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AbstractÐIn high-performance systems, variable-latency units are often employed to improve the average throughput when the

worst-case delay exceeds the cycle time. Traditionally, units of this type have been hand-designed. In this paper, we propose a

technique for the automatic synthesis of variable-latency units that is applicable to large data-path modules. We define and study an

optimization problem, timed supersetting, whose solution is at the kernel of the procedure for automatic generation of variable-latency

units. We contribute a new algorithm for solving timed supersetting in the most difficult case, that is, when the timing behavior of the

circuit is expressed through an accurate delay model. The proposed solution overcomes the computational limitations of previous

approaches and its robustness is experimentally demonstrated by obtaining high-throughput, variable-latency implementations for all

the largest circuits in the Iscas '85 and Iscas '89 benchmark suites, as well as for some realistic, high-performance arithmetic units.

Index TermsÐLogic synthesis, timing analysis, throughput optimization.
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1 INTRODUCTION

AS performance constraints become tighter, it is increas-
ingly difficult to speed up combinational units simply

by reducing their critical path delays. Variable-latency units
(i.e., circuits that take a variable, integer number of clock
cycles to complete a computation) are frequently used in
high-throughput systems to achieve good common-case
performance even when the worst-case delay cannot be
accommodated within the cycle time. Floating-point arith-
metic units [1] are typical examples of circuits of this kind.

The hand-crafted design of variable-latency units is a
difficult task. In this paper, we propose a method for
automatically transforming a unit with a fixed one-cycle
latency into a variable-latency unit with increased average
throughput. We call telescopic unit the product of our
transformation because the new circuit can ªstretchº the
number of cycles required for the completion of a
computation, depending on the input values.

The throughput optimization paradigm based on tele-
scopic units can be summarized as follows. We start from a
single-cycle fixed-latency unit, defined as the logic between
two sets of latches. The minimum allowable cycle time, T , of
the unit, is equal to its longest delay. We specify a reduced
target cycle time T � < T . Then, the input patterns for which
the propagation of the input values through the original
logic takes longer than T � are identified. Whenever the unit
receives one of these patterns, it completes execution in two
clock cycles, otherwise, it completes in one clock. As a last
step, a combinational block is automatically synthesized
and added to the original unit. The task of such block is to
generate a handshaking signal, the hold signal fh, whose

value informs the environment when the final result is
available at the outputs of the unit.

Average throughput is increased if the number of input
patterns for which the unit requires two clock cycles to

complete execution is small. If this is the case, the unit will

almost always compute a new result in T � < T . In the

following, we will show how to determine a bound on the

maximum probability of long-propagating input patterns.
Another important condition for the applicability of the

technique is to control the area, timing, and power over-

heads caused by the hold function.
A procedure for the automatic synthesis of telescopic

units has been proposed in [2]. The main limitation of such

procedure is its high computational cost. The algorithmic

core which is at the basis of the transformation is a symbolic
routine that exploits the expressiveness of algebraic

decision diagrams (ADDs) [3] to perform exact circuit

timing analysis [4]. Unfortunately, when a complex and

realistic model is adopted to describe the gate delays, the

algorithm becomes highly memory and time consuming.

Therefore, it is usable only for small circuits, i.e., a few
hundreds of gates. To partially alleviate this problem, one

may resort to a simpler delay model, e.g., the unit delay

model. Even in this case, however, the wall of a few

thousand gates can hardly be broken, as demonstrated by

the experimental data reported in [2]. This is not surprising,
since the ADD-based method exactly solves the false path

problem, which is known to be NP-complete [5], indepen-

dently on the selected delay model.
We propose a new algorithm for the automatic construc-

tion of telescopic units that overcomes the computational

bottleneck of the ADD-based synthesis procedure. We

move from the observation that the automatic generation
of telescopic units entails the solution of a general problem

that we call timed supersetting (TS for brevity): Find a set of

input conditions that include all values propagating to the

outputs with delay longer than a given T �. We study the
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properties of TS and explore its relationship with classical
results in the field of timing analysis.

The theoretical investigation leads to the implementation
of a core optimization engine that replaces the computa-
tionally expensive ADD-based method and enables the
synthesis of the hold function for large units (several
thousand gates) even when a complex gate delay model is
adopted. The technique of [2] computes the true propaga-
tion delay for each input pattern; hence, it allows us to
determine the minimum set of patterns that solves TS. In
contrast, the algorithm of this paper finds a nonminimum
solution to TS. Such solution is conservative, that is, it always
includes the minimum one.

The downside of the conservative solution is that the
hold logic may be activated for patterns that do not actually
violate the cycle time constraint. Thus, the telescopic unit
may operate with an average throughput that is inferior to
what could theoretically be achieved. Nevertheless, the
advantages overcome the limitations since the new algo-
rithms for the solution of TS are practical for much larger
and more complex units, such as those that can be found in
high-performance microprocessors or DSPs.

Throughout the paper, the knowledgeable reader may
observe the relationship between TS and the timing analysis
problem (i.e., finding the true longest delay of a circuit and
a pattern that exercises it). Indeed, a minimum solution to
TS and the true longest delay of a circuit can be found by
the same ADD-based algorithm; on the other hand,
approximate timing analysis methods cannot be directly
used for solving TS.

