A Methodology for Synthesis with Reusable Components
from an Arithmetic Specification

James Smith
Stanford University
Computer Systems Laboratory
Stanford, CA 94305

Abstract

Reuse of complex blocks promises to allow
designers to implement greater functionality in hardware
and focus on system level trade-offs without extending
design time. However, the availability of tools and
methodologies that can construct systems out of complex
blocks is limited. This paper introduces a methodology for
design reuse based on polynomial representations for
complex blocks. These techniques have been implemented
in the POLYSYS synthesis tool and applied to the synthesis
of an antialiased line rasterizer with reusable components.

1. Introduction

As transistor sizes shrink, the struggle to include
greater functionality on a single chip while maintaining
short design cycles has forced designers to consider, if not
implement, design reuse. State of the art integrated circuits,
which could be designed in a matter of months 5 years ago,
are projected to take over 5 years by the year 2000, when
over 15 million logic gates will be incorporated into a
single die ([1]). Design reuse promises to shorten design
cycles, but today’s CAD methodologies are generally
developed assuming logic gates as basic building blocks,
not complex blocks. A gap exists between methodologies
that are oriented around design with basic logic gates and
the need to design systems with complex, reusable blocks.

The methodology presented here performs
synthesis with complex blocks by determining an allocation
of blocks that can implement a specification, optimizing
this allocation through scheduling and resource sharing,

.and generating interfaces between blocks. This paper

" focuses on 'the allocation of reusable designs, a task which
promises to become increasingly complex as design reuse
becomes a more common practice and the libraries of
potential implementations grow.

The techniques discussed in this paper, while
applicable to control dominated systems, are ideally suited
10 synthesis of systems that require complex mathematical

-computations, such as those encountered in digital signal
~yrocessing and graphics. A prime application of this
“sethodology is mapping MATLAB-generated system
sspecifications to existing components and complex, soft
“macro-cells.

‘ The methodology presented here is geared to
snable design reuse by characterizing the functionality of
Amicllectual property with polynomials. System
.specification can then be performed at the arithmetic level
] abstraction. This specification can be compared
ilficiently against a library of existing elements whose
Junctionality is described with polynomial representations.
For example, the functionality of a block that generates the

1195

Giovanni De Micheli
Stanford University
Computer Systems Laboratory
Stanford, CA 94305

impulse response for a low pass box filter is represented by

the polynomial 1 - 1.64x2 + 0.81x* - 0.19x6. Such
representations can be computed from a Boolean
description of the implementation ([2]).

2. Related Work

Reusable blocks have traditionally been
characterized at a high level of abstraction by verbal
descriptions, such as “ethernet core” or “rasterizer”, or a at
low level by HDLs or Boolean equations. The imprecision
of high level descriptions prevents IP from being
effectively reused. The complexity of precise, low level
descriptions are restricts their application to reuse of small
blocks such as combinational logic gates. Present
methodologies employ structures such as BDDs ([3],
Binary Moment Diagrams ([4], [S]), Hybrid Decision
Diagrams ([6]), and Multi Terminal BDDs ([7]) to allocate
basic logic gates and verify gate level designs.

In order to improve a designer’s ability to explore
potential implementations and gauge the performance of
complete systems, Martin ([8]) outlines the need to move
design modeling, exploration, and verification to a higher
level of abstraction. This need is imposed by the
prohibitively expensive operation of evaluating the
performance and functionality of systems that are specified
at Jow levels of abstraction.

The algorithms presented in [2] and [9] described a
mechanism for deriving a word-level polynomial
representation for a complex design given a Boolean circuit
description. These representations were shown to exist for
combinational and sequential circuits and were proven to
be canonical with respect to circuit functionality. In
addition, a mechanism was presented for modeling circuits
that did not implement polynomial functions as
polynomials. These algorithms were shown to be of
polynomial complexity and were applied to synthesize a
JPEG encode block from complex blocks and an IIR filter
for controlling tape drives.

3. Polynomial Methods

The algorithms for computing polynomial
representations are detailed in [2] and [9]. They are briefly
reviewed here to provide a background for the following
sections. A polynomial representation for a complex block
can be determined by treating the Boolean description of
the block, y = F(x), where x and y are bit vectors, as a
collection of coordinates (x, y). These coordinates can then
be fit to a minimum-order polynomial. If the order of this
polynomial is known to be n, then n+1 coordinates can be
extracted from the function and a set of n+1 equations and
variables (the coefficients of the polynomial) can be

constructed and solved. Thus, the problem of generating a
word-level polynomial representation for a Boolean
function reduces to determining the order of the
polynomial.

The order of a function y = F(x) is exactly one
greater than the polynomial generated by computing
F(x+1) - F(x). The order of F(x) is therefore equivalent to
the number of iterations of F(x+1) - F(x) that are required
to generate an order zero polynomial. For example, the bit
level Boolean function:

Fo(x) = xq

Fix)= x,-x,

Fa(x)=0

Fa(x) = x;

Fy(x)= X1 %o
requires 3 computations of F(x+1) - F(x) to generate a zero
order polynomial. Thus, the minimum order polynomial
that represents this circuit is of order three and passes
through the coordinates {(0, 0), (1, 1), (2, 8), (3, 27)}. The

polynomial thai satisfies these requi~smsnts is y = x3.
Polynomial representations can be computed for sequential
circuits and those with feedback paths ([9]).

4. Specification

The methodology proposed here utilizes an HDL
specification of the target system in Wwhich ::the
synthesizeable subset of HDL constructs is expanded to
include arithmetic operations such as division,
exponentiation, and transcendental functions. This
accommodates traditional HDL design flows, allows for
fast simulation of complex arithmetic blocks, and provides
a mechanism for reusing existing blocks. For example, the
following Verilog model, with arithmetic extensions,

specifies a block that performs antialiased line rasterization:
Antialias(init, x1, y1, x2, y2, x, Y, yinc, ydec, 1, Iinc, Idec)
begin
input [7:0] x1, x2;
input [7:0] y1, y2;
output [7:0] x, y, yinc, ydec;
- output [7:0] 1, linc, Idec;
reg [7:0] dy, dx;
reg [7:0] incrE, incrNE;
reg [7:0] invDenom, tweVdx;

dx =x2-x];
dy=y2-yl;
incrE = 2*dy;
incrNE = 2*dy - dx;
invDenom = 1/(2*((dx**2 + dy**2)"\(1/2)));
if (init) begin
twoVdx = 0;
{x.y) = {x1,y1);
end else begin
if (d<0) begin
twoVdx = d + dx;
d=d+incrE;
end else begin
twoVdx = d - dx;
d=d+ inctNE;
y=y+ 1
end
x=x+1;
end
yinc=y+1;
ydec=y-1;
1= twoVdx*invDenom;
linc = 2*dx*invDenom - twoVdx*invDenom;
ldec = 2*dx*invDenom + twoVdx*invDenom;
end

Arithmetic operators, such as A (exponentiation) and /
(division), are combined with traditional synthesizeable
Verilog operators and statements, such as +, -, *, and “if”,
to allow arithmetic specification of complex blocks.

S. Library

The synthesis library includes traditional logic
gates and complex elements for which a polynomial
representation has been determined. A traditional logic gate
is characterized by Boolean functionality, delay, and area.
Complex blocks are characterized by several factors,
including, but not limited to: (1) polynomial functionality,
(2) domain over which each functionality equation is valid,
(3) latency, (4) operational frequency, (5) area, (6) power,
(7) precision