the cost of transitioning to and from the low-power state. Transi-
tioning into a low-power state during idle times that are shorter
than the break-even time is guaranteed to waste power. Thus,
it is desirable to filter out very short idle times. We found that
filter intervals from 0.5 s to about 2 s are most appropriate to
use for the hard disk, while for the SmartBadge and the WLAN
card filter intervals are considerably shorter (50–200 ms) since
these devices respond much faster than the hard disk.

We use the tail distribution to highlight the probability of
longer idle times that are of interest for power management.
The tail distribution provides the probability that the idle time
is greater than. Fig. 3 shows the measured tail distribution of
idle periods fitted with Pareto and exponential distributions for
the hard disk and Fig. 4 shows the same measurements for the
WLAN card. The Pareto distribution shows a much better fit for
the long idle times as compared to the exponential distribution.
The Pareto cumulative distribution is defined in (2). Pareto pa-
rameters are and for the hard disk, and

for WLAN web requests, and and for
WLAN telnet requests. SmartBadge arrivals behave the same
way as the WLAN arrivals

(2)

B. Portable Devices

Power-managed devices typically have multiple power states.
Each device has one active state in which it services user re-
quests and one or more low-power states. The PM can trade off

Fig. 3. Hard-disk idle state arrival tail distribution.

(a)

(b)

Fig. 4. WLAN idle state arrival tail distribution. (a) WWW trace. (b) Telnet
trace.

power for performance by placing the device into low-power
states. Each low-power state can be characterized by the power
consumption and the performance penalty incurred during the
transition to or from that state. Usually, higher performance
penalty corresponds to lower power states.

1) SmartBadge:The SmartBadge shown in Fig. 5 is an em-
bedded system consisting of a Sharp’s display, WLAN RF link,
StrongARM-1100 processor, Micron’s SDRAM, FLASH, sen-
sors, and modem/audio analog front-end on a printed circuit
board powered by the batteries through a DC–DC converter. The
initial goal in designing the SmartBadge was to allow a com-
puter or a human user to provide location and environmental
information to a location server through a heterogeneous net-
work. The SmartBadge could be used as a corporate ID card,
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Fig. 5. SmartBadge.

TABLE I
SMARTBADGE COMPONENTS

attached (or built in) to devices such as PDAs and mobile tele-
phones, or incorporated in computing systems. Both the Smart-
Badge and the WLAN card operate as a part of a client–server
system. Thus, they initiate and end each communication session.
The server just responds to their requests.

The SmartBadge supports three lower power states: idle,
standby, and off. The idle state is entered immediately by each
component in the system as soon as that particular component
is not accessed. The standby and off state transitions can be
controlled by the PM. The transition from standby or off state
into the active state can be best described using the uniform
probability distribution. Components in the SmartBadge, the
power states, and the transition times of each component from
standby ( and off ( ) state into active state, and the
transition times between standby and off states () are shown
in Table I. Note that the SmartBadge has two types of data
memory—slower SRAM (1 MB, 80 ns) from Toshiba and faster
DRAM (4 MB, 20 ns) from Micron that is used only during
MPEG decode. Memory takes longer to transition from the off
to the active state as contents of RAM have to be downloaded
from FLASH and initialized. The power consumption of all
components in the off state is 0 mW.

2) WLAN Card: The wireless card has multiple power
states: two active states,transmittingand receiving, and two
inactive states,dozeand off. Transmission power is 1.65 W,
receiving 1.4 W, and the power consumption in the doze state
is 0.045 W [35] and in the off state it is 0 W. When the card
is awake (not in the off state), every 100 ms it synchronizes
its clock to the AP by listening to the AP beacon. After that, it
listens to the TIM map to see if it can receive or transmit during
that interval. Once both receiving and transmission are done, it
goes into the doze state until the next beacon. This portion of

Fig. 6. Hard-disk service time distribution.

the system is fully controlled from the hardware and, thus, is
not accessible to the PM that has been implemented at the OS
level.

The PM can control the transitions between the doze and the
off states. Once in the off state, the card waits for the first user
request arrival before returning back to the doze state. We mea-
sured the transitions between the doze and the off states using
cardmgrutility. The transition from the doze state into the off
state takes on average ms with variance of
ms. The transition back takes ms with ms
variance. The transition between doze and off states are best de-
scribed using the uniform distribution.

3) Hard Disk: The Fujitsu MHF 2043AT hard disk in the
Sony Vaio laptop we used in our experiments supports two states
in which the disk is spinning—idle and active with average
power consumption of 0.95 W. When the data is read or written,
the power consumption is 2.5 W, but since the service rate is
very high, the average power is 0.95 W. Service times on the
hard disk in the active state most closely follow an exponential
distribution as shown in Fig. 6. We found similar results for the
SmartBadge and the WLAN card. The average service time is
defined by , where is the average service rate. Equation
(3) defines the cumulative probability of the device servicing a
user request within time interval

(3)

The PM can control the transitions between the idle and the
sleep state. The transition from the sleep to the active state re-
quires spinup of the hard disk, which is very power intensive:
2.1 W. While in the sleep state, the disk consumes only 0.13 W.
Once in the sleep state, the hard disk waits for the first service
request arrival before returning to the active state. The transition
between active and sleep states is best described using the uni-
form distribution, where and can be defined as
and , respectively. The cumulative probability function
for the uniform distribution is shown below

(4)

Fig. 7 shows the large error that would be made if the transi-
tion to the sleep state were approximated using an exponential
distribution. The transition from the active state into the sleep
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Fig. 7. Hard-disk transition from sleep to active state.