The procedure for automatically synthesizing telescopic
units which encompasses the TS solution algorithms of this
paper has been benchmarked on the largest Iscas '85 [6] and
Iscas '89 [7] examples. Results are satisfactory since an
average throughput improvement of 14.1 percent has been
achieved at the price of a 6.9 percent average area overhead.
In addition, the viability of the presented throughput
optimization paradigm has been demonstrated by applying
it to real-life, high-performance arithmetic units.

The remainder of this manuscript is organized as
follows: Section 2 provides the basic terminology related
to timing analysis that will be used throughout the paper. It
also recalls the definitions of throughput and latency of a
unit, as well as those of some Boolean operators that will be
exploited by the algorithms presented in subsequent
sections. Section 3 introduces the telescopic units, and
briefly summarizes the synthesis procedures proposed in
[2]. In Section 4, we formally state the timed supersetting
problem and we propose an approximate, yet accurate,
algorithm for its solution that can be fruitfully applied for
automatically synthesizing large telescopic units. Section 5
reports the experimental results and Section 6 closes the
paper with some concluding remarks.

2 BACKGROUND

2.1 Circuits and Delays

A combinational circuit is a feedback-free network of
combinational logic gates. If the output of a gate, gi, is
connected to an input of a gate, gj, then gi is a fanin of gj and

gate gj is a fanout of gate gi. A controlling value at a gate input
is the value that determines the value at the output of the
gate independent of the other inputs, while a noncontrolling
value at a gate input is the value whose presence is not
sufficient to determine the value at the output of the gate.

Each gate, g, is associated with two delays, dr�g�, rise
delay, and df�g�, fall delay. The delay function of gate g is
called d�g;x�. It equals dr�g� if g takes value 1 when input
vector x � �x1; x2; . . . ; xni� is applied to the primary inputs
of the circuit. Otherwise, d�g;x� � df�g�.

Given a gate g, the arrival time, AT �g;x�, is the time at
which the output of g settles to its final value if the
primary input vector x is applied at time 0. Given a
maximum delay constraint, the required time, RT �g;x�, is
the time at which the output of gate g is required to be
stable when the primary input vector x is applied in
order for the output to stabilize within the maximum
allowed delay. The slack, ST �g;x�, of a gate g is the
difference between its required time and its arrival time,
i.e., ST �g;x� � RT �g;x� ÿAT �g;x�.

A path in a combinational circuit is a sequence of gates,
�g1; . . . ; gm�, where gate gi is in the fanin of gate gi�1. The
length of a path, P � �g1; . . . ; gm� is defined as:

d�P;x� �
Xm
i�1

d�gi;x�:

An event is a transition 0! 1 or 1! 0 at a gate. Given a
sequence of events, �e1; . . . ; em�, occurring at gates
�g1; . . . ; gm� along a path such that ei occurs as a result of
event eiÿ1, the event e0 is said to propagate along the path.
Under a specified delay model, a path P � �g1; . . . ; gm� is
said to be sensitizable if an event e1 occurring at gate g1 can
propagate along P. A false path is a nonsensitizable path.
The critical path of a combinational circuit is the longest
sensitizable path under a specified delay model: Its worst-
case length, over all input conditions, is the delay, D, of the
combinational circuit and it is a lower bound on the cycle
time T , i.e., D � T . For the sake of simplicity, we neglect set-
up and hold times, and propagation delays through
registers. These factors can be easily incorporated into our
analysis and synthesis technique.

Topological approximations to arrival times (AT �g�),
required times (RT �g�), slacks (ST �g�), and path lengths
(d�P�) can be computed through graph algorithms [8]
whose complexity is linear in the number of gates involved.
Such approximations have two properties: They are con-
servative and pattern-independent, that is, the following
inequalities hold for all possible input vectors x:

AT �g� � AT �g;x�
RT �g� � RT �g;x�
ST �g� � ST �g;x�
d�P� � d�P;x�:

The topological critical path of the circuit is the path with
longest topological length.

2.2 Throughput and Latency

The throughput P of a unit is defined as the amount of
computation (i.e., the number of times a new output value
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is produced) carried out per time unit. The latency, L, of a
digital system is defined as the number of clock cycles
required for a computation to complete. A fixed-latency
unit with latency L clocked with period T has constant
throughput, given by:

P � 1

LT
:

For variable-latency units, we consider the average
latency Lave over a period of time, Ttot >> T . The average
throughput is simply:

Pave � 1

LaveT
:

In the following sections, we use the shorthand notation
L and P , as opposed to Lave and Pave, to denote average
latency and throughput, respectively.

2.3 Boolean Functions and Operators

We assume the reader to be familiar with the basic concepts
of Boolean functions. In this section, we only review two
Boolean operators which are essential for our purposes. Let
x � �x1; x2; . . . ; xni� be a vector of Boolean variables. Given a
single-output Boolean function, f�x�, the positive and the
negative cofactors of f , with respect to variable xi, are defined
as:

fxi � f�x1; . . . ; xiÿ1; 1; xi�1; . . . ; xni�
and

fx0i � f�x1; . . . ; xiÿ1; 0; xi�1; . . . ; xni�
The existential abstraction of f with respect to xi is defined

as:

9xif�x� � fxi � fx0i :
The Boolean difference of f with respect to xi is defined as:

@f�x�
@xi

� fxi � fx0i :

3 TELESCOPIC UNITS

Consider the problem of increasing the throughput of a
combinational unit, such as the one shown in Fig. 1a. This
can be done by shortening the cycle time of the unit from its

original value, T , to T � < T . One possible way of ensuring

functional correctness is to extend the unit to provide an

additional output signal, fh, which is asserted for all input

patterns requiring more than T � time units to propagate to

the outputs of the block (see Fig. 1b).
We call telescopic unit the modified unit since it may

require Lmax > 1 cycles to complete its execution, depend-

ing on the specific patterns appearing at its primary inputs.

