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Event-Driven Power Management
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Abstract—Energy consumption of electronic devices has become  System-level energy-conscious design is an effective way to
a serious concern in recent years. Power management (PM) algo-reduce energy consumption. System-legiamic power man-
rithms aim at reducing energy consumption at the system-level by agemen{5] decreases the energy consumption by selectively

selectively placing components into low-power states. Formerly, lacing id| ts into | tat Svst
two classes of heuristic algorithms have been proposed for PM: placing idie components Into lower power states. system re-

timeout and predictive. Later, a category of algorithms based on Sources can be modeled using state-based abstraction where
stochastic control was proposed for PM. These algorithms guar- each state trades off performance for power [6]. For example,
antee optimal results as long as the system that is power man- 3 system may have an active state, an idle state, and a sleep state
aged can be modeled well with exponential distributions. We show that has lower power consumption, but also takes some time

that there is a large mismatch between measurements and simu-t ¢ ition to th fi tate. The t it bet tat
lation results if the exponential distribution is used to model all 0 transition 1o the active state. The transitions between states

user request arrivals. We develop two new approaches that better are controlled by commands issued by a power manager (PM)
model system behavior for general user request distributions. Our that observes the workload of the system and decides when and
approaches are event-driven and give optimal results verified by how to force power state transitions. The PM makes state transi-
measurements. The first approach we present is based on renewaltion decisions according to thEower management policyhe

theory. This model assumes that the decision to transition to low- . . L
power state can be made in only one state. Another method we de-ChOICe of the policy that minimizes power under performance

veloped is based on the time-indexed semi-Markov decision process.CO"‘StraimS (Or maXifni_Zeslperformance under power constraint)
(TISMDP) model. This model has wider applicability because itas- is a constrained optimization problem.

sumes that a decision to transition into a lower-power state canbe  The most common power management policy at the system
made upon each event occurrence from any number of states. This level is atimeout policyimplemented in most operating systems

model allows for transitions into low-power states from any state, . . - .
but it is also more complex than our other approach. It is impor- (OSs). The drawback of this policy is that it wastes power while

tant to note that the results obtained by renewal model are guar- Waiting for the timeout to expire [7], [8]. Predictive policies de-
anteed to match results obtained by TISMDP model, as both ap- veloped for interactive terminals [9], [10] force the transition to
proaches give globally optimal solutions. We implemented our PM 3 |ow-power state as soon as a component becomes idle if the

algorithms on two different classes of devices: two different hard 0 jictor estimates that the idle period will last long enough.
disks and client—server wireless local area network systems such asA . . both f d
the SmartBadge or a laptop. The measurement resuits show power AN INCOITECt estimate can cause both performance and energy

savings ranging from a factor of 1.7 up to 5.0 with insignificant Penalties. Both timeout and predictive policies are heuristic in

variation in performance. nature and, thus, do not guarantee optimal results.
Index Terms—Power consumption, stochastic processes, system N contrast, approaches based on stochastic models can guar-
analysis. antee optimal results. Stochastic models use distributions to de-

scribe the times between arrivals of user requestsr@rrival
time9, the length of time it takes for a device to service a user’s
request, and the time it takes for the device to transition be-
NERGY consumption has become one of the primary cotween its power states. The system model for stochastic opti-
cerns in electronic design due to the recent popularity ofization can be described either with just memoryless distri-
portable devices and environmental concerns related to desktbpsons (exponential or geometric) [11]-[14] or with general
and servers. The battery capacity has improved very slowlydsstributions [15]-[18]. Power management policies can also
factor of two to four over the last 30 years), while the compuwe classified into two categories by the manner in which de-
tational demands have drastically increased over the same ticisons are made: discrete time (or clock based) [11], [12] and
frame. Better low-power circuit design techniques have helpedent driven [13]-[18]. In addition, policies can be stationary
to increase battery lifetime [1]-[3]. On the other hand, managirfthe same policy applies at any point in time) or nonstationary
power dissipation at higher levels can considerably reduce €tie policy changes over time). All stochastic approaches ex-
ergy consumption and, thus, increase battery lifetime [4].  cept for the discrete adaptive approach presented in [12] are sta-
tionary. The optimality of stochastic approaches depends on the
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plemented in real systems since the exponential model does owtthe experimental data collected. We develop the model for
describe well the request interarrival times of users [15]-[18]power management based on renewal theory in Section IV. Next,
In this paper, we introduce two new models for power manve present the TISMDP model for the dynamic power manage-
agement at the system level that enable modeling system trament policy optimization problem in Section V. We show sim-
sitions with general distributions, but are still event driven andlation results for the SmartBadge, measured results for power
guarantee optimal results. In order to verify our models, we irmanaging WLAN card on a laptop, and both simulated and mea-
plemented our power management algorithms on two differesured results for power managing a hard disk on a laptop and a
classes of devices: two different hard disks and client—sengssktop running Windows OS in Section VI. Finally, we sum-
wireless local area network (WLAN) systems such as the Smarmtarize our findings and outline future directions of research in
Badge [19] or a laptop. For each of these devices, we collecte8ection VII.
set of traces that model typical user behavior well. We found the
interarrival times between user requests are best modeled with a
nonexponential distribution (a Pareto distribution shows the best Il. RELATED WORK
fit, although our model applies to any distribution or direct data).
These results are consistent with the observations on networkhe fundamental premise for the applicability of power
traffic interarrival times presented in [20]. In addition, we meananagement schemes is that systems or system components,
sured the distributions of transition times between active, idiexperience nonuniform workloads during normal operation
and low-power states for each of the systems and found nontigee. Nonuniform workloads are common in communication
ponential transition times into or out of a low-power state. Traretworks and in almost any interactive system. In the recent
ditional Markov chain models presented in previous work do npest, several researchers have realized the importance of power
apply to these devices since user request arrivals and the traanagement for large classes of applications. Chip-level power
sition times of a device are best modeled with nonexponentiahnagement features have been implemented in mainstream
distributions. As a result, we formulated the policy optimizatioaommercial microprocessors [24]-[27]. Techniques for the
problem using two different stochastic approaches. automatic synthesis of chip-level power management logic are
The first approach is based on renewal theory [21], [22]. It Burveyed in [5].
more concise, but also is limited to systems that have only onePredictive policies for hard disks [28]-[32] and for interac-
decision state. The second approach is based on the time-inddietiterminals [9], [10], [33] force the transition to a low-power
semi-Markov decision process (TISMDP) model. This model &ate as soon as a component becomes idle if the predictor es-
more general, butalso more complex. Inboth cases, the policy tiprates that the idle period will last long enough. An incorrect
timization problem can be solvestactlyand in polynomial time estimate can cause both performance and energy penalties. The
by solving a linear program (LP). Clearly, since both approachdistribution of idle and busy periods for an interactive terminal
guarantee optimal solutions, they will give the same solution i® represented as a time series in [9] and approximated with a
a given optimization problem. Note that both approaches chast-squares regression model. The regression model is used
handle generaluserrequestinterarrival distributions, eventhoughpredicting the duration of future idle periods. A simplified
in the particular examples presented in this work we use thewer management policy predicts the duration of an idle period
Pareto distribution since it showed a good fit to the data collectbesed on the duration of the last activity period. The authors of
experimentally. The policy decisions are made only upon requé8} claim that the simple policy performs almost as well as the
arrival or uponfinishing serving arequest, instead of at every timemplex regression model and it is much easier to implement.
increment as in discrete-time model. Since policy decisions dre[10], an improvement over the prediction algorithm of [9] is
made in event-driven manner, more power is saved by not forciptgsented, where idleness prediction is based on a weighted sum
policy re-evaluations asindiscrete-time models. of the duration of past idle periods with geometrically decaying
We obtain globally optimal results for policy optimizationweights. The policy is augmented by a technique that reduces
using our models and in addition we present simulation aritie likelihood of multiple mispredictions. All these policies are
more importantly, real measurement results. Our results shtwmulated heuristically, then tested with simulations or mea-
that the reduction in power can be as large as 2.4 times withrements to assess their effectiveness.
a small performance penalty when power managing the laptopAnother good example of heuristic power management policy
hard disk and 1.7 times for the desktop hard disk. This powisrdefined in the new IEEE 802.11 standard for wireless LAN
reduction, which is compared against the Windows OS defaaltmedium access control and physical layers [34]. The standard
timeout policy, is very significant and shows the overall berrequires that a central access point (AP) send out a beacon every
efits of our approach. Our algorithms perform better than ai¥)0 ms followed by a traffic indication map (TIM). Each card
other power management algorithms tested in [23]. The mdhat desires to communicate has to actively listen for the beacon
surements of optimal policy implemented on a laptop for tha order to synchronize the clock with the AP and for the TIM
WLAN card show that the reduction in power can be as large find out if any data is arriving for it. If it does not need to
as a factor of five with a small performance penalty. Finallgransmit or receive, the card can then go to the doze state until
power management results on the SmartBadge show savingthefnext beacon. The IEEE standard does not address the need
as much as 70% in power consumption. for power management at the system level. If the card is turned
The remainder of the paper is organized as follows. Section &iff when it is not being used, much larger power savings can be
describes the stochastic models of the system components badesrved.
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Stochastic models have also been introduced to obt:
optimal power management algorithms. The optimality i
guaranteed only under a set of assumptions that may or n a
not hold in real cases. Beniwgt al. [11] formulated a proba- =
bilistic system model based on discrete-time Markov decisic
processes (DTMDPs). They rigorously formulate the polic
optimization problem and showed that it can be solved exac - Chemse P
and in polynomial time in the size of the system model. The
DTMDP approach requires that all state transitions followig. 1. System model.
stationary geometric distributions, which is not true in many
practical cases. Nonstationary user request rates can be tredigital assistants (PDA) and mobile telephones, or incorporated
using an adaptive policy interpolation procedure presentediin computing systems. In this paper, we use it as a PDA.
[12]. A limitation of both stationary and adaptive DTMDPThe WLAN card is used as an internet access on the laptop
policies is that decision evaluation is repeated periodicallypmputer. The hard disks are both part of Windows machines,
even when the systemis idle, thus wasting power. For exampd@e in the desktop and the other in the laptop. The queue
for a 10-W processor, the DTMDP policy with evaluatioormodels a memory buffer associated with each device. In all
period of 1 s would waste as much as 1800 J of energy from tlseamples, the user is an application that accesses each device
battery during a 30-min break. The advantage of the discrég sending requests via an OS.
time approach is that decisions are reevaluated periodicallyPower management aims at reducing energy consumption
so the decision can be reconsidered, thus adapting betteintgystems by selectively placing components into low-power
arrivals that are not truly geometrically distributed. states. Thus, at runtime, the PM observes user request arrivals,