TABLE II
SYSTEM MODEL OVERVIEW

state takes on average 0.67 s with variance of 0.1 s. The transi-
tion back into the active state is much longer, requiring 1.6 s on
average with 0.5 s variance.

C. Queue

Portable devices normally have a buffer for storing requests
that have not been serviced yet. Since we did not have access to
the detailed information about the real-time size of each queue,
we measured the queue size of maximum ten jobs with an ex-
periment on a hard disk using a typical user trace. Because the
service rate in the SmartBadge and WLAN card is higher and
the request arrival rate is comparable, we assume that the same
maximum queue size can be used. As the requests arriving at
the hard disk do not have priority associated with them and
the SmartBadge requests by definition do not have priority, our
queue model contains only the number of jobs waiting for ser-
vice. Active and low-power states can be differentiated then by
the number of jobs pending for service in the queue.

D. Model Overview

Table II shows the probability distributions used to describe
each system component derived from the experimental results.
User request interarrival times with at least one job in the queue
are best modeled with the exponential distribution. On the other
hand, we have shown that in all four applications, the Pareto
distribution is best used to model the arrival of the user’s re-
quests when the queue is empty. Note that the queue is empty
in either the idle state or a low-power state. The device is in
the active state when at least one job is waiting to be serviced.
We have also shown that the service times in active state are
best modeled with the exponential distribution. The transitions
to and from low-power states are better modeled with a uniform
distribution. The combination of these distributions is used to

derive the state of the queue. Thus, in the active state two ex-
ponential distributions define the number of jobs in the queue:
the interarrival time and the service time distributions. During
transitions, the queue state is defined by the transition distribu-
tion and the distribution describing user request arrivals. During
transitions and in the low-power states, the first arrival follows
the Pareto distribution, but the subsequent arrivals are modeled
with the exponential distribution since for very short interarrival
times the exponential distribution is very close to the Pareto dis-
tribution and the experimental results, as can be seen in Figs. 3
and 4.

Although in the experimental section of this paper we utilize
the fact that nonexponential user and device distributions can
be described with well-known functions (Pareto or uniform),
the models we present are general in nature and, thus, can give
optimal results with both experimental distributions obtained at
runtime or commonly used theoretical distributions. We found
that in the particular examples we present in this work Pareto
and uniform distributions enabled us to obtain the optimal policy
faster without sacrificing accuracy.

IV. POWERMANAGEMENT BASED ONRENEWAL THEORY

Renewal theory [21], [22] studies stochastic systems whose
evolution over time contains a set ofrenewals or regeneration
times, where the process begins statistically anew. Formally, a
renewal process specifies that the random times between system
renewals be independently distributed with a common distribu-
tion . Thus, the expected time between successive renewals
can be defined as

(5)

Note that the Poisson process is a simple renewal process for
which renewal times are distributed with the exponential distri-
bution. In this case, the common distribution between renewals
can be defined as and the mean time be-
tween renewals (or between exponential arrivals) is defined as

. A process can be considered to be a renewal
process only if there is a state of the process in which the whole
system probabilistically restarts. This, of course, is the case in
any system that is completely described by exponential or geo-
metric distributions, since those distributions are not history de-
pendent (they are memoryless).

In policy optimization for dynamic power management, the
complete cycle of transition from the idle state, through the other
states, and then back into the idle state can be viewed as one
renewal of the system. When using renewal theory to model
the system, the decision regarding transition to a lower power
state (e.g., sleep state) is made by the PM in the idle state. If
the decision is to transition to the lower power state, the system
reenters the idle state after traversing through a set of states.
Otherwise, the system transitions to the active state on the next
job arrival and then returns to the idle state again once all jobs
have been serviced.

The general system model shown in Fig. 1 defines the PM
and three system components: user, device, and the queue.
To provide concreteness in our examples, each component is
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Fig. 8. System states for renewal theory model.

completely specified by the probability distributions defined
in the previous section. With renewal theory, the search for
the best policy for a system modeled using stationary non-
exponential distributions can be cast into a stochastic control
problem. System states used in the formulation of the renewal
theory model are shown in Fig. 8. In the active state, the queue
contains at least one job pending and the request arrivals and
service times follow exponential distributions. Once the queue
is emptied, the system transitions to the idle state, which is
also a renewal and decision point in this system. Upon arrival
of request, the system always transitions back into the active
state. The PM makes a decision on when the transition to a
low-power state from the idle state should occur. As soon as
the command to place the system into the low-power state is
given, the system starts a transition between the idle and the
low-power states. The transition state highlights the fact that
device takes a finite and random amount of time to transition
into the low-power state (governed by a uniform distribution).
If during the transition time a request arrives from the user (first
request follows Pareto distribution, subsequent requests are
exponential), the device starts the transition to active state as
soon as the transition to off state is completed. If no request ar-
rives during the transition state, the device stays in a low-power
state until the next request arrives (Pareto distribution). Upon
request arrival, the transition back into the active state starts.
Once the transition into the active state is completed, the device
services requests, and then again returns to the idle state where
the system probabilistically renews again.

A. Renewal Theory Model

We formulate the power management policy optimization
problem based on renewal theory in this section. We use

upper-case bold letters (e.g.,) to denote matrices, lower-case
bold letters (e.g., ) to denote vectors, calligraphic letters
(e.g., ) to denote sets, upper-case letters (e.g.,) to denote
scalar constants, and lower-case letters (e.g.,) to denote scalar
variables.