We consider here the situation in which Lmax � 2. In this

case, the computation completes in T � time units for

patterns such that fh � 0 and in 2T � time units for patterns

such that fh � 1.

3.1 Conditions for Throughput Improvement

The average throughput of the original unit is given by:

P � 1

T
:

Conversely, for the telescopic unit, the lower the

probability of the hold signal, fh, to take on the value 1,

the larger the overall throughput improvement. In fact, its

average throughput, P �, is given by:

P � � Prob�fh�
2T �

� 1ÿ Prob�fh�
T �

;

where Prob�fh� is the probability of the hold signal being

one.
The use of the telescopic unit is therefore advantageous

only for some values of T � and Prob�fh�, i.e., when P � > P .

In particular, we have the following condition for through-

put improvement:

Prob�fh� < 2�T ÿ T ��
T

:

It should be noticed that the inequality above is valid

only for T � � T=2 since we have made the assumption that

Lmax � 2.
The extension to Lmax > 2 is conceptually straightfor-

ward, but more complex to implement. This is because

several hold signals f1
h; f

2
h; . . . ; fkh are required to make the

unit work correctly. Function fkh is one for the input patterns

that require k� 1 cycles to complete execution.
The expression for P � can obviously be modified to

account for values of T � < T=2; in other words, when
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Lmax > 2, the formula that gives the value of the average
throughput of the telescopic unit becomes:

P � � Prob�fkh�
�k� 1�T � �

Prob�fkÿ1
h �

�k�T � � . . .
Prob�f1

h�
2T �

� 1ÿ Prob�f1
h � f2

h � . . . fkh�
T �

;

where Prob�fjh� represents the probability that the unit
completes the execution in a time frame between jT � and
�j� 1�T �. For clarity, in the remainder of this work, we
focus on the case Lmax � 2.

In order to automatically synthesize telescopic units, two
problems must be solved. First, the hold function (that is, a
combinational logic function that detects all input patterns
that propagate to the outputs with delay larger than T �)
must be computed and synthesized. Second, the controller
of the data-path where the telescopic unit is instantiated
must be modified since it must be able to synchronize the
environment with the telescopic unit by delaying subse-
quent computations when fh � 1. The following section
provides some details on the procedures we have proposed
in [2] to synthesize function fh. Controller redesign
techniques are not discussed here since they are beyond
the scope of this paper (the topic is extensively addressed in
[2]).

3.2 Synthesis of the Hold Logic

The synthesis of the hold logic critically depends on the
capability of finding all input patterns that propagate to the
outputs with delay larger than T �. Such patterns must be
included in the ON-set of function fh. In the next section we
analyze this problem in detail. Here, we assume the
availability of a black-box procedure, ComputeF_h(C, T �)
that returns the ON-set of fh. The input parameters of such
procedure are the initial specification of the unit, C, and the
desired cycle time, T �.

ComputeF_h solves the timed supersetting problem that
was informally introduced in Section 1. In fact, the
minimum solution of TS is the ON-set of the hold function
fh that contains all and only those input values that propagate
to the outputs of the unit with a delay longer than T �.
Ideally, we would like to implement a hold logic that takes
value 1 exactly for the input values corresponding to the
ON-set of the hold function. In this way, the unit would
require two cycles to complete only for patterns that do
propagate to the output in a time longer than T �.
Conversely, we must guarantee that the implementation
of the hold logic itself has a delay shorter than T � and this
may not be always possible. Thus, the target is to determine
an enlarged hold function, feh � fh such that the average
performance of the unit is only marginally degraded, but
the implementation of feh meets the timing constraint, T �

and has a well-controlled area and power dissipation.
The heuristics devised in [2] for synthesizing the

enlarged function feh starts from the BDD representation
of fh. It generates the hold logic following an iterative
paradigm. First, the BDD of fh is mapped onto a multi-
plexor network. Then, the network is optimized through
traditional synthesis techniques; finally, a check is made to
find out if the timing constraint T �fh� < T � is met. If this is

not the case, the ON-set of fh is enlarged, to obtain feh, by
properly removing some BDD nodes and the process is
repeated.

4 THE TIMED SUPERSETTING PROBLEM

In this section, we formally state the timed supersetting (TS)
problem and one important variation, called minimum timed
supersetting (MTS). The practical relevance of TS and MTS
for the synthesis of telescopic units has been outlined in the
previous section. For the sake of comparison, we briefly
describe the algorithm for the solution of MTS (and TS)
presented in [2]. We then take a completely different
approach and present the key contribution of this paper,
namely a robust and widely applicable algorithm for the
solution of TS.

Consider a combinational circuit C with primary inputs
x � �x1; . . . ; xni� and outputs o � �o1; . . . ; ono�. The timed
supersetting problem can be formally stated as follows:

Problem 1. Find a set S of input values x that includes all values
which propagate to the outputs o with a delay larger than or
equal to a given T �.