An alternative to the DTMDP model is a continuous-timéhe state of the device’s buffer, the power state, and the activity
Markov decision process (CTMDP) model [13], [14]. In devel of the device. When all user requests have been serviced,
CTMDP, the PM issues commands upon event occurrentke PM can choose to place the device into a low-power state.
instead of at discrete time settings. As a result, more energlyis choice is made based on a policy. Once the device is in a
can be saved since there is no need to continually reevaluateltve-power state, it returns to active state only upon arrival of
policy in the low-power state. Results are guaranteed optinshew request from a user. Note that a user request can come
assuming that the exponential distribution describes well thé&ectly from a human user, from the OS, or even from another
system behavior. Unfortunately, in many practical cases thevice.
transition times may be distributed according to a more generaEach system component is described probabilistically. The
distribution. As a result, in real implementation the resultsser behavior is modeled by a request interarrival distribution.
are far from optimal [16]-[18]. Work presented in [14] useSimilarly, the service time distribution describes the behavior of
series and parallel combinations of exponential distributions tite device in the active state. The transition distribution models
approximate general distribution of transition times. Unfortithe time taken by the device to transition between its power
nately, this approach is very complex and also gives a very patates. Finally, the combination of interarrival time distribution
approximation for the bursty behavior observed in real systertiscoming jobs to the queue) and service time distribution (jobs
[16]-[18], [20]. In fact, the authors present only simulatiofeaving the queue) appropriately characterizes well the behavior
results exclusively based on the exponential distribution.  of the queue. These three categories of distributions completely

In this paper, we present two new models for power managgharacterize the stochastic optimization problem. The details of
ment at the system level that accurately model system behaveach system component are described in the next sections.
are event driven, and guarantee optimal results. In addition, we
not only simulate, but also implement our power managemefyt User Model
policies on real systems, thus allowing us to get measurementgs the user's stochastic model is defined by the request inter-
of real power consumption. In the next section, we will develogrrival time distribution, it is of critical importance to collect a
our system model based on actual measurement results ugjpgd set of traces that do a good job of representing typical user
realistic workloads. behavior. We collected an 11-h user request trace for the PC
hard disks running a Windows OS with standard software (e.qg.,
Excel, Word, Visual G-+). In the case of the SmartBadge, we
monitored the accesses to the server during multiple long ses-

In this paper, we focus on the systems that can be modektdns. For the WLAN card, we used ttegpdumputility [36] to
with three components: the user, device, and the queuega$ the user request arrival times for two different applications
shown in Fig. 1. While the methods presented in this papgelnet and web browser).
are general, the optimization of energy consumption underThe request interarrival times in the active state (the state
performance constraints (or vice versa) is applied to amchere one or more requests are in the queue) for all three de-
measured on two different classes of devices: two hard diskises are exponential in nature. Fig. 2 shows the exponential cu-
and client—server WLAN systems such as the SmartBadge [I8{ilative distribution fitted to measured results of the hard disk.
or a laptop [35]. The SmartBadge can be used as a corpor@imilar results have been observed for the other two devices in
identity card, attached (or built in) to devices such as persoithaé active state. Thus, we can model the user in active state with

S barngmt

Ill. SYSTEM MODEL
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rate\;; and the mean request interarrival timye\y;, where the  rig 3. Hard-disk idle state arrival tail distribution.

probability of the hard disk or the SmartBadge receiving a user

request within time intervdlfollows the cumulative probability WWW Trace
distribution shown below 1
ﬂ“\“\“
Fy(t)=1— ¢t 1) o
The exponential distribution does not model well arrivals in
the idle state. The model we use needs to accurately describe the ~ 0.01 4
behavior of long idle times as the largest power savings are pos- e Experimental
sible over the long low-power periods. We first filter out short 0.001 + Exponential
user request interarrival times in the idle state in order to focus e Pareto
on the longer idle times. The filter interval is based on the par- 0.0001 v T J
0.01 0.1 1 10

ticular device characteristics and not on the pattern of user ac-
cess to the device. Filter interval is defined as a fraction of the
break-evenrime of the device. Break-even time is the time the

device has to stay in the low-power state in order to recuperate

Interarrival Time (s)
(@
Telnet Trace

the cost of transitioning to and from the low-power state. Transi- 1
tioning into a low-power state during idle times that are shorter
than the break-even time is guaranteed to waste power. Thus,
it is desirable to filter out very short idle times. We found that
filter intervals from 0.5 s to about 2 s are most appropriate to

0.1-

0.01 = E xperimental

use for the hard disk, while for the SmartBadge and the WLAN 0,001 Exponential
card filter intervals are considerably shorter (50-200 ms) since ' e Pareto
these devices respond much faster than the hard disk. 0.0001 v ‘
We use the tail distribution to highlight the probability of 0.01 01 1 10

longer idle times that are of interest for power management.
The tail distribution provides the probability that the idle time (b)

!S great_er tha:l‘?l. Flg'. 3 shows the measured .tall Q|s'§r|bqt|on 0If:ig. 4. WLAN idle state arrival tail distribution. (a) WWW trace. (b) Telnet
idle periods fitted with Pareto and exponential distributions fQr;ce.

the hard disk and Fig. 4 shows the same measurements for the

WLAN card. The Pareto distribution shows a much better fit for

the long idle times as compared to the exponential distributio?{(.)wer for performance by placing the dewce_mto low-power
ates. Each low-power state can be characterized by the power

The Pareto cumulative distribution is defined in (2). Pareto pa- i dth ¢ ity i d durina th
rameters are = 0.9 andb = 0.65 for the hard diskg = 0.7 and consumption and the performance penaty incurred during the

b = 0.02 for WLAN web requests, and = 0.7 andb = 0.06 for transition to or from that state. Usually, higher performance

: enalty corresponds to lower power states.
w;_f;\ls ttilgei/t\”ri}’iljZsr:is\}alssmartBadge arrivals behave the saf%el) SmartBadge:The SmartBadge shown in Fig. 5 is an em-

bedded system consisting of a Sharp’s display, WLAN RF link,
StrongARM-1100 processor, Micron’'s SDRAM, FLASH, sen-
sors, and modem/audio analog front-end on a printed circuit
. board powered by the batteries through a DC-DC converter. The
B. Portable Devices initial goal in designing the SmartBadge was to allow a com-
Power-managed devices typically have multiple power statgsiter or a human user to provide location and environmental
Each device has one active state in which it services user iformation to a location server through a heterogeneous net-
gquests and one or more low-power states. The PM can tradewdfrk. The SmartBadge could be used as a corporate ID card,

Interarrival Time (s)

Fy(t)=1—at™®. 2
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Fig. 5. SmartBadge. Fig. 6. Hard-disk service time distribution.