The problem of power management policy optimization is to
determine the optimal distribution of the random variablethat
specifies when the transition from the idle state to low-power
state should occur based on the last entry into the idle state. We
assume that takes on values in ,
where is an index, is a fraction of the break-even time of the
device, and is the maximum time before the system goes to
a low-power state (usually set to an order of magnitude greater
than break-even time). The solution to the policy optimization
problem can be viewed as a table of probabilities (), where
each element specifies the probability of transition from
idle to a low-power state indexed by time values.

We can formulate an optimization problem to minimize
the average performance penalty under a power constraint
( ), using the results of the ratio limit theorem for
renewal processes [22], as shown in (6). The average per-
formance penalty is calculated by averaging , the time
penalty user incurs due to transition to low-power state, over

, the expected time until renewal. The power constraint
is shown as an equality as the system will use the maximum
available power in order to minimize the performance penalty.
The expected energy ( ) is calculated using ,
the probability of issuing command to go to low-power state
at time , and , the expected energy consumption. This
expected energy has to equal the expected power constraint
( ) calculated using the expected time
until renewal , the power constraint , and .
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Fig. 9. Renewal cycles.

The unknown in the optimization problem is , the proba-
bility of issuing a command to go to low-power state at time

. The full derivation of all the quantities follows:

s.t.

(6)

1) Computation of Renewal Time:Given the state space
shown in Fig. 8, we can define the expected time until renewal

as follows. We define as the time at which the first job
arrives after the queue has been emptied. The first arrival is
distributed using general probability distribution . We
also define the indicator function , which is equal to one
if we are in interval and is zero otherwise.

Further, as we showed in Section III, the subsequent user re-
quest arrivals follow a Poisson process with rate. Finally,
the servicing times of the device also can be described using
exponential distribution with parameter . We can now de-
fine the expected time until renewal for each time increment
spent in the idle state as the sum of expected time until re-
newal if arrival comes before the system starts transitioning into
low-power state [as shown by the first cycle in Fig. 9 and the
first half of (7)] and if the arrival comes after the transitions has
already started [the second parts of Fig. 9 and (7)]

(7)

Each of the two terms in (7) is defined in (8) and (10). Note
that Fig. 9 shows the components of each of the two terms. The
expected time until renewal for arrival coming before transi-
tioning to low-power state at time (the left portion of Fig. 9)
is the expected time until arrival [the first term in (8)] and the
time needed to work off the request that just arrived (the second
term). Note that the second term can be computed based on the
results from queueing theory due to the fact that the
time to work off the request is governed by the exponential dis-
tribution with rate , while the arrivals in the active state are
described by the exponential distribution with rate. The job
departure rate has to be larger than the arrival rate ( ),

otherwise the queue would overflow. In all cases we studied,
is at least order of magnitude larger than, leading to

(8)

If the arrival comes after time when the system starts the
transition to low-power state (the right portion of Fig. 9), then
the expected time until renewal is the sum of the time until ar-
rival ( ) with expected times for transition to low-power state
and back to active states ( ), expected length of the
low-power period and the expected time to work off requests
that arrived during the renewal period

(9)

2) Computation of Costs:We can define the performance
penalty that the user experiences due to transition to low-power
state [ ] and the expected energy consumption [] for each
state using the same set of equations, just with different values
for constants () as shown in Table III. Each state is labeled on
the left side, while the expected time spent in that state multi-
plied by the constant is on the right side.

The constants () equal the power consumption in a given
state for energy consumption computation. For the performance
penalty, the constants should be set to zero in low-power state
and idle state and to one in all other states. For example, the con-
stant is set to power consumption of the device while in the
idle state when calculating energy consumption (the first equa-
tion). Since there is no performance penalty to servicing users
requests in the idle state, the constantis set to zero for perfor-
mance penalty calculation. On the other hand, the transition to
the active state causes performance degradation, thus the con-
stant is here set to one. The same constant is set to power
required for the transition to the active state when calculating
energy consumption.

The expected times spent in each state outlined in Table III
are calculated as follows:

1) Idle State:The expected time spent in the idle state is the
expected average of the idle time until the first request
arrival [ ] and the time spent in the
idle state when the transition to low-power state occurs
before the first arrival ( ).

2) Transition to Low-Power State:The transition to low-
power state occurs only if there has been no request ar-
rival before the transition started [ ]. The ex-
pected average time of the transition to low-power state
is defined by the average of the uniform distribution that
describes the transition ( ).

3) Low-Power State:Low-power state is entered only if no
request arrival occurred while in the idle state (



848 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 7, JULY 2001

TABLE III
CALCULATION OF COSTS

). The device stays in that state until the first request
arrives ( ).

4) Transition to Active State:The transition to active state
occurs only when there is a successful transition to low-
power state ( ). The transition length is the
expected average of uniform distribution LP describes the
transition to active state ( ).

5) Active State:The device works off the request that ar-
rived in the idle state if no transition to low-power state
occurred ( ). If the transition to
low-power state did occur [terms containing ],
then the system is in the active state for the time it takes to
work off all the requests that arrived while transitioning
between idle, low-power, and active states.

3) Problem Formulation:The optimization problem shown
in (6) can be transformed into an LP using intermediate variables

and [37]

s.t.