Obviously, TS has always the trivial solution Bni, i.e., the
complete Boolean space is guaranteed to include all input
values with propagation delay larger than T �. We are
interested in nontrivial solutions of TS. A theoretically
relevant solution is the minimum one. The minimum timed
supersetting problem consists of finding the smallest set of
input values with propagation delay larger than T �.
Formally:

Problem 2. Find the set Smin of all and only those input patterns
x which propagate to the outputs o with a delay larger than, or
equal to a given T �.

It is quite easy to prove the NP-completeness of MTS.
Solving MTS when T � is equal to the longest propagation
delay of C is at least as hard as finding a single pattern with
maximum propagation delay. This problem is NP-complete
[5].

Observe that Smin � S, i.e., every solution of TS is
guaranteed to contain the solution of MTS. Among the
solutions of TS, we are interested in near-minimum solutions.
In more detail, we are looking for approximations S of Smin
that:

1. Include Smin;
2. Are as close as possible to Smin;
3. Can be computed in polynomial time and space

(in ni).

Before discussing our approximation strategy, we review
an algorithm for the exact solution of MTS.

4.1 Exact MTS Solution

An ADD-based algorithm for the exact solution of MTS has
been presented in [2]. The arrival time ADD for each output
oi of the circuit is first computed using the algorithm of [4].
Such ADDs provide the propagation delay for any possible
input vector. The logic function foih �x�, which assumes the
value 1 for all input vectors for which the arrival time of oi
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is greater than the desired cycle time T �, is then obtained

through symbolic ADD operations. Finally, function fh�x�
collecting the set of input conditions for which at least one

circuit output oi has an arrival time greater than T � is

computed by OR-ing together all functions foih .
The main limitation of the algorithm is its worst-case

exponential time and space complexity. When a complex,

load- and path-dependent delay model is used, it is

impossible to build the arrival time ADDs even for the

outputs of relatively small circuits. The memory require-

ments for such construction are simply excessive. Another

shortcoming of this approach is that, when building the

delay ADDs, complete delay information is computed, even

for patterns that propagate much faster than T �. The

computation of unneeded information contributes to the

memory blow-up problem.

4.2 Near-Minimum TS Solution

Since the exact solution of MTS is computationally

infeasible for large circuits, we resort to algorithms that

only solve TS but attempt to find solutions which are as

close as possible to the minimum one. Notice the analogy

with the approaches used in timing analysis. When exact

delay computation is unaffordable, it is possible to resort to

safe approximations with various degrees of tightness.
Consider a combinational circuit C with primary inputs

x � �x1; . . . ; xni�. A gate, gi, of the network is associated with

a Boolean function fi�y�, where y � �y1; . . . ; yngi � is the local

support of fi. We call Fi�x�, the Boolean function associated

with gate gi expressed as a function of the primary inputs

(global support).
Let us assume that topological timing analysis has been

performed, and that the topological critical path P � �g1;

g2; . . . ; gm) has been determined. Let us assume also that the

topological length of the critical path, Tc, violates the

desired cycle time, namely Tc > T �. Since we are relying

only on topological delay analysis, we conservatively

consider the path as a true one. Consequently, all input

conditions that activate it must be in the ON-set of the hold

function fh.
To find such conditions, from the primary inputs, we

move along the critical path toward the output. We call

critical input yc of a gate gi on the critical path the input

which connects it with gate giÿ1. For each gate in the path,

we specify the local sensitization function si as the Boolean

function that takes on the value 1 when gate gi is sensitive to

the value of yc:

si�y� � @fi�y�
@yc

: �1�

Note that, given si�y� for a gate gi, the global sensitization

function Si (that represents the sensitization conditions for

gate gi) can be expressed as a function of the primary inputs

x through recursive backward substitution of the local

support variables until the primary inputs are reached.
The sensitization conditions for the entire path, P, can

now be computed as the intersection of all sensitization

conditions of the gates g1; . . . ; gm in P. In formula:

Scrit�x� �
Ym
i�1

Si�x�: �2�

We call Scrit the path sensitization conditions. This formula
holds because, for a signal to propagate along a path, all
gates on the path must be sensitized. We call partial path
sensitization conditions Scrit;j �

Qj
i�1 Si (with j � m) the path

sensitization conditions for gates belonging to the path up
to level j. Clearly, Scrit;m � Scrit. The partial sensitization
conditions can be computed with the following recursion,
for j � 1; . . . ;m:

Scrit;j�x� � Scrit;�jÿ1��x� � Sj�x�
Scrit;1�x� � S1�x�: �3�

A property of (3) is that Scrit;j � Scrit;k for each j > k, that is,
the Scrit;js are monotonically decreasing (i.e., the ON-set of
Scrit is monotonically shrinking) with increasing j. Notice
that computing the complete Scrit is equivalent to testing the
viability of path P. Since this problem is NP-complete, there
will be instances for which this computation requires an
exponential amount of time or resources. However, the key
observation is that we do not have to compute the complete
Scrit to find a conservative set of input conditions for which
the circuit delay Tc violates the timing constraint T � (i.e., the
hold function fh). Any Scrit;j is suitable for that purpose,
because its ON-set contains the one of Scrit.