TABLE | the system is fully controlled from the hardware and, thus, is
SMARTBADGE COMPONENTS not accessible to the PM that has been implemented at the OS

Component | Active Idle Standby tsby tors tso level. .

pur (@¥) | Per @) | Pur @) | (ms) | Cms) | (ms) The PM can control the transitions between the doze and the
bisplay | 1000 7000 o0 100 220 110 off states. ane in the off state, the card waits for the first user
wF 1ieE | 1500 1000 00 v Py 2 request arrival before returning back to the doze state. We mea-
sh1100 | 200 170 o1 m e " sured the transitions between the doze and the off states using
FLAGH 75 s 0.023 0.6 160 150 cardmgrutility. The transition from the doze state into the off
SRAM 115 17 0.13 5.0 100 % state takes on averagg. — 62 ms with variance of,,,,. = 31
DRAM 200 10 0.4 2.0 90 75 ms. The transition back takes,. = 34 ms with¢,,,. = 21 ms
Total 3.5 W o2 W 200 mw | 110 ms | 705 ms | 455 ms  VAriance. The transition between doze and off states are best de-

scribed using the uniform distribution.

hed (or built i devi h d mobil 3) Hard Disk: The Fujitsu MHF 2043AT hard disk in the
attache (o.r uilt in) to evices such as PDAs and mo 'etebaebnyVaioIaptopwe used in our experiments supports two states
phones, or incorporated in computing systems. Both the Smagl hich the disk is spinning—idle and active with average

Badge and the WL’_A‘N_ card operate as a part of a ch_ent—ser wer consumption of 0.95 W. When the data is read or written,
system.ThL_Js,theymluate and e_nd each communication sess _. power consumption is 2.5 W, but since the service rate is
Thehserg/erjust rgsponds to thelrr] reqt:ests. id ery high, the average power is 0.95 W. Service times on the

The SmartBadge supports three lower power states: iigyy gisk in the active state most closely follow an exponential

standby, and off. The idle state is entered immediately by €agjpy tion as shown in Fig. 6. We found similar results for the

companent in the system as soon as that particular Compo@martBadge and the WLAN card. The average service time is

is not accessed. The standby and off state transitions canRfned byl /Ap, whereh, is the average service rate. Equation

F:ontr(r)]lled by the PM. Thebtratr)15|t|odn fror_r;) s(tjand.by OL off St_?t& defines the cumulative probability of the device servicing a
into the active state can be best described using the unifo})  request within time interval

probability distribution. Components in the SmartBadge, the
power states, and the transition times of each component from Fp(t) =1— ¢ 0t ©)
standby £.,,) and off ¢.x) State into active state, and the
transition times between standby and off stateg @re shown  The PM can control the transitions between the idle and the
in Table |. Note that the SmartBadge has two types of dageep state. The transition from the sleep to the active state re-
memory—slower SRAM (1 MB, 80 ns) from Toshiba and fasteguires spinup of the hard disk, which is very power intensive:
DRAM (4 MB, 20 ns) from Micron that is used only during2.1 W. While in the sleep state, the disk consumes only 0.13 W.
MPEG decode. Memory takes longer to transition from the o#nce in the sleep state, the hard disk waits for the first service
to the active state as contents of RAM have to be downloadeggiuest arrival before returning to the active state. The transition
from FLASH and initialized. The power consumption of albetween active and sleep states is best described using the uni-
components in the off state is 0 mW. form distribution, where, and¢; can be defined as,,e — At

2) WLAN Card: The wireless card has multiple powerndt...+At, respectively. The cumulative probability function
states: two active statesansmittingand receiving and two for the uniform distribution is shown below

inactive statesdozeand off. Transmission power is 1.65 W, 0 t<to

receiving 1.4 W, and the power consumption in the doze state t—to

is 0.045 W [35] and in the off state it is 0 W. When the card Fp(t) = sy fo<tst. (4)
is awake (not in the off state), every 100 ms it synchronizes 11 0 P>t

its clock to the AP by listening to the AP beacon. After that, it
listens to the TIM map to see if it can receive or transmit during Fig. 7 shows the large error that would be made if the transi-
that interval. Once both receiving and transmission are doneti@n to the sleep state were approximated using an exponential
goes into the doze state until the next beacon. This portionditribution. The transition from the active state into the sleep
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O_; ] ;E’;ﬁi:;"e"‘a' P derive the state of the queue. Thus, in the active state two ex-
08 {  —a Exponental ponential distributions define the number of jobs in the queue:
g o741 e e the interarrival time and the service time distributions. During
§ 8§ 1. transitions, the queue state is defined by the transition distribu-
S o4 tion and the distribution describing user request arrivals. During
é 03 A transitions and in the low-power states, the first arrival follows
gf 1 the Pareto distribution, but the subsequent arrivals are modeled
o 4 ‘ ' . ‘ ; with the exponential distribution since for very short interarrival
1130 1330 1530 1730 1930 2130 times the exponential distribution is very close to the Pareto dis-
Transition time (ms) tribution and the experimental results, as can be seen in Figs. 3
and 4.
Fig. 7. Hard-disk transition from sleep to active state. Although in the experimental section of this paper we utilize
the fact that nonexponential user and device distributions can
TABLE I be described with well-known functions (Pareto or uniform),
SySTEM MODEL OVERVIEW the models we present are general in nature and, thus, can give
— optimal results with both experimental distributions obtained at
System Component Distribution . . e
runtime or commonly used theoretical distributions. We found
Component | State that in the particular examples we present in this work Pareto
User Queue not empty | Exponential and uniform distributions enabled us to obtain the optimal policy
Queune empty Pareto faster without sacrificing accuracy.
Device Active Exponential
Transition Uniform IV. POWER MANAGEMENT BASED ON RENEWAL THEORY

Renewal theory [21], [22] studies stochastic systems whose
evolution over time contains a set @newals or regeneration
state takes on average 0.67 s with variance of 0.1 s. The traggires where the process begins statistically anew. Formally, a
tion back into the active state is much longer, requiring 1.6 s @8newal process specifies that the random times between system
average with 0.5 s variance. renewals be independently distributed with a common distribu-
tion F'(z). Thus, the expected time between successive renewals
C. Queue can be defined as

Portable devices normally have a buffer for storing requests 0o
that have not been serviced yet. Since we did not have access to Elr] = / zdF(z). %)
the detailed information about the real-time size of each queue, 0

we .measured tr?e(;qtét_euke Size of qumllum ten jobs with an ®ote that the Poisson process is a simple renewal process for
periment on a hard disk using a typical user trace. Because 8 1, renewal times are distributed with the exponential distri-

service rate in _the qurtBadge and WLAN card is higher aiion | his case, the common distribution between renewals
the request arrival rate is comparable, we assume that the same - jofined a¥(z) = 1 — ¢=** and the mean time be-

maximum queue size can be used. As the requests arrivinqvgi\éen renewals (0
the hard disk do not have priority associated with them a%;IT — 1/X. A process can be considered to be a renewal
the SmartBadge requests by definition do not have priority, OHrocess only if there is a state of the process in which the whole
queue model contains only the number of jobs waiting for Sely

ice. Acti q1 be diff ated th lae/:stem probabilistically restarts. This, of course, is the case in
vice. Active and low-power states can be differentiated then y system that is completely described by exponential or geo-
the number of jobs pending for service in the queue.

metric distributions, since those distributions are not history de-
, pendent (they are memoryless).