(10)

Once the values of intermediate variables and are ob-
tained by solving the LP shown above, the probability of tran-

sition to low-power state from idle state at time, can be
computed as follows:

(11)

B. Policy Implementation

The optimal policy obtained by solving the LP given in (10)
is a table of probabilities . The policy can be implemented
in two different ways. If the probability distribution defined by

is used, then on each interval , the policy needs to be
reevaluated until either a request arrives or the system transitions
to a low-power state. This implementation has a high overhead
as it requires multiple reevaluations. An alternative implemen-
tation gives the same results, but it requires only one evalua-
tion upon entry to idle state. In this case a table of cumulative
probabilities is calculated based on the probability dis-
tribution described with . Once the system enters the idle
state, a pseudorandom number is generated and normal-
ized. The time interval for which the policy gives the cumula-
tive probability of going to the low-power state greater
than is the time when the device will be transitioned into
the low-power state. Thus, the policy works like a randomized
timeout. The device stays in the idle state until either the transi-
tion to the low-power state as given by and the policy or
until a request arrival forces the transition into the active state.
Once the device is in the low-power state, it stays there until the
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TABLE IV
SAMPLE POLICY

first request arrives, at which point it transitions back into the
active state.

Example IV.1: If a sample policy is given in Table IV and
the pseudorandom number generated upon entry to idle
state is 0.6, then the PM will give a command to transition the
device to low-power state at time indexed by . Thus, if
the time increment used is 0.1 s, then the device will transition
into low-power state once it has been idle for 0.3 s. If a user
request arrives before 0.3 s have expired, then the device transi-
tions back to the active state.

V. POWER MANAGEMENT BASED ON TISMDP

In this section, we present the power management opti-
mization problem formulation based on TISMDP. This model
is more general than the model based on renewal theory as
it enables multiple decision points (see Example V.1). Our
goal is to minimize the performance penalty under an energy
consumption constraint (or vice versa). We first present the
average-cost semi-Markov decision process (SMDP) opti-
mization problem [38] and then extend it to the TISMDP for
modeling general interarrival times.

Example V.1:The SmartBadge has two states where deci-
sions can be made: idle and standby. The idle state has higher
power consumption, but also a lower performance penalty for
returning to the active state, as compared to the standby state.
From the idle state, it is possible to give a command to transition
to the standby or the off states. From standby, only a command
to transition to the off state is possible. The optimal policy deter-
mines when the transition between idle, standby, and off states
should occur.

At each event occurrence, the PM issues acommand(or ac-
tion) that decides the next state to which the system should tran-
sition. In general, commands given are functions of the state
history and the policy. Commands are modeled by decisions,
which can be deterministic or randomized. In the former case,
a decision implies issuing a command. In the later case, a deci-
sion gives the probability of issuing a command. The decisions
taken by the PM form a discrete sequence . The
sequence completely describes the PMpolicy , which is the
unknown of our optimization problem. Among all policies two
classes are particularly relevant, as defined next.

Definition V.1: Stationary policiesare policies where the
same decision is taken at every decision point,

, i.e., .

Fig. 10. SMDP progression.

For stationary policies, decisions are denoted by, which is
a function of the system state. Thus, stationarity means that
thefunctional dependencyof on does not change over time.
When changes, however, can change. Furthermore, notice
that even a constant decisiondoes notmean that thesame com-
mandis issued at every decision point. For randomized policies,
a decision is a probability distribution that assigns a probability
to each command. Thus, the actual command that is issued is ob-
tained by randomly selecting from a set of available commands
with the probabilities specified by.

Definition V.2: Markov stationary policiesare policies
where decisions do not depend on the entire history but only
on the state of the systemat the current time.

RandomizedMarkov stationary policies can be represented
as a decision matrix . An element of is the
probability of issuing command given that the state of the
system is . DeterministicMarkov stationary policies can still
be represented by matrices where only one element for each row
has value one and all other elements are zero. The importance
of these two classes of policies stems from two facts: first, they
areeasy to store and implement,second, we will show that for
our system model,optimal policies belong to these classes.In
the next sections, we will first present the average-cost SMDP,
followed by the extension to TISMDP.

A. Semi-Markov Average-Cost Model

SMDP generalize Markov decision processes by allowing
the decision maker to choose actions whenever the system
state changes, to model the system evolution in continuous
time, and to allow the time spent in a particular state to
follow an arbitrary probability distribution. CTMDP [13],
[15] can be viewed as a special case of SMDPs in which
the intertransition times are always exponentially distributed.
Fig. 10 shows a progression of the SMDP through event
occurrences, called decisionepochs.The PM makes decisions
at each event occurrence. Theinterevent time setis defined as

s.t. , where each is the time
between two successive event arrivals and is the index of
the maximum time horizon. We denote by the system
state at decision epoch. Commands are issued whenever the
system state changes. We denote by an action that
is issued at decision epoch. When action is chosen in
system state , the probability that the next event will occur
by time is defined by the cumulative probability distribution
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. Also, the probability that the system transitions
to state at or before the next decision epochis given by

.
The SMDP model also defines cost metrics. The average cost

incurred between two successive decision epochs (events) is de-
fined in (12) as a sum of the lump sum cost incurred
when action is chosen in state in addition to the cost in
state incurred at rate after choosing action

in state . We dfine as the set of all possible states that
may follow

(12)

We can define the total expected cost for policyuntil time
as a sum of all lump sum costs up to time and the

costs incurred at the rate while in each state until time

(13)

and then we can define the average expected cost for all

inf (14)

Theorem V.1:Finding the optimal power management policy
minimizing (14) is equivalent to solving the following problem:

(15)

where is the so-called bias (the difference between
long-term average cost and the average cost per period for a
system in steady–state [38]), is the average cost,
is the probability of arriving to state given that the action
was taken in state is defined by

(16)

and expected time spent in each state is given by

(17)

Proof of Theorem V.1 is given in [38].
The following examples illustrate how the probability, the ex-

pected time and energy consumption can be derived.
Example V.2: In the active state with at least one element in

the queue, we have two exponential random variables, one for
the user with parameter and one for the device with param-
eter . The probability density function (pdf) of the jointly ex-
ponential user and device processes defines an queue
and, thus, can be described by , where

. In the same way, the probabilities of transition
in queue are defined as for request
arrival and for request departure.