Example 1. Consider the circuit of Fig. 2 (taken from [5]).
The delay of the gates are shown within parentheses. The
topological length of path P � �a; d; f; z� is d�P� � 5 and
we compute Scrit�x� for such path. For the first gate in the
path, Scrit;1 � b. For the second gate, Scrit;2 � b � c0, while,
for the third gate, Scrit;3 � b � c0 � e � b � c0 � a0 � b0 � 0.
Hence, path P is not sensitizable.

Although it may appear that (3) provides a viable
procedure for finding a near-minimum solution of TS, two
major problems need to be addressed:

1. The sensitization conditions of (1) are static, that is, it
does not consider the dynamic propagation of the
events along the paths. It is a well-known fact that
the absence of static path sensitization conditions
(i.e., Scrit � 0) is not sufficient to guarantee that a
path does not propagate events with delays that
violate the timing constraint T �. This phenomenon is
known as dynamic sensitization [5]. Notice that every
valid solution to TS must include all patterns with
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propagation longer than T �. Hence, the approach
based on simple static sensitization may lead to
incorrect implementations and must be augmented
by some form of dynamic sensitization test.

2. Equation (3) has been obtained under the assump-
tion that there is only one path violating the timing
constraint. This is not generally true. In almost all
practical examples, there are multiple critical paths.
Moreover, the number of such paths can be
exponential in the number of gates in the network.
The complexity explosion caused by the number of
critical paths must be addressed in a conservative
fashion.

In the next two sections, we analyze and solve the above

problems. We then describe in detail our strategy for

finding a near-minimum TS solution in an efficient and

robust way.

4.2.1 Accounting for Dynamic Sensitization

In order to derive sensitization conditions which are correct

and conservative, let us consider a gate gi on a critical path

P (i.e., a path whose topological length exceeds T �). Let

AT �yc� be the topological arrival time at the critical input

and ST �gi� the (negative) slack of the gate. Let W �
fw1; . . . ; wpg denote the set of side inputs, and AT �wi�; i �
1; . . . ; p their topological arrival times. We present the

following safe conditions for declaring a path as false.

Theorem 1. Given the topological arrival times, required times,

and slacks for all gates belonging to path P, the static

sensitization conditions of (1) are correct if, for all gates gi of

P:

�AT �yc� � ST �gi�� > AT �wi�; 8wi 2W: �4�

Proof. The topological arrival time is an upper bound to the

actual arrival time; then, the topological slack is always

more conservative (i.e., smaller) than the actual slack.

Hence, all transitions on yc that take place before time

Tmin � AT �yc� � ST �gi� cannot arrive late at the outputs.

If all side inputs wi are early enough and stabilize before

Tmin, any transition on yc that could arrive late at the

outputs does find the side inputs already stable at their

final value. Thus, static sensitization can be used to

assess if the values of the side inputs filter out the

propagation on the critical path. tu

Theorem 1 states that, if the condition of (4) holds for all

gates in the path and si�y� � @fi�y�
@yc
� 0, then the path P is

surely false. If (4) does not hold for some side inputs of a

gate gi, the static sensitization conditions of the gate cannot

be used for computing the path sensitization conditions. For

a generic gate g, shown in Fig. 3, the arrival times of the

inputs are shown with vertical arrow. The shaded area

represents the (negative) slack of the critical input yc. With

the arrival times distribution of Fig. 3a, the static sensitiza-

tion condition is valid for gate g. The condition is not valid

for the arrival times in Fig. 3b. Noncritical input w1 violates

the constraint expressed by (4).
This criterion may be extremely conservative in some

cases because it prevents us from using the sensitization

conditions for a gate gi if any of its side inputs do not satisfy

(4). In the vast majority of cases, only some of the inputs

violate the inequality. When the inputs that satisfy the

inequality have controlling value, the gate still filters out

events on the critical input. Therefore, we can relax the

conditions stated by (1). This can be done by exploiting

some of the results available in the literature on timing

analysis.
A well-known criterion which is particularly suitable for

a BDD-based symbolic implementation is the one intro-

duced by Brand and Iyengar [11]. In that work, the

sensitization conditions (1) are overestimated by abstracting

a set of the local gate inputs.
The key point with this approach is selecting which and

how many inputs should be abstracted. Inequality (4)

provides the criterion to do that. If we call eW �
few1; . . . ; ewkg �W the set of side inputs that do not satisfy

(4), the comprehensive criterion for robustly and correctly

detecting a false path, at a gate gi, becomes:

�i�y� � 9 eW @fi�y�
@yc

� �
: �5�

Similarly to the static sensitization conditions, we can

extend �i�y� to the global support of the circuit, and

compute �i�x� as a function of the primary inputs x. The

sensitization conditions for the entire path are then given by

the intersection of all sensitization conditions of the gates

g1; . . . ; gm. In formula:
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Fig. 3. Arrival times distribution for a gate on the critical path.



�crit�x� �
Ym
i�1

�i�x�: �6�

In summary, the correct and conservative sensitization

conditions �crit�x� for a single path P are obtained through

the pseudocode of Fig. 4.
Procedure Extend expresses the sensitization conditions

in terms of the global support of the circuit, x. Inequality (4)

is used to decide which side inputs arrive too late and

should be quantified out from the sensitization conditions.