D. Model Overview In policy optimization for dynamic power management, the
Table Il shows the probability distributions used to describ@mplete cycle of transition from the idle state, through the other
each system component derived from the experimental resutmtes, and then back into the idle state can be viewed as one
User request interarrival times with at least one job in the quergnewal of the system. When using renewal theory to model
are best modeled with the exponential distribution. On the othtlie system, the decision regarding transition to a lower power
hand, we have shown that in all four applications, the Paredtate (e.g., sleep state) is made by the PM in the idle state. If
distribution is best used to model the arrival of the user’s réhe decision is to transition to the lower power state, the system
quests when the queue is empty. Note that the queue is emgtgnters the idle state after traversing through a set of states.
in either the idle state or a low-power state. The device is Dtherwise, the system transitions to the active state on the next
the active state when at least one job is waiting to be servicgab arrival and then returns to the idle state again once all jobs

We have also shown that the service times in active state asve been serviced.

best modeled with the exponential distribution. The transitions The general system model shown in Fig. 1 defines the PM
to and from low-power states are better modeled with a uniforamd three system components: user, device, and the queue.
distribution. The combination of these distributions is used o provide concreteness in our examples, each component is

r between exponential arrivals) is defined as
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Fig. 8. System states for renewal theory model.

completely specified by the probability distributions definedpper-case bold letters (e.§4) to denote matrices, lower-case
in the previous section. With renewal theory, the search fbold letters (e.g.,v) to denote vectors, calligraphic letters
the best policy for a system modeled using stationary nofe.g.,S) to denote sets, upper-case letters (e59.1o denote
exponential distributions can be cast into a stochastic contsalalar constants, and lower-case letters (8)da denote scalar
problem. System states used in the formulation of the renewakiables.

theory model are shown in Fig. 8. In the active state, the queuerhe problem of power management policy optimization is to
contains at least one job pending and the request arrivals @dermine the optimal distribution of the random varidbtbat
service times follow exponential distributions. Once the quewggecifies when the transition from the idle state to low-power
is emptied, the system transitions to the idle state, which dgate should occur based on the last entry into the idle state. We
also a renewal and decision point in this system. Upon arrivgdsume thaf takes on values i, &, 2h, ..., jh, ..., Nh),

of request, the system always transitions back into the acti¥@ere; is an indexj is a fraction of the break-even time of the
state. The PM makes a decision on when the transition tajavice, andV is the maximum time before the system goes to
low-power state from the idle state should occur. As soon gsow-power state (usually set to an order of magnitude greater
the command to place the system into the low-power statetifan break-even time). The solution to the policy optimization
given, the system starts a transition between the idle and §i@blem can be viewed as a table of probabilitiE}, (vhere
low-power states. The transition state highlights the fact theéfich elemenp(j) specifies the probability of transition from
device takes a finite and random amount of time to transitigflie to a low-power state indexed by time valyés

into the low-power state (governed by a uniform distribution). We can formulate an optimization problem to minimize
If during the transition time a request arrives from the user (firie average performance penalty under a power constraint
request follows Pareto distribution, subsequent requests gre . ...}, using the results of the ratio limit theorem for
exponential), the device starts the transition to active staterapewal processes [22], as shown in (6). The average per-
soon as the transition to off state is completed. If no request &rmance penalty is calculated by averaging), the time
rives during the transition state, the device stays in a low-powgénalty user incurs due to transition to low-power state, over
state until the next request arrives (Pareto distribution). Upepy), the expected time until renewal. The power constraint
request arrival, the transition back into the active state stai.shown as an equality as the system will use the maximum
Once the transition into the active state is completed, the deviggilable power in order to minimize the performance penalty.
services requests, and then again returns to the idle state whafe expected energyb 1. p(j)e(4)) is calculated using(y),

the system probabilistically renews again. the probability of issuing command to go to low-power state
at time jh, ande(j), the expected energy consumption. This
A. Renewal Theory Model expected energy has to equal the expected power constraint

We formulate the power management policy optimizatio@j p(5)t(5) Poonsiraint) Calculated using the expected time
problem based on renewal theory in this section. We usaetil renewalt(;j), the power constrainP.onstraint, andp(j).
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.'_‘I’rl_“ﬁ_ otherwise the queue would overflow. In all cases we studigd,
| ."\-\_ .-"-I-I
|

‘;' '?f'l::l - is at least order of magnitude larger than, leading to
.t _I."\._ ! |I Il.r-' .
e &

Bl (3 < 0 = h] = 3 KhP(3 = ki)

ElLength al ks panod] « E[Lergth of idle parad]+ k=1
E{Time sarvics neduas] E[Timss 10 flssig] + 1 .
E[Lengih of siaap| + o P(p <jh). (8)
E[Trma 10 acive) D =AU
E[Time 10 sarvice al requests] If the arrival comes after timgh when the system starts the
transition to low-power state (the right portion of Fig. 9), then
Fig. 9. Renewal cycles. the expected time until renewal is the sum of the time until ar-

_ o _ rival (jh) with expected times for transition to low-power state
The unknown in the optimization problem jg;), the proba- and back to active state&{/;, EU), expected length of the
bility of issuing a command to go to low-power state at timgw-power period and the expected time to work off requests

jh. The full derivation of all the quantities follows: that arrived during the renewal period
> p()a(i) E[r;1(8 > jh)[I' = jh] = P(B > jh)
min ———

> p(itG) +E[(B — jh+ EUNI(B > jh+ EUL)|

J +E[(jh + EU, — B)I(jh < B < jh+ EUY)|
s.t. ZP(J)[C(J) — t(j) Peonstraint] = 0 AD " 1 L EU AD

J Ap—Au  Ap— Ay *Ap — Av

IOHES! (9)
j. . 2) Computation of CostsWe can define the performance

p(j) =0 Vi (6) penalty that the user experiences due to transition to low-power

1) Computation of Renewal Timeé3iven the state spaceState [I(j.)] and the expected energy congumpt!e(qﬂforeach
strate using the same set of equations, just with different values

shown in Fig. 8, we can define the expected time until renew, : .
} . . . ..~ for constantsd) as shown in Table Ill. Each state is labeled on
t(j) as follows. We defing? as the time at which the first job . ! . ) .
/ ) ) .~ the left side, while the expected time spent in that state multi-
arrives after the queue has been emptied. The first arrival | ; : .
plied by the constant is on the right side.

distributed using general probability distributid?(jh). We The constantsdj equal the power consumption in a given

also define the indicator functiof(j/), which is equal to one . .
. g ) . . state for energy consumption computation. For the performance
if we are in intervalj and is zero otherwise. .
. . enalty, the constants should be set to zero in low-power state
Further, as we showed in Section Ill, the subsequent user fe- - .

. . . . anhd idle state and to one in all other states. For example, the con-

guest arrivals follow a Poisson process with rate Finally, . : ; S
- . : . stantc; is set to power consumption of the device while in the

the servicing times of the device also can be described usi : . :

T . idie state when calculating energy consumption (the first equa-
exponential distribution with parametar,. We can now de- .. . . L
. . . . . tion). Since there is no performance penalty to servicing users
fine the expected time until renewal for each time incremen . . .

) . . . requests in the idle state, the consigris set to zero for perfor-

spent in the idle state as the sum of expected time until re-

I .. .. mance penalty calculation. On the other hand, the transition to
newal if arrival comes before the system starts transitioning mttﬁ)

. ! R e active state causes performance degradation, thus the con-
low-power stateg i [as shown by the first cycle in Fig. 9 and the ; :
) : . " stantc,, is here set to one. The same constant is set to power
first half of (7)] and if the arrival comes after the transitions has . » . :
. required for the transition to the active state when calculating
already started [the second parts of Fig. 9 and (7)] .
energy consumption.
t(j) = E[t() (B < jR)|L = jh] The expected times spent in each state outlined in Table I
N . . are calculated as follows:
+ E[t(j)1(8 > jh)|L' = jh]. (@) : o .
1) Idle State:The expected time spent in the idle state is the
Each of the two terms in (7) is defined in (8) and (10). Note expected average of the idle time until the first request
that Fig. 9 shows the components of each of the two terms. The  arrival [Y_;_, khP(8 = kh)] and the time spent in the
expected time until renewal for arrival coming before transi- idle state when the transition to low-power state occurs
tioning to low-power state at timgh (the left portion of Fig. 9) before the first arrival{h P(8 > jh)).
is the expected time until arrival [the first term in (8)] and the 2) Transition to Low-Power StateThe transition to low-
time needed to work off the request that just arrived (the second  power state occurs only if there has been no request ar-
term). Note that the second term can be computed based on the rival before the transition started[3 > jh)]. The ex-
results fromM /M /1 queueing theory due to the fact that the pected average time of the transition to low-power state
time to work off the request is governed by the exponential dis-  is defined by the average of the uniform distribution that
tribution with rateAp, while the arrivals in the active state are describes the transitior®{/;).
described by the exponential distribution with rate. The job 3) Low-Power Statel.ow-power state is entered only if no
departure rate has to be larger than the arrival rate & A\¢), request arrival occurred while in the idle stafe(f >
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TABLE Il
CALCULATION OF COSTS

State Performance penalty or Energy consumption

ldle ei[Y4 o khP(B = kh) + jhP(B > jh)]

To Low Power | cts[EULP(B > jh)]

Low Power cs[E[B — (jh + EU(B > jh+ EUL)P(B > jh))
To Active cta[EU2P(B > jh)]
Active Ca[rDi—)‘;P(ﬂ < jh)"‘

EUy 3 2B—P(8 > jh)+

soixs P(B > jh)+

E[(jh + BUy — B)I(jh < B < jh + EUL)| 522 P(8 > jh)]

jh)). The device stays in that state until the first requesttion to low-power state from idle state at tinike, p(j) can be
arrives B3 — (jh + EUDI(B > jh + EUL)). computed as follows:

4) Transition to Active StateThe transition to active state )
occurs only when there is a successful transition to low- p(j) = Y J . (12)
power state (3 > jh)). The transition length is the
expected average of uniform distribution LP describes the
transition to active stateF{l/s). B. Policy Implementation

5) Active State:The device works off the request that ar- 1he gptimal policy obtained by solving the LP given in (10)
rived in the idle state if no tran5|t|on to Iow—poy\(er statgs 4 table of probabilities(;). The policy can be implemented
occurred [1/Ap — Av]P(8 < jh)). If the transition o i, yq different ways. If the probability distribution defined by
low-power state did occur [terms containifig > jh)], p(4) is used, then on each interval, the policy needs to be
then the system is in the active state for the time it takes {Qq /a1y ated until either a request arrives or the system transitions
work off all the requests that arrived while transitioning, 5 |ow.-power state. This implementation has a high overhead
between idle, low-power, and active states. as it requires multiple reevaluations. An alternative implemen-

3) Problem Formulation: The optimization problem shown atjon gives the same results, but it requires only one evalua-

in (6) can be transformed into an LP using intermediate variablggy, upon entry to idle state. In this case a table of cumulative
y(i) = [pG)/ 2 p(tD] andz(5) = 1/32; p(1)H) 371 probabilities P(5) is calculated based on the probability dis-
LP: min Z a()y(H) tribution described wittp(7). Once the system enters the idle
state, a pseudorandom numbBEXD is generated and normal-

;
N Ny _ ized. The time interval for which the policy gives the cumula-
st E[G(J)y(‘]) — #5)2(J) Peonstraint] = 0 tive probability P(j) of going to the low-power state greater
’ thanRND is the time when the device will be transitioned into
> i) =1 the low-power state. Thus, the policy works like a randomized
J timeout. The device stays in the idle state until either the transi-
z20. (10) tion to the low-power state as given RND and the policy or

Once the values of intermediate variablég) andz(;j) are ob- until a request arrival forces the transition into the active state.
tained by solving the LP shown above, the probability of trar@nce the device is in the low-power state, it stays there until the
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TABLE IV o a
SAMPLE PoLICY 2 ®
o »Q— a,
Idle | T ition 2 %3
e ransi
PR o _ ™
Time | Probability E o
; ; 7] s
3 P(j) 48 1
7 5,
0 0
| | | ]
1 0.1 ] ] I |
2 0.4 to ta t2 f@
3 0.9 .
Time
4 1.0

Fig. 10. SMDP progression.

first request arrives, at which point it transitions back into the

active state. L . a function of the system state Thus, stationarity means that
Example IV.1:1f a sample policy is given in Table IV gnd thefunctional dependenayf 6§ on s does not change over time.
the pseudorandom numbBIND generated upon entry to IOIIeWhens changes, howeveé, can change. Furthermore, notice
Stat_e is 0.6, then the PM will give a command to transitio_n tr}ﬁat even a const'ant decisianes nomean that thsame’com-
devu_:e tq low-power stat_e af ime indexed ‘by:_ 3. Thus, 'f_ .mandis issued at every decision point. For randomized policies,
fche time increment used is .0'1 S, then the device will transitiohye cision is a probability distribution that assigns a probability
into low-power state once it has been idle for 0.3 s. If a USE each command. Thus, the actual command thatis issued is ob-

For stationary policies, decisions are denoted byhich is

tions back to the active state. with the probabilities specified b§.

Definition V.2: Markov stationary policiesare policies
V. POWER MANAGEMENT BASED ON TISMDP where decisiong do not depend on the entire history but only

In this section, we present the power management opti the state of the systesat the current time.
mization problem formulation based on TISMDP. This model Randomizedarkov stationary policies can be represented

is more general than the model based on renewal theoryaésas x A decision matrix®,. An elemen,, , of P is the

it enables multiple decision points (see Example V.1). Olﬁ’erbab'l_'ty of ISsuing c_ommand given that the_ _state of th_e
goal is to minimize the performance penalty under an ener stem iss. DeterministicMarkov stationary policies can still

consumption constraint (or vice versa). We first present t represented by matrices where only one element for each row

average-cost semi-Markov decision process (SMDP) Oplags value one and all othe_r _eIements are zero. The importance
mization problem [38] and then extend it to the TISMDP fon these two classes qf policies stems from two facts: first, they
modeling general interarrival times. areeasy to store and_mplem_engtecond, we will show that for
Example V.1: The SmartBadge has two states where de ur system modebpt|mgl pollmes belong to these classgs.
sions can be made: idle and standby. The idle state has hig pnext sections, we V.V'" first present the average-cost SMDP,
power consumption, but also a lower performance penalty owed by the extension to TISMDP.
returning to the active state, as compared to the standby state. .
From the idle state, it is possible to give a command to transitiéh Semi-Markov Avage-Cost Model
to the standby or the off states. From standby, only a commandSMDP generalize Markov decision processes by allowing
to transition to the off state is possible. The optimal policy detethe decision maker to choose actions whenever the system
mines when the transition between idle, standby, and off statgéate changes, to model the system evolution in continuous
should occur. time, and to allow the time spent in a particular state to
At each event occurrence, the PM issuepmmandor ac- follow an arbitrary probability distribution. CTMDP [13],
tion) that decides the next state to which the system should trgb5] can be viewed as a special case of SMDPs in which
sition. In general, commands given are functions of the statee intertransition times are always exponentially distributed.
history and the policy. Commands are modeled by decisiofdg. 10 shows a progression of the SMDP through event
which can be deterministic or randomized. In the former cass;currences, called decisi@pochs.The PM makes decisions
a decision implies issuing a command. In the later case, a deati-each event occurrence. Timerevent time sdt defined as
sion gives the probability of issuing a command. The decisiofs= {#;, s.t.i = 0, 1, 2, ..., iyax }, Where each is the time
taken by the PM form a discrete sequep&®’, 6, ...). The between two successive event arrivals apgl. is the index of
sequence completely describes the Pdicy «, which is the the maximum time horizon. We denote By € S; the system
unknown of our optimization problem. Among all policies twestate at decision epoeh Commands are issued whenever the
classes are particularly relevant, as defined next. system state changes. We denotedhye .4 an action that
Definition V.1: Stationary policiesre policies where the is issued at decision epoeh When actiona; is chosen in
same decisiot” = § is taken at every decision poimf, System state;, the probability that the next event will occur
t=1,2, .., i.e,mr =166 ...). by timet; is defined by the cumulative probability distribution
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F(t;]s:, a;). Also, the probability that the system transitions Using (16), we derive that the probability of transition to the
to states; 1, at or before the next decision epoghis given by state that has an additional element in the quene j5\ , while
D(Sit1lts, Siy ;). the probability of transition to the state with one less element
The SMDP model also defines cost metrics. The average cissgiven byAp /A. Note that in this special casg(j|t, s, a) =
incurred between two successive decision epochs (events) isiés|s, o). The expected time for transition derived using (17)
fined in (12) as a sum of the lump sum césk;, ;) incurred is given byl /A, which is again characteristic 8f /M /1 queue.
when actiona; is chosen in state; in addition to the cost in Energy consumption is given in (12). For this specific example,
states; 1 incurred at rate(s; 1, s;, a;) after choosing action we define the power consumption in active state withand
a; in states;. We dfineS; 41 as the set of all possible states thalve assume that there is no fixed energy cost for transition be-
may follow s; tween active states. Then the energy consumptlon can be com-
puted as followscost(s, a) = [7° A= dt] [ Podp/Adu +
- fo P, Au /A du], which is equal taP, /A. Note that this solution
— k(si, ai) +/ F(du|si, a;) Z / is very intuitive, as we would expect the energy C(_)nsumptlon to
equal the product between the power consumption and the ex-
pected time spent in the active state.
The second example considers the transition from the sleep
c(Si+1s Sis ai)p(sit1ltis si, ai) | db. (12) state into the active state with one or more elements in the queue.
Example V.3: The transition from sleep to active state is gov-
We can define the total expected cost for policyntil time  erned by two distributions. A uniform distribution describes de-
t as a sum of all lump sum cosks(s, a) up to timet and the yjce transitionsFy (dt|s, a) = dt/(tmax, s — twmin, s), Where
costs incurred at the I’atés, CL) while in each state until time tmaxa s andtmina care maximum and minimum transition times.

cost(s;, a;, )

8i4+1€Si 1

t The request arrival distribution is exponenti&li(dt|s, a) =
t visi Ave tdt. The probability of no arrival during the transition
vi (s) = BT / c(s, a, u) du + Z (s,a) 2 (13) s given byp(jlt, s, a) = e~ v,