Using (16), we derive that the probability of transition to the
state that has an additional element in the queue is , while
the probability of transition to the state with one less element
is given by . Note that in this special case,

. The expected time for transition derived using (17)
is given by , which is again characteristic of queue.
Energy consumption is given in (12). For this specific example,
we define the power consumption in active state withand
we assume that there is no fixed energy cost for transition be-
tween active states. Then, the energy consumption can be com-
puted as follows:

, which is equal to . Note that this solution
is very intuitive, as we would expect the energy consumption to
equal the product between the power consumption and the ex-
pected time spent in the active state.

The second example considers the transition from the sleep
state into the active state with one or more elements in the queue.

Example V.3:The transition from sleep to active state is gov-
erned by two distributions. A uniform distribution describes de-
vice transitions: , where

and are maximum and minimum transition times.
The request arrival distribution is exponential:

. The probability of no arrival during the transition
is given by .

The probability of transition from the sleep state with
a set number of queue elements into an active state with
the same number of elements in the queue is given by

. The ex-
pected transition time is given by ,
which can be derived with (17). Finally, the energy con-
sumed during the transition is defined by

, assuming that there
is no fixed energy consumed during the transition and that
the power consumption for the transition is given by .
The energy consumption can further be simplified to be

. This is again equal to the product of
power consumption with the expected transition time from the
sleep state into the active state.

The problem defined in Theorem V.1 can be solved using
policy iteration or by formulating and solving an LP. There are
two main advantages of a linear programming formulation: ad-
ditional constraints can be added easily and the problem can be
solved in polynomial time (in ). The primal LP derived
from (15) defined in Theorem V.1 can be expressed as follows:

s.t.

(18)

where
and state and command given in that state;

average cost;
bias;
expected time;
expected cost (e.g., energy);
transition probability between the two states.

Because the constraints of LPP are convex in and the
Lagrangian of the cost function is concave, the solution to the
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Fig. 11. Time-indexed SMDP states.

primal LP is convex. In fact, the constraints form a polyhedron
with the objective giving the minimal point within the polyhe-
dron. Thus, theglobally optimalsolution can be obtained that is
both stationary and deterministic. The dual LP shown in (19) is
another way to cast the same problem (in this case with the ad-
dition of a performance constraint). The dual LP shows the for-
mulation for minimizing energy under performance constraint
(opposite problem can be formulated in much the same way)

s.t.

(19)

The unknowns in the LPD , calledstate-action
frequencies,are the expected number of times that the system is
in state and command is issued. It has been shown that the
exact and the optimal solution to the SMDP policy optimization
problem belongs to the set of Markovian randomized stationary
policies [38]. A Markovian randomized stationary policycan
be compactly represented by associating a value
with each state and action pair in the SMDP. The probability

of issuing command when the system is in state, is
defined as

(20)

B. Time-Indexed Semi-Markov AverageCost Model

The average-cost SMDP formulation presented above is
based on the assumption that at most, one of the underlying
processes in each state transition is not exponential in nature.
On transitions where none of the processes are exponential,
time-indexed Markov chain formulation needs to be used to
keep the history information. Without indexing, the states in
the Markov chain would have no information on how much
time has passed. As for all distributions, but the exponential,
the history is of critical importance, the state–space has to
be expanded in order to include the information about time
as discussed in [21]. Time-indexing is done by dividing the
time line into a set of intervals of equal length . The
original state–space is expanded by replacing one idle and
one low-power state with a series of time-indexed idle and
low-power states as shown in Fig. 11. The expansion of idle
and low-power states into time-indexed states is done only to
aid in deriving in the optimal policy. A TISMDP can contain
nonindexed states. Once the policy is obtained, the actual
implementation is completely event-driven in contrast to the
policies based on DTMDPs. Thus, all decisions are made
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upon event occurrences. So, the decision to go to a low-power
state is made once upon entry to the idle state as discussed in
Section IV-B. Other events are user request arrivals or service
completions. Note that the technique we present is general, but
in this paper, we will continue to refer to the examples shown
in Section III.

If an arrival occurs while in the idle state, the system transi-
tions automatically to the active state. When no arrival occurs
during the time spent in a given idle state, the PM can choose
to either stay awake in which case the system enters the next
idle state or to transition into the low-power state. When the
transition to the low-power state occurs from an idle state, the
system can arrive to the low-power state with the queue empty or
with jobs waiting in the queue. The low-power state with queue
empty is indexed by the time from first entry into the idle state
from the active state, much in the same way idle states are in-
dexed, thus allowing accurate modeling of the first arrival. The
LP formulation for average-cost SMDP still holds, but the cost,
the probability, and the expected time functions have to be rede-
fined for time-indexed states in SMDP. Namely, for the time-in-
dexed states, (12) (that calculates cost assigned to the state
with action ) is replaced by

(21)

and (17) describing the time spent in the statewith action
is replaced by

(22)

The probability of getting an arrival is defined using the time
indices for the system state, where

(23)

Equation (16) is replaced by the following set of equations. The
probability of transition to the next idle state is defined to be

and of transition back
into the active state is . The
general cumulative distribution of event occurrences is given by

.
An example below illustrates how the time indexing is done.
Example V.4:The cumulative distribution of user request ar-

rival occurrences in the idle state follows a Pareto distribution
. The transition from the idle to the low-

power state follows uniform distribution with average transi-
tion time . The time increments
are indexed by . Thus, the probability of transition from the
idle state at time increment into the low-power state with
no elements in the queue is given by

. This equation computes con-
ditional probability that there will be no arrivals up to time

given that there was no arrival up to time
. Note that in this way we are taking history into ac-

count. Similarly, we can define the probability of transition from
the idle state into a low-power state with an element in the queue
by .