Clearly, the procedure does not solve MTS exactly since

conservative and pattern-independent topological estimates

of the arrival times and slacks are used. In other words, (4)

is a sufficient, but not necessary, condition for deciding

whether a side input stabilizes before the critical input

arrives.

Example 2. Consider again the circuit of Fig. 2. In Example 1,

we have found that the static sensitization conditions for

critical path P � �a; d; f; z� is null (i.e., Scrit � 0). How-

ever, the path is not false. This can be verified by

inspection of the circuit: The output stabilizes after T � 5

time units when the inputs have the following transi-

tions: a : 1! 0, b : 1! 0, and c : 0! 0. Hence, the

circuit is a counter-example that proves the insufficiency

of static sensitization to solve TS.
We set the required time to T � � 4. The arrival

time of the inputs is 0. The arrival times of the
outputs of the gates are: AT �d� � 2, AT �f� � 4,
AT �e� � 2, and AT �z� � 5. The slacks on the critical
inputs are: ST �f� � ÿ1, ST �d� � ÿ1, and ST �a� � ÿ1.

Now, we apply our technique for computing the path
sensitization conditions �crit. We start with the NOR gate
with output d. The critical input is a and @d=@a � b.
Inequality (4) is not satisfied for side input b because
AT �a� � ST �a� � ÿ1 and AT �b� � 0. Thus, we must
quantify out b from the sensitization conditions of the
gate: 9b�@d=@a� � 1. Inequality (4) is satisfied for the
remaining two gates on the critical path. They contribute
to the path sensitization conditions with @f=@d � c0 and
@z=@f � e. The final path sensitization conditions are
�crit � 1ec0 � a0b0c0, which are obviously not null.

4.2.2 Dealing with Multiple Paths

So far, we have described a robust, yet simple, algorithm for
finding a near-minimum TS solution which is applicable to
the cases where a single critical path is present in the circuit.
In this section, we present an algorithm (see the pseudocode
in Fig. 5) to find a near-minimal solution to TS (i.e., the hold
function fh for a telescopic unit) in the case of multiple
critical paths.

The procedure receives, as inputs, circuit C and the
desired cycle time T �, given as an absolute time value or as
a percentage of the actual critical delay. It initially performs
(Line 1) static timing analysis, computing arrival times,
required times, and slacks for each gate. Then, the network
is levelized (Line 2), that is, the gates are grouped into the
list Levels�� according to their topological level, starting
from the primary inputs, which are assumed to be at level 0.
Starting from level 0, the critical gates (i.e., gates with
negative slack) at each level are processed (Line 4), and a
Boolean function PAF �x� (Path Activation Function) is
computed as follows: At each gate, the function is obtained
by summing, over its critical fanins, the product of two
quantities: 1) The path activation function of the ith fanin
(PAFi�x� in Line 7); 2) The sensitization conditions �i�x�,
computed with (6). Clearly, the PAF for each primary input
is assumed to be 1. The output of the procedure is a near-
minimum solution of TS or, equivalently, the hold function
fh of a telescopic unit. It is computed in Lines 8 and 9, by
accumulating the PAFs of all critical gates that are
connected to an output.

The rationale of the algorithm is that every critical gate
filters the activation conditions of a critical input i by AND-
ing the �i of the input to the conditions for which an event
propagates up to input i (i.e., PAFi). If a gate has more than
one critical input, its PAF is the sum of the filtered PAFs of
its critical inputs.

An important feature of the algorithm is that it is based
on a traversal of the critical gates and not of the critical
paths. In fact, the number of (critical) paths can be
exponential in the number of gates in the network, whereas
the number of critical gates is guaranteed to be smaller than
the number of gates.

Note that the algorithm relies on topological timing
analysis. It is a well-known fact that such estimates can be
very conservative. In the limiting case, if the topological
delay is longer than the true delay and the true delay is
shorter than T �, we may actually synthesize useless hold
logic. This is due to the fact that our procedure is
conservative and it may actually flag as belonging to fh
some input conditions that do not propagate any perturba-
tion to the output. Observe, however, that the accuracy of
the procedure can be improved if more powerful algo-
rithms for the computation of the arrival times are used
(see, for example, [12], [13]). The modification of the
pseudo-code in Fig. 5 is straightforward: It is sufficient to
replace the StaticTimingAnalysis call with the call to
an advanced timing analysis procedure. On the other hand,
the computational burden of obtaining accurate delay
information for all gates in the network may be substan-
tially higher than that required by simple static timing
analysis. In summary, the StaticTimingAnalysis
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should be replaced by the procedure that is used for timing
analysis in the design flow.

4.2.3 Cutting Heuristics

Although the algorithm of Fig. 5 does not suffer the
computational bottleneck of the exact method of [2], there
may be circuits for which constructing the BDDs for the
sensitization function is still not feasible. In these cases, an
approximate solution is required that allows us to compute
partial timing information.

A simple solution may be that of stopping procedure
ComputeF_h after a desired number of levels or, alter-
natively, when the sizes of the BDDs grow beyond a given
threshold. Unfortunately, this would result in incomplete
timing information since some critical paths could be
incorrectly left out of the computation. In fact, computing
the hold function by levels does not necessarily take into
account all critical paths unless we guarantee that last level
(i.e., the primary outputs) is reached.