The probability of transition from the sleep state with
and then we can define the average expected costferall a set number of queue elements into an active state with
- A ) the same number of elements in the queue is given by
9" (s) = lim inf == A9 m(ils, a) = [ [ /(timax, s — tunin, s)] dt. The ex-

Theorem V.1:Finding the optimal power management policyrected transition tlm§(5 a) is given by( maxg s T tming 5)/2,
minimizing (14) is equivalent to solving the following problemwhich can be derived with (17). Finally, the energy con-
sumed during the transition is defined hyst(s, a) =
o _ . . Fldu/tmax, s — tmin, 5] Jo Psadt, assuming that there
his) = acA cost(s, a)=g(s)y(s, a) +Zm(‘]|s’ RUSY ifsono fixed energy consu&ed during the transition and that
(15) the power consumption for the transition is given By,.
The energy consumption can further be simplified to be
where /(s) is the so-called bias (the difference betweelr,, /t,. .. . + twin, ). This is again equal to the product of
long-term average cost and the average cost per period fosgver consumption with the expected transition time from the
system in steady—state [38§);s) is the average cost;(j|s, a)  sleep state into the active state.
is the probability of arriving to statg given that the actiom  The problem defined in Theorem V.1 can be solved using

Jjcs

was taken in state is defined by policy iteration or by formulating and solving an LP. There are
. Y . Fldt 16 two main advantages of a linear programming formulation: ad-
miils, a) = o plilt, s, a)F(dt]s; a) (18) " gitional constraints can be added easily and the problem can be
and expected time spent in each state is given by solved in polynomial time (inS - A). The primal LP derived
from (15) defined in Theorem V.1 can be expressed as follows:
y(s, a) / th (Jlt, s, a)F(dt]s, a). 17) LPP: min ¢(s)
sES . .
Proof of Theorem V.1 is given in [38]. st.g(s)u(s; a) +h(s) — Z m(jls, a)h(s)
The following examples illustrate how the probability, the ex- jes
pected time and energy consumption can be derived. > cost(s,a) Vs, a (18)

Example V.2:In the active state with at least one element iwhere
the queue, we have two exponential random variables, one fos anda state and command given in that state;
the user with parametev;; and one for the device with param-  g(s) average cost;
eterAp. The probability density function (pdf) of the jointly ex-  A(s) bias;
ponential user and device processes defined/dn{/1 queue  y(s, a) expected time;
and, thus, can be described BYdt|s, a) = Ae™*'dt, where cost(s, a) expected cost (e.g., energy);
A = Ay + Ap. In the same way, the probabilities of transition p(j|s, ) transition probability between the two states.
in M/M/1 queuep(jlt, s, a) are defined ag; /A for request ~ Because the constraints of LPP are convex(is) and the
arrival andAp /X for request departure. Lagrangian of the cost function is concave, the solution to the



SIMUNIC et al: EVENT-DRIVEN POWER MANAGEMENT

Fig. 11.
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primal LP is convex. In fact, the constraints form a polyhedroof issuing command when the system is in state (s, a) is
with the objective giving the minimal point within the polyhe-defined as

dron. Thus, thglobally optimalsolution can be obtained that is F(si, @)

both stationary and deterministic. The dual LP shown in (19) is o(si, a;) = = ———. (20)
another way to cast the same problem (in this case with the ad- Z F(si, ai)

dition of a performance constraint). The dual LP shows the for- aicd

mulation for minimizing energy under performance constraint
(opposite problem can be formulated in much the same way)B. Time-Indexed Semi-Markov Aage Cost Model

LPD: min Z Z COStenergy (5, @) f(s, a)

s€ES a€A

s.t. Z f(s, a)— Z Z m(s’|s, a)f(s',a) =0

aCA s’ €S acA
YD yls a)f(sia)=1
s€ES a€A

Z Z costperr(s, @) f(s, a) < constraint.

s€ES a€A

(19)

The average-cost SMDP formulation presented above is
based on the assumption that at most, one of the underlying
processes in each state transition is not exponential in nature.
On transitions where none of the processes are exponential,
time-indexed Markov chain formulation needs to be used to
keep the history information. Without indexing, the states in
the Markov chain would have no information on how much
time has passed. As for all distributions, but the exponential,
the history is of critical importance, the state—space has to
be expanded in order to include the information about time
as discussed in [21]. Time-indexing is done by dividing the
time line into a set of intervals of equal lengthz. The

The A - S unknowns in the LPDY (s, a), calledstate-action original state—space is expanded by replacing one idle and
frequenciesare the expected number of times that the systemase low-power state with a series of time-indexed idle and
in states and command is issued. It has been shown that théow-power states as shown in Fig. 11. The expansion of idle
exact and the optimal solution to the SMDP policy optimizatioand low-power states into time-indexed states is done only to
problem belongs to the set of Markovian randomized stationaaid in deriving in the optimal policy. A TISMDP can contain
policies [38]. AMarkovian randomized stationary polian nonindexed states. Once the policy is obtained, the actual
be compactly represented by associating a valie a) < 1
with each state and action pair in the SMDP. The probabiliolicies based on DTMDPs. Thus, all decisions are made

implementation is completely event-driven in contrast to the
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upon event occurrences. So, the decision to go to a low-poweiThe expected time spent in the idle state indexed
state is made once upon entry to the idle state as discussedith time incrementNAt can be defined byy(s, a) =
Section IV-B. Other events are user request arrivals or servijfjgijl)&[(l — F(t))dt]/[1 — F(t;)], which after integration,
completions. Note that the technique we present is general, Butplifies to[((N+1) AL~ —(NAHL ] /[(1—a)(NAt) 7).
in this paper, we will continue to refer to the examples showpith that, we can calculate energy consumed in the
in Section Il idle state, again assuming that there is no fixed energy
If an arrival occurs while in the idle state, the system transtost and that the power consumption is defined By.
tions automatically to the active state. When no arrival occUiB;((N + 1)At)1 % — (NAH)2]/[(1 — a)(NA)~9].
during the time spent in a given idle state, the PM can chooseTISMDP policies are implemented in a similar way to the re-
to either stay awake in which case the system enters the neaival theory model, but there are more possible decision points.
idle state or to transition into the low-power state. When tt®riefly, upon entry to each decision state, the pseudorandom
transition to the low-power state occurs from an idle state, th@mberRND is generated. The device will transition into low-
system can arrive to the low-power state with the queue emptyiwer state at the time interval for which the probability of
with jobs waiting in the queue. The low-power state with queugbing to that state as given by the policy is greater tRAD.
empty is indexed by the time from first entry into the idle stathus, the policy can be viewed as randomized timeout. The
from the active state, much in the same way idle states are dievice transitions into active state if the request arrives before
dexed, thus allowing accurate modeling of the first arrival. Thentry into low-power state. Once the device is turned off, it stays
LP formulation for average-cost SMDP still holds, but the cospff until the first request arrives, at which point it transitions into
the probability, and the expected time functions have to be redgtive state. The detailed discussion of how the policy is imple-
fined for time-indexed states in SMDP. Namely, for the time-inmented if there is only one decision state has been presented in
dexed states, (12) (that calculates cost assigned to thesstatgection IV-B.
with actiona;) is replaced by Example V.5:As mentioned in Example V.1, the Smart-
Badge has two states where decisions can be made: idle and
cost(si, ai) = k(i ai)+ Y elsivn, sy ai)y(si ai) standby. From the idle state, it is possible to give a command
$i+1€Sit to transition to standby or to the off state. From standby, only a
(21) transition to the off state is possible. In this case, both the idle
and (17) describing the time spent in the stataith actiona; and the standby states are time-indexed. The optimal policy

is replaced by gives a table of probabilities determining when the transition
LAt between the idle, standby, and off states should occur. For
T Ao F)dt | i ify that if th has b
y(si, a;) = ) (22) example, a policy may specify that if the system has been
t 1-F(t;) idle for 50 ms, then the transition to the standby state should
The probability of getting an arrival is defined using the tim@ccur with probability of 0.4, the transition to the off state
indices for the system state, whete< t < ¢; + At with probability of 0.2, and otherwise the device will stay idle.