The expected time spent in the idle state indexed
with time increment can be defined by

, which after integration,
simplifies to .
With that, we can calculate energy consumed in the
idle state, again assuming that there is no fixed energy
cost and that the power consumption is defined by:

.
TISMDP policies are implemented in a similar way to the re-

newal theory model, but there are more possible decision points.
Briefly, upon entry to each decision state, the pseudorandom
number is generated. The device will transition into low-
power state at the time interval for which the probability of
going to that state as given by the policy is greater than .
Thus, the policy can be viewed as randomized timeout. The
device transitions into active state if the request arrives before
entry into low-power state. Once the device is turned off, it stays
off until the first request arrives, at which point it transitions into
active state. The detailed discussion of how the policy is imple-
mented if there is only one decision state has been presented in
Section IV-B.

Example V.5:As mentioned in Example V.1, the Smart-
Badge has two states where decisions can be made: idle and
standby. From the idle state, it is possible to give a command
to transition to standby or to the off state. From standby, only a
transition to the off state is possible. In this case, both the idle
and the standby states are time-indexed. The optimal policy
gives a table of probabilities determining when the transition
between the idle, standby, and off states should occur. For
example, a policy may specify that if the system has been
idle for 50 ms, then the transition to the standby state should
occur with probability of 0.4, the transition to the off state
with probability of 0.2, and otherwise the device will stay idle.
Once in the standby state for another 100 ms, the policy may
specify that the transition into the off state should occur with
probability of 0.9. When a user request arrives, the system
transitions back into the active state.

In this section, we presented a power management algorithm
based on TISMDPs. The TISMDP model is more complex than
the SMDP model, but is more accurate and is also applicable to
a wider set of problems, such as a problem that has more than
one nonexponential transition occurring at the same time. The
primary difference between the TISMDP model and the renewal
theory model is that TISMDP supports multiple decision points
in the system model, while renewal theory allows for only one
state in which the PM can decide to transition the device to the
low-power state. For example, in systems where there are mul-
tiple low-power states, the PM would not only have to make a
decision to transition to low-power state, but also could transi-
tion the system from one low-power state into another. Renewal
theory cannot be used for this case as there are multiple deci-
sion states. The main advantage of the renewal theory model is
that it is more concise and thus computes faster. The renewal
theory model has only five states, as compared to
states in the TISMDP model ( is the maximum time index).
In addition, each of the states require evaluations of one
double and two single integrals, compared with a very simple
arithmetic formulation for the renewal theory model.
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VI. RESULTS

We perform the policy computation using the solver for LPs
[39] based on the simplex method. The optimization runs in just
under 1 min on a 300-MHz Pentium processor. We first verified
the optimization results using simulation. Inputs to the simu-
lator are the system description, the expected time horizon (the
length of user trace), the number of simulations to be performed,
and the policy. The system description is characterized by the
power consumption in each state, the performance penalty, and
the function that defines the transition time pdf and the prob-
ability of transition to other states given a command from the
PM. Note that our simulation used both pdfs we derived from
data and the original traces. When using pdfs, we just verified
the correctness of our problem formulation and solution. With
real traces, we were able to verify that indeed pdfs we derived
do in fact match well the data from the real system and, thus,
give optimal policies for the real systems. The results of the op-
timization are in close agreement with the simulation results.

In the next sections, we show large savings wemeasured
on three different devices: laptop and desktop hard disks and
the WLAN card and the simulation results showing savings in
power consumption when our policy is implemented in a Smart-
Badge portable system. As the first three examples (two hard
disks and WLAN) have just one state in which the decision to
transition to low-power state can be made, the renewal theory
model and the TISMDP model give the same results. The last
example (SmartBadge) has two possible decision states—idle
and standby state. In this case, the TISMDP model is necessary
in order to obtain the optimal policy.

A. Hard Disk

We implemented the PM as part of a filter driver template
discussed in [40]. A filter driver is attached to the vendor-spe-
cific device driver. Both drivers reside in the OS, on the kernel
level, above the advanced configuration and power interface
(ACPI) driver implementations. Application programs such as
word processors or spreadsheets send requests to the OS. When
any event occurs that concerns the hard disk, PM is notified.
When the PM issues a command, the filter driver creates a power
transition call and sends it to the device that implements the
power transition using ACPI standard. The change in power
state is also detected with the digital multimeter that measures
current consumption of the hard disk.

We measured and simulated three different policies based
on stochastic models and compared them with two bounds:al-
ways-onandoraclepolicies. Always-on policy leaves the hard
disk in the active state and, thus, does not save any power. Or-
acle policy gives the lowest possible power consumption, as it
transitions the disk into sleep state with the perfect knowledge
of the future. It is computed off-line using a previously collected
trace. Obviously, the oracle policy is an abstraction that cannot
be used in runtime DPM.

All stochastic policies minimized power consumption under
a 10% performance constraint (10% delay penalty). The results
are shown in Figs. 12 and 13. These figures best illustrate the
problem we observed when user request arrivals are modeled
only with exponential distribution as in CTMDP model [13].