The observation above suggests a criterion for comput-
ing the timing information incrementally. The key for such
criterion is to progressively select sets of critical gates,
hereafter called cuts, such that the gates in a set cut all
critical paths. If we can compute the BDDs (in the global
support) of the path activation functions of all gates in a cut
G, a solution of TS (i.e., a valid fh) is simply:

fh �
X
n2G

PAFn�x�: �7�

A good cutting heuristics is obviously essential for an
effective realization of the fh computation algorithm. The
one we propose starts from the critical inputs (cut G0) and
consists of the repeated application of three phases until no
gate in the combinational circuit is left:

1. From a cut Gi, we reach the critical gates in the
fanout of any gate in Gi. Only critical connections
(i.e., connections from the output of a critical gate to
the critical input of another critical gate) are
explored. A newly reached gate is marked as
belonging to the new cut Gi�1 only if all its critical

fanins belong to a previous cut Gj, j � 0; 1; . . . ; i or to
cut Gi�1 itself.

2. If at least one gate has been marked, we check if all
critical fanins of some additional gates reached from
Gi have been reached. If this is the case, such gates
are marked as belonging to Gi�1. This step is
repeated until no new gate is marked. In other
words, all gates for which all the critical fanins
belong to Gj, j � i� 1 are marked.

3. The remaining critical gates reachable from Gi do
not belong to Gi�1 and are discarded. However, to
guarantee that all critical paths are cut, we insert in
Gi�1 all critical fanins of the discarded nodes which
belong to previous cuts (or to cut Gi�1 itself).

The set of gates Gi�1 is the new cut. Notice that if an output

is reached during traversal at cut Gj, such output is inserted

in all successive cuts Gk, k > j. In addition, it can be easily

observed that, in general, successive cuts are not disjoint.
After the computation of Gi�1, the path activation

functions of its gates and fh are computed. The termination

conditions of the traversal algorithm are the following:

. If the BDD of a PAF for a gate in Gi�1 blows up, the
computation is aborted and the BDD of the fh of the
previous cut is returned.

. Once all PAFs have been computed, fh is obtained
by taking the Boolean sum of all PAFs. If the BDD of
fh blows up during the Boolean sum, the computa-
tion is aborted and the BDD of the fh of the previous
cut is returned.

. If the computation of fh in the global support
succeeds and the cut is the last one, fh is returned.
Conversely, if the cut is not the last one, fh is stored
and the next cut is generated.

The fh for G0 is obviously the most conservative TS

solution, that is, fh � 1. In the worst case, if PAF or fh
computation fails at the first cut, the value of fh returned is

the tautology. Hence, the procedure is guaranteed to return

a valid solution to TS, but it may return the trivial one.

Example 3. Assume that all gates in Fig. 6 are critical.

Initially, G0 � fa; b; c; dg. For generating G1, the fanouts

of gates in G0 are explored (notice that here all

connections are critical because all gates are critical),

i.e., gates fe; f; hg. First, only e is marked because all its

critical fanins belong to G0. Then, f is marked because c

belongs to G0 and e was previously marked. Gate h is

discarded. The new cut is then: G1 � fe; f; dg. Gate d is

included in G1 to guarantee that all critical paths are cut.
N o t i c e t h a t G0 \G1 6� ;. T h e fh f o r G1 i s

fh � PAFe � PAFf � PAFd. The third and last cut, G2,
is finally computed and it consists of gates g, h, and f .
Gate f is included in G2 because it is a primary output.

The algorithm for near-minimum TS solution described

in Section 4.2.2 is modified by replacing a level-based

traversal with a cut-based traversal. In this way,

ComputeF_h is guaranteed to always return a valid

solution to TS, even in the case of BDD blow-up.
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5 EXPERIMENTAL RESULTS

We have implemented the algorithms for TS solution
described in Section 4 within the tool for telescopic units
synthesis of [2]. The logic synthesis framework we have
exploited is SIS [14] which uses CUDD [15] as the under-
lying BDD package. Experiments have been run on a DEC
AXP 1000/400 with 256 MB of main memory. We applied
our technique to standard benchmarks as well as realistic
high-performance arithmetic units. The results of our
experiments are summarized in the next two sections.

5.1 Standard Benchmarks

We have considered all circuits in the Iscas '85 [6] suite with
more than 1,000 gates. Since only six examples were
available, we have also experimented with the combina-
tional logic of the 12 largest Iscas '89 [7] (addendum
included) benchmarks.

The library used for mapping consisted of 2- to 4-input
NAND and NOR gates, plus inverters and buffers, each of

which had five different driving strengths. The gates are
nonsymmetric, that is, they have different pin-to-pin delays,
as well as different rise and fall delays. The delay model
used is the SIS real delay.

The original circuits have been first optimized for speed
using a modified version of script.delay, where the
full_simplify and sometimes the rr commands have
been removed to allow the optimization to complete on the
large examples and then mapped for speed with either map
-m1 or map -n1 -AFG.