F(t + AF) — F(t:) OnceT in the standby _sFate.for another 100 ms, the policy may
! ! (23) specify that the transition into the off state should occur with
1= F(t) probability of 0.9. When a user request arrives, the system
Equation (16) is replaced by the following set of equations. Thnsitions back into the active state.
probability of transition to the next idle state is defined to be In this section, we presented a power management algorithm
m(siy1|si, a;) =1 — p(siy1|ti, si, a;) and of transition back based on TISMDPs. The TISMDP model is more complex than
into the active state ig(s;4+1s:, a;) = p(s;iy1lt:, si, a;). The the SMDP model, but is more accurate and is also applicable to
general cumulative distribution of event occurrences is given bywider set of problems, such as a problem that has more than
(). one nonexponential transition occurring at the same time. The
An example below illustrates how the time indexing is don@rimary difference between the TISMDP model and the renewal
Example V.4: The cumulative distribution of user request artheory model is that TISMDP supports multiple decision points
rival occurrences in the idle state follows a Pareto distribution the system model, while renewal theory allows for only one
F(t;) = 1 — at;*. The transition from the idle to the low- state in which the PM can decide to transition the device to the
power state follows uniform distribution with average transiow-power state. For example, in systems where there are mul-
tion time tuve = (fmax, s + tmin, s)/2. The time increments tiple low-power states, the PM would not only have to make a
are indexed byj. Thus, the probability of transition from thedecision to transition to low-power state, but also could transi-
idle state at time incrementAt into the low-power state with tion the system from one low-power state into another. Renewal
no elements in the queue is given bys;11]s;, a;) = [1L — theory cannot be used for this case as there are multiple deci-
F(jAL + tave)]/[1 — F(jAt)]. This equation computes con-sion states. The main advantage of the renewal theory model is
ditional probability that there will be no arrivals up to timethat it is more concise and thus computes faster. The renewal
(j + 1)At + t,ve given that there was no arrival up to timetheory model has only five states, as compare@{&) + 2
JAT + t,.. Note that in this way we are taking history into acstates in the TISMDP model\ is the maximum time index).
count. Similarly, we can define the probability of transition fronin addition, each of thé&(N) states require evaluations of one
the idle state into a low-power state with an element in the quedeuble and two single integrals, compared with a very simple
by m(siyi|si, a;) = [F(JAt+tave) — F(FAL)]/[1— F(jAt)]. arithmetic formulation for the renewal theory model.

p(3i+1|ti7 Siy ai) =
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VI. RESULTS .
1

We perform the policy computation using the solver for LPE B
[39] based on the simplex method. The optimization runs in juE e B sasrad
under 1 min on a 300-MHz Pentium processor. We first verifieg —_——
the optimization results using simulation. Inputs to the simi§ "™
length of user trace), the number of simulations to be performeg o5
and the policy. The system description is characterized by t  cm - - ' . '
power consumption in each state, the performance penalty, awayson  Bier (b8} copososial  flor (fs) &
the function that defines the transition time pdf and the prow-
ability of transition to other states given a command from thgy 12 Measured and simulated hard-disk power consumption.
PM. Note that our simulation used both pdfs we derived from
data and the original traces. When using pdfs, we just verifie ™ g
the correctness of our problem formulation and solution. Witz 7=
real traces, we were able to verify that indeed pdfs we derivig s
do in fact match well the data from the real system and, thLE Eir, B e
give optimal policies for the real systems. The results of the o

timization are in close agreement with the simulation results.i P
In the next sections, we show large savings measured

lator are the system description, the expected time horizon (wi 1 l:|

e (is) &
Aeprmnhal i

B s et

on three different devices: laptop and desktop hard disks ai 10 ._l 4 ._|
the WLAN card and the simulation results showing savings | % ; ] ; — s
power consumption when our policy is implemented in a Smau weaaymon  fer (i3] esponenial  Hher{1s 8 e (be B
Badge portable system. As the first three examples (two hé.u T i

disks_ gnd WLAN) have just one state in which the decision }_qg. 13. Measured and simulated hard- disk performance.
transition to low-power state can be made, the renewal theory

model and the TISMDP model give the same results. The Iaﬁ imulati its for th il del (CTMDP
example (SmartBadge) has two possible decision states—id[if Simulation results for the exponential model (C )

and standby state. In this case, the TISMDP model is necess%ﬁ'?w large power savings, bUt_ measurement results show
in order to obtain the optimal policy. no” power savings and a very high-performance penalty. As

the exponential model is memoryless, the resulting policy
. makes a decision as soon as the device becomes idle or after
A. Hard Disk a very short filtering interval (filtered 1-s columns in Figs. 12
We implemented the PM as part of a filter driver templatend 13). If the idle time is very short, the exponential model
discussed in [40]. A filter driver is attached to the vendor-spgets a large performance penalty due to the wakeup time of
cific device driver. Both drivers reside in the OS, on the kernéhe device and a considerable cost in shutdown and wakeup
level, above the advanced configuration and power interfaemergies. In addition, if the decision upon entry to idle state is
(ACPI) driver implementations. Application programs such ase stay awake, large idle times, such as lunch breaks, will be
word processors or spreadsheets send requests to the OS. Wiiesed. If the policy is forced to reevaluate until it shuts down
any event occurs that concerns the hard disk, PM is notifig@gxponential), then it will not miss the long idle times. When
When the PM issues a command, the filter driver creates a powes use a short timeout to filter out short arrival times and force
transition call and sends it to the device that implements ttiee PM to reevaluate its decision (filtered exponential), the
power transition using ACPI standard. The change in powefsults improve. The best results are obtained with our policy.
state is also detected with the digital multimeter that measutlesfact, our policy uses 2.4 times less power than the always-on
current consumption of the hard disk. policy. These results show that it is critically important to not
We measured and simulated three different policies basealy simulate, but also measure the results of each policy and,
on stochastic models and compared them with two bouadds: thus, verify the assumptions made in modeling. In fact, we
ways-onandoracle policies. Always-on policy leaves the hardfound that modeling based on simple Markov chains is not
disk in the active state and, thus, does not save any power. @ceurate and that we do require more complex model presented
acle policy gives the lowest possible power consumption, adritthis paper.
transitions the disk into sleep state with the perfect knowledgeComparison of all policies measured on the laptop is shown in
of the future. Itis computed off-line using a previously collectet@able V and for the desktop in Table VI. Karlin’s algorithm anal-
trace. Obviously, the oracle policy is an abstraction that canngtis [7] is guaranteed to yield a policy that consumes at worst
be used in runtime DPM. twice the minimum amount of power consumed by the policy
All stochastic policies minimized power consumption underomputed with perfect knowledge of the user behavior. Karlin's
a 10% performance constraint (10% delay penalty). The resyftslicy consumes 10% more power and has worse performance
are shown in Figs. 12 and 13. These figures best illustrate then the policy based on our TISMDP model. In addition, our
problem we observed when user request arrivals are modepedicy consumes 1.7 times less power than the default Windows
only with exponential distribution as in CTMDP model [13]timeout policy of 120 s and 1.4 times less power than the 30-s
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TABLE V
LAPTOPHARD-DISK MEASUREMENT COMPARISON 0.9
Algorithm Pur (W) | Ny l Nuyd | Tss(s) 08
Oracle 0.33 250 118 s
Ours 0.40 326 | 76 81 § 0.7 4
Adaptive 0.43 191 | 28 | 127 © 06 -
Karlin’s 0.44 323 64 79
30s timeout | 0.51 147 | 18 142 05 1
DTMDP 0.62 173 | 54 102 0.4 : : : : : : : : : :
120s timeout | 0.67 55 3 238 0 1 o 3 4 5 8 7 8 9 10
always on 0.95 0 0 0 Filter {s)
CTMDP 0.97 391 359 4
Fig. 14. Power consumption versus filter size.
TABLE VI

the overhead of transition to and from low-power state has not

DESKTOPHARD-DISK MEASUREMENT COMPARISON .
been compensated. The power consumption grows for longer

Algorithm Pur (W) | Nea | Nua | Tes(s) filter times since more time is spent in the idle state before tran-
racle 164 62 | o 166 sitioning to th(_a Iovy—pqwer state, thus wasting some power. Note
Ours e 56 | 25 127 that the bgst filtering mteryals are on the order of seconds since
the hard disk break-even time is also on the order of seconds.
Karlin’s 1.94 160 | 15 | 142 The event-driven nature of our algorithm as compared to al-
Adaptive 1.97 168 | 26 134 gorithms based on discrete time intervals saves considerable
30s timeout | 2.05 147 | 18 142 amount of power while in sleep state as it does not require policy
120s timeout | 2.52 55 3 238 evaluation until an event occurs. Waking up a 10-W processor
DTMDP 2.60 105 | 39 130 every 1 s for policy reevaluation that takes 100 ms to execute
alvays on 3 48 o o o W(_)uld use 1800_J of energy during a normal 30 min break.
P 3.90 326 | 318 | a With an event-driven policy, the processor could be placed in

a low-power mode during the break time, thus saving a large
portion of battery capacity.