Fig. 12. Measured and simulated hard-disk power consumption.

Fig. 13. Measured and simulated hard- disk performance.

The simulation results for the exponential model (CTMDP)
show large power savings, but measurement results show
no power savings and a very high-performance penalty. As
the exponential model is memoryless, the resulting policy
makes a decision as soon as the device becomes idle or after
a very short filtering interval (filtered 1-s columns in Figs. 12
and 13). If the idle time is very short, the exponential model
gets a large performance penalty due to the wakeup time of
the device and a considerable cost in shutdown and wakeup
energies. In addition, if the decision upon entry to idle state is
to stay awake, large idle times, such as lunch breaks, will be
missed. If the policy is forced to reevaluate until it shuts down
(exponential), then it will not miss the long idle times. When
we use a short timeout to filter out short arrival times and force
the PM to reevaluate its decision (filtered exponential), the
results improve. The best results are obtained with our policy.
In fact, our policy uses 2.4 times less power than the always-on
policy. These results show that it is critically important to not
only simulate, but also measure the results of each policy and,
thus, verify the assumptions made in modeling. In fact, we
found that modeling based on simple Markov chains is not
accurate and that we do require more complex model presented
in this paper.

Comparison of all policies measured on the laptop is shown in
Table V and for the desktop in Table VI. Karlin’s algorithm anal-
ysis [7] is guaranteed to yield a policy that consumes at worst
twice the minimum amount of power consumed by the policy
computed with perfect knowledge of the user behavior. Karlin’s
policy consumes 10% more power and has worse performance
than the policy based on our TISMDP model. In addition, our
policy consumes 1.7 times less power than the default Windows
timeout policy of 120 s and 1.4 times less power than the 30-s
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TABLE V
LAPTOPHARD-DISK MEASUREMENTCOMPARISON

TABLE VI
DESKTOPHARD-DISK MEASUREMENTCOMPARISON

timeout policy on the laptop. Our policy performs better than
the adaptive model [12] and significantly better than the policy
based on DTMDP. The policy based on the simple CTMDP
(without reevaluation and with initial 1-s filter) performs worse
then the always-on policy, primarily due to the exponential inter-
arrival request assumption. This policy both misses some long
idle periods and tends to shut down too aggressively, as can be
seen from its very short average sleep time. Better results can
be obtained by using reevaluations with filtering. Similar results
can be seen on the desktops.

Performance of the algorithms can be compared using three
different measures. is defined as the number of times the
policy issued the sleep command. gives the number of
times sleep command was issued and the hard disk was asleep
for shorter than the time needed to recover the cost of spin-
ning down and spinning up the disk. Clearly, it is important to
minimize while maximizing . In addition, the average
length of time spent in the sleep state () should be as large as
possible while still keeping the power consumption down. From
our experience with the user interaction with the hard disk, our
algorithm performs well, thus giving us low-power consump-
tion with still good performance.

As mentioned earlier, we filtered request arrivals using a frac-
tion of hard disk break-even time. The effect of filtering arrivals
into the idle state is best shown in Fig. 14 for the policy with the
performance penalty of the laptop hard disk limited to 10%. For
very short filter times, the power consumption is very high since

Fig. 14. Power consumption versus filter size.

the overhead of transition to and from low-power state has not
been compensated. The power consumption grows for longer
filter times since more time is spent in the idle state before tran-
sitioning to the low-power state, thus wasting some power. Note
that the best filtering intervals are on the order of seconds since
the hard disk break-even time is also on the order of seconds.

The event-driven nature of our algorithm as compared to al-
gorithms based on discrete time intervals saves considerable
amount of power while in sleep state as it does not require policy
evaluation until an event occurs. Waking up a 10-W processor
every 1 s for policy reevaluation that takes 100 ms to execute
would use 1800 J of energy during a normal 30 min break.
With an event-driven policy, the processor could be placed in
a low-power mode during the break time, thus saving a large
portion of battery capacity.

B. WLAN Card

For WLAN measurements, we used Lucent’s WLAN 2-Mb/s
card [35] running on the laptop. As a mobile environment is
continually changing, it is not possible to reliably repeat the
same experiment. As a result, we needed to use a trace-based
methodology discussed in [41]. The methodology consists of
three phases: collection, distillation, and modulation. We used
tcpdump[36] utility to get the user’s trace for two different ap-
plications: web browsing and telnet. During distillation, we pre-
pared the trace for the modeling step. We had a LAN-attached
host read the distilled trace and delay or drop packets according
to the parameters we obtained from the measurements. In this
way, we were able to recreate the experimental environment so
that different algorithms can be reliably compared.

We implemented three different versions of our algorithm for
each application, each with different power ( ) and perfor-
mance penalty ( ). The algorithms are labeled Ours a, b, c
for web browser and Ours 1, 2, 3 for telnet. Since web and telnet
arrivalsbehavedifferently(seeFig.4),weobservethroughtheOS
what application is currently actively sending and use the appro-
priate power management policy. The performance penalty for
WLANisameasureofthetotaloverheadtimeduetoturningoffthe
card. Note that for the hard disk, we measured instead the average
time in thesleepstateas theaccurate realoverheadwasdifficult to
obtain.Inadditiontomeasuringtheenergyconsumption(andthen
calculating average power), we also quantified the performance
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TABLE VII
DPM FOR WLAN WEB BROWSER

TABLE VIII
DPM FOR WLAN TELNET APPLICATION

penalty using three different measures. Delay penaltyis the
time the system had to wait to service a request since the card was
in the sleep state when it should not have been. In addition, we
measure the number of shutdowns and the number of wrong
shutdowns . A shutdown is viewed as wrong when the sleep
time is not long enough to make up for the energy lost during
transitionbetweentheidleandoffstate.Thenumberofshutdowns
is a measure of how eager the policy is, while a number of wrong
shutdowns tells us how accurate the policy is in predicting a good
timetoshutdownthecard.