Table 1 reports the experimental data. Columns Circuit, I,
O, G, T , and P give the name, number of inputs, outputs,
and gates, the static delay (in nsec), and the throughput of
the original circuit. Column Prob�fh� shows the probability
of fh, column G� gives the total number of gates of the
telescopic unit, column T � reports the cycle time (in nsec) at
which the telescopic unit is clocked to achieve the increased
throughput of column P �, and column T �fh� tells the (static)
arrival time of the hold signal (in nsec). Columns �P and
�G give the throughput improvement and the area over-
head (in terms of gates) of the telescopic unit. Obviously,
the area overhead only refers to the additional logic
implementing fh, while it does not consider the circuitry
required to control the operations of the telescopic unit, the
latter being dependent on the specific context in which the
unit will be instantiated. Finally, column Time reports the
CPU time (in sec) required to perform the automatic
synthesis of fh for a given T �. A symbol * beside the
circuit name indicates that the heuristics of Section 4.2.3
were required to complete the calculation of fh. This has
happened only on example s38417, where the computa-
tion of fh stopped after 21 cuts (out of 28).

Only two benchmarks are missing from the table: c6288
and s38584. The former is a 32-bit multiplier for which it is
well-known that the computation of the BDDs for all
outputs is infeasible [16]. The application of the algorithm
of Fig. 5 therefore failed; we thus resorted to the heuristic
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method discussed in Section 4.2.3; also, in this case,
however, the result was negative since the computation of
fh stopped after 41 cuts (out of 103) with T � � 0:95T � 70:40
nsec and Prob�fh� � 0:99999. The application of our algo-
rithm to the latter example, on the other hand, has not been
tried since a mapped version of it could not be obtained for
the selected gate library.

The results are quite satisfactory since an average
throughput improvement of 14:1 percent has been achieved
with an average area penalty of 6:9 percent. The proposed
approach thus demonstrates its scalability and applicability
to the largest available benchmarks. Needless to say, most
of the circuits examined here are well beyond the capability
of the exact MTS solution algorithm of [2], which, for this
library and delay model, fails for circuits larger than a few
hundreds of gates. On small circuits, for which exact MTS
solution is possible, our tool still achieves improvements
around 10-15 percent, while the exact minimum solution
allows average improvements around 27 percent [2].

5.2 Arithmetic Units

In this section, we study the application of our technique to
two complex arithmetic units. The purpose of this analysis
is to show that our automatic transformation is applicable
and useful not only on standard benchmarks, whose
functionalities and architectures are uncertain, but also for
carefully designed units that are used in real-life systems.
We have considered two units belonging to the advanced
mathematical library of Synopsys' DesignWare compo-
nents, namely, a combinational multiplier-adder module
(called DW02_prod_sum1) and a combinational sine func-
tion module (called DW02_sin). These components are
hand-coded in synthesizable HDL (Verilog or VHDL) by
expert designers and can be instantiated as black boxes in
register-transfer level descriptions. Clearly, such library
components are specifically designed for high performance,
hence, they represent a good test for assessing the
effectiveness of our paradigm in pushing throughput
beyond the possibilities of standard synthesis techniques.

The multiplier-adder module implements the function
S � A �B� C, where the width of the operands can be
chosen at instantiation time. Furthermore, the unit has a
control input TC, whose function is to select two's
complement versus sign-magnitude representation for the
data. The internal architecture of the multiplier is based on
a fast carry-save array. For our experiment, we selected a
16-bit width for operands A and B and a 32-bit width for
operand C and output S.

The sine module implements the function C � sin�A�.
Input angle A is treated as a binary fixed point number

which is converted to radiants when multiplied by �. When
A is interpreted as unsigned, the input angle A is a binary
subdivision of the range 0 � A < 2. When A is interpreted
as signed (two's complement), the range is ÿ1 � A < 1. The
value of the sine function is computed with either a linear,
or quadratic, or cubic interpolation scheme, depending on
the value of A. The bit width of both the angle and the sine
values are parameterized and are chosen at instantiation
time. For our experiment, we set both widths to 16 bits.

The gate-level netlists of the two arithmetic units have
been generated from the corresponding HDL descriptions
using Synopsys DesignCompiler and then translated into
the blif format. Two technology-dependent implementa-
tions for each unit have been obtained through logic
optimization and technology mapping using SIS. In
particular, circuits DW02_prod_sum1.a and DW02_sin.a

are minimum area realizations, while circuits
DW02_prod_sum1.d and DW02_sin.d are obtained from
the min-area descriptions by applying delay optimization
under area constraints (we allowed a 2X area increase).

Each description has been transformed into a telescopic
unit, and Table 2 collects the results of the experiments.
Throughput improvements range from 8.1 percent to
19.6 percent, while the area overheads are between
3.7 percent and 10.2 percent.

By direct inspection of the data in the table, it can be
evinced that telescopic units provide an area-effective way
of improving system's throughput. As an example, consider
the telescopic version of circuit DW02_prod_sum1.a. Its
throughput is approximately the same as that of the
reference circuit DW02_prod_sum1.d(0.00715 versus
0.00760), but its area is substantially smaller (3,801 versus
5,201 gates).

6 CONCLUSIONS

We have addressed the timed supersetting problem and we
have contributed an algorithm for its solution which is well-
suited for the automatic synthesis of large telescopic units in
the cases where complex and realistic gate delay models are
adopted. Results obtained on the largest benchmarks
available in the literature (i.e., the Iscas '85 and the
Iscas '89 circuits), as well as on realistic, high-performance
arithmetic units are quite satisfactory and confirm that the
use of telescopic units represents a robust and flexible
alternative for improving the performance of delay-critical
digital applications.
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