timeout policy on the laptop. Our policy performs better than
the adaptive model [12] and significantly better than the polidy: WLAN Card
based on DTMDP. The policy based on the simple CTMDP For WLAN measurements, we used Lucent’s WLAN 2-Mb/s
(without reevaluation and with initial 1-s filter) performs worsecard [35] running on the laptop. As a mobile environment is
then the always-on policy, primarily due to the exponential intecontinually changing, it is not possible to reliably repeat the
arrival request assumption. This policy both misses some losgme experiment. As a result, we needed to use a trace-based
idle periods and tends to shut down too aggressively, as cambethodology discussed in [41]. The methodology consists of
seen from its very short average sleep time. Better results ¢haree phases: collection, distillation, and modulation. We used
be obtained by using reevaluations with filtering. Similar resultspdump36] utility to get the user’s trace for two different ap-
can be seen on the desktops. plications: web browsing and telnet. During distillation, we pre-
Performance of the algorithms can be compared using thigsred the trace for the modeling step. We had a LAN-attached
different measuresV,q is defined as the number of times théhost read the distilled trace and delay or drop packets according
policy issued the sleep comman¥.,q gives the number of to the parameters we obtained from the measurements. In this
times sleep command was issued and the hard disk was asleap, we were able to recreate the experimental environment so
for shorter than the time needed to recover the cost of spthat different algorithms can be reliably compared.
ning down and spinning up the disk. Clearly, it is important to We implemented three different versions of our algorithm for
minimize N,,q while maximizing/Nq. In addition, the average each application, each with different powé?,(.) and perfor-
length of time spent in the sleep staié, should be as large asmance penaltyl,ena1ty). The algorithms are labeled Ours a, b, ¢
possible while still keeping the power consumption down. Frofor web browser and Ours 1, 2, 3 for telnet. Since web and telnet
our experience with the user interaction with the hard disk, oarrivals behave differently (see Fig. 4), we observe throughthe OS
algorithm performs well, thus giving us low-power consumpwhat application is currently actively sending and use the appro-
tion with still good performance. priate power management policy. The performance penalty for
As mentioned earlier, we filtered request arrivals using a fra¢/LANisameasure ofthetotal overheadtimeduetoturning offthe
tion of hard disk break-even time. The effect of filtering arrivalsard. Note that for the hard disk, we measured instead the average
into the idle state is best shown in Fig. 14 for the policy with thiéme in the sleep state as the accurate real overhead was difficult to
performance penalty of the laptop hard disk limited to 10%. Fobtain. Inadditionto measuringthe energy consumption (andthen
very short filter times, the power consumption is very high sinaalculating average power), we also quantified the performance
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100% A

TABLE VII .
DPM FORWLAN WEB BROWSER o— % performance penalty
—3— % power
80%
Policy Nsa | Nwd | Tpenalty FPave s
(sec) W) S 80%
T
Oracle | 395 | 0 0 0.467 2
< 40%
Durs (a) 363 96 6.90 0.474 ]
OQurs(b) | 267 | 14 1.43 | 0.477 a .
4
Karlin’s | 623 | 296 23.8 0.479
Ours(c) 219 9 0.80 0.485 0%
CTMDP 3424 | 2866 253.7 0.539 0 0.2 0.4 0.6 0.8 9
Default ) 0 0 1.410 Probability (GO_SLEEP)
Fig. 15. SmartBadge DPM results.
TABLE VIII
DPM FORWLAN TELNET APPLICATION
TABLE X
Policy | Ngg | Nyd | Tpenatty | Pave COMPARISON OFPOLICIES BY DECISION STATE NUMBER
(sec) W No. Decision | Power
Oracle 766 4] 0 0.220 States W)
Ours(i) | 798 21 2.75 0.269 ne state L 8
Ours(2) | 782 33 2.91 0.296 To svaves v
Karlin’s | 780 40 3.81 0.302
Qurs(3) | 778 38 3.80 0.310
CTMDP 043 | 233 20.53 0.361 our power management policies, in this case we perform a case
Default 0 o 0 1.410 study on the tradeoffs between power and performance for the

SmartBadge. The SmartBadge is a good example of a system
that has more than one decision point and, thus, requires the
penalty using three different measures. Delay perigltis the TISMDP model in order to obtain an optimal policy. We first
time the system had to waitto service arequest since the card wi@gly the tradeoffs between power and performance for policies
in the sleep state when it should not have been. In addition, wgh just one decision state (idle state) and then follow with an
measure the number of shutdow¥g, and the number of wrong example contrasting policies with one state to policies that have
shutdownsVy,q. A shutdown is viewed as wrong when the sleefio decision states (idle and standby).

time is not long enough to make up for the energy lost during The results of simulation shown in Fig. 15 clearly illustrate
transition betweentheidle and off state. The numberof shutdowie tradeoff between different policies for one decision state
is ameasure of how eager the policy is, while a number of wroftgat can be implemented in the SmartBadge system. The per-
shutdowns tells us how accurate the policy is in predicting a gofistmance penalty is defined as the percent of time the system
time to shutdownthe card. spends in a low-power state with a nonempty queue. In general,

The measurement results for a 2.5-h web browsing trace @ie goal is to have as few requests as possible waiting for ser-
shown in Table VII. Our algorithms (Ours &, b, ) show, oRice. For systems with a hard real-time constraint, this penalty
average, a factor of three in power savings with a low perfogan be set to large values to force less aggressive power man-
mance penalty. Karlin's algorithm [7] is guaranteed to be withiagement, thus resulting in less requests queued up for service.
a factor of two of the oracle policy. Although its power contn systems where it is not as critical to meet time deadlines, the
sumption is low, it has a performance penalty that is an ordgystem can stay in a low-power state longer, thus accumulating
of magnitude larger than for our policy. A policy that assumeasiore requests that can be serviced upon return to the active state.
exponential arrivals only, CTMDP [13], has a very large per- Because of the particular design characteristics of the Smart-
formance penalty because it makes the decision as soon asgBhége, the tradeoff curves of performance penalty and power
system enters idle state. savings are very close to linear. When the probability of going

Table VIII shows the measurement results for a 2-h telngf sleep is zero, no power can be saved, but the performance
trace. Again, our policy performs best with a factor of five irpenalty can be reduced by 85% as compared to the case where
power savings and a small performance penalty. The telngé probability is one. On the other hand, about 50% of the
application allows larger power savings because on averaggdiver can be saved when the system goes to standby upon entry
transmits and receives much less data then the web browggldle state.
thus giving us more chances to shut down the card. In addition to analyzing power and performance tradeoffs for
policies that have only one decision state, we have also com-
pared the one decision state (idle) policy to a policy with two

In contrast to the previous examples, where we implemegiécision states (idle and standby) with the same performance
and measure the decrease in power consumption when ugegalty. The results in Table IX clearly show that considerably

C. SmartBadge
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larger power savings with the same performance penalty can bgs)
obtained when using a more complex policy optimization model
that enables multiple decision points (TISMDP model) instead 7]
of just one decision point (renewal theory model).

(8l
VII. CONCLUSION

Dynamic power management policies reduce energy con{9]
sumption by selectively placing components into low-power
states. In contrast to heuristic policies, such as timeouts,
policies based on stochastic models can guarantee optimab;
results. The quality of results of stochastic DPM policies
depends strongly on the assumptions made. In this paper,
present and implement two different stochastic models fo
dynamic power management. The measurement results show
large power savings. [12]

The first approach requires that only one decision point be
present in the system. This model is based on renewal theorys;
The second approach allows for multiple decision points and is
based on SMDP model. The basic SMDP model can accuratem]
model only one nonexponential transition occurring with the ex-
ponential ones. We presented TISMDP model as the extension
to SMDP model in order to describe more than one nonexpoLlS]
nential transition occurring at the same time. TISMDP model ig16]
very general, but also is more complex. Thus, it should be used
for systems that have more than one decision point. 17

We presented large power savings using our approach on fogitg)
different portable devices: the laptop and the desktop hard disks,
the WLAN card, and the SmartBadge. The measurements 617
the hard disks show that our policy gives as much as 2.4 times
lower power consumption as compared to the default Window#0]
timeout policy. Thus, it is very beneficial to use our approach[21]
over the simple timeout. In addition, our policy obtains up to 5
times lower power consumption for the wireless card relative td22]
the default policy. The power management results on the Smarg?
Badge show savings of as much as 70% in power consumption.
Finally, the comparison of policies obtained for the SmartBadgé?24]
with the renewal model and TISMDP model clearly illustrate
that whenever there is more than one decision point availablgzs)
the TISMDP model should be used as it can utilize the extra
degrees of freedom and, thus, obtain an optimal power managgy,
ment policy.
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