The measurement results for a 2.5-h web browsing trace are
shown in Table VII. Our algorithms (Ours a, b, c) show, on
average, a factor of three in power savings with a low perfor-
mance penalty. Karlin’s algorithm [7] is guaranteed to be within
a factor of two of the oracle policy. Although its power con-
sumption is low, it has a performance penalty that is an order
of magnitude larger than for our policy. A policy that assumes
exponential arrivals only, CTMDP [13], has a very large per-
formance penalty because it makes the decision as soon as the
system enters idle state.

Table VIII shows the measurement results for a 2-h telnet
trace. Again, our policy performs best with a factor of five in
power savings and a small performance penalty. The telnet
application allows larger power savings because on average it
transmits and receives much less data then the web browser,
thus giving us more chances to shut down the card.

C. SmartBadge

In contrast to the previous examples, where we implement
and measure the decrease in power consumption when using

Fig. 15. SmartBadge DPM results.

TABLE IX
COMPARISON OFPOLICIES BY DECISION STATE NUMBER

our power management policies, in this case we perform a case
study on the tradeoffs between power and performance for the
SmartBadge. The SmartBadge is a good example of a system
that has more than one decision point and, thus, requires the
TISMDP model in order to obtain an optimal policy. We first
study the tradeoffs between power and performance for policies
with just one decision state (idle state) and then follow with an
example contrasting policies with one state to policies that have
two decision states (idle and standby).

The results of simulation shown in Fig. 15 clearly illustrate
the tradeoff between different policies for one decision state
that can be implemented in the SmartBadge system. The per-
formance penalty is defined as the percent of time the system
spends in a low-power state with a nonempty queue. In general,
the goal is to have as few requests as possible waiting for ser-
vice. For systems with a hard real-time constraint, this penalty
can be set to large values to force less aggressive power man-
agement, thus resulting in less requests queued up for service.
In systems where it is not as critical to meet time deadlines, the
system can stay in a low-power state longer, thus accumulating
more requests that can be serviced upon return to the active state.

Because of the particular design characteristics of the Smart-
Badge, the tradeoff curves of performance penalty and power
savings are very close to linear. When the probability of going
to sleep is zero, no power can be saved, but the performance
penalty can be reduced by 85% as compared to the case where
the probability is one. On the other hand, about 50% of the
power can be saved when the system goes to standby upon entry
to idle state.

In addition to analyzing power and performance tradeoffs for
policies that have only one decision state, we have also com-
pared the one decision state (idle) policy to a policy with two
decision states (idle and standby) with the same performance
penalty. The results in Table IX clearly show that considerably
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larger power savings with the same performance penalty can be
obtained when using a more complex policy optimization model
that enables multiple decision points (TISMDP model) instead
of just one decision point (renewal theory model).

VII. CONCLUSION

Dynamic power management policies reduce energy con-
sumption by selectively placing components into low-power
states. In contrast to heuristic policies, such as timeouts,
policies based on stochastic models can guarantee optimal
results. The quality of results of stochastic DPM policies
depends strongly on the assumptions made. In this paper, we
present and implement two different stochastic models for
dynamic power management. The measurement results show
large power savings.

The first approach requires that only one decision point be
present in the system. This model is based on renewal theory.
The second approach allows for multiple decision points and is
based on SMDP model. The basic SMDP model can accurately
model only one nonexponential transition occurring with the ex-
ponential ones. We presented TISMDP model as the extension
to SMDP model in order to describe more than one nonexpo-
nential transition occurring at the same time. TISMDP model is
very general, but also is more complex. Thus, it should be used
for systems that have more than one decision point.

We presented large power savings using our approach on four
different portable devices: the laptop and the desktop hard disks,
the WLAN card, and the SmartBadge. The measurements for
the hard disks show that our policy gives as much as 2.4 times
lower power consumption as compared to the default Windows
timeout policy. Thus, it is very beneficial to use our approach
over the simple timeout. In addition, our policy obtains up to 5
times lower power consumption for the wireless card relative to
the default policy. The power management results on the Smart-
Badge show savings of as much as 70% in power consumption.
Finally, the comparison of policies obtained for the SmartBadge
with the renewal model and TISMDP model clearly illustrate
that whenever there is more than one decision point available,
the TISMDP model should be used as it can utilize the extra
degrees of freedom and, thus, obtain an optimal power manage-
ment policy.
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ŠIMUNIĆ et al.: EVENT-DRIVEN POWER MANAGEMENT 857

[35] IEEE 802.11 WaveLAN PC Card—User’s Guide, Lucent, Murray Hill,
NJ, 1998, p. A-1.

[36] The “tcpdump” Manual Page, Lawrence Berkeley Laboratory,
Berkeley, CA, 1998.

[37] S. Boyd, “Convex optimization,” Stanford Univ., Stanford, CA, Stanford
Class Notes, 1999.

[38] M. Puterman,Finite Markov Decision Processes. New York: Wiley,
1994.

[39] Solver for linear programs, M. Berkelaar. [Online]. Available:
www.cs.sunysb.edu/algorith/implement/lpsolve/implement.shtml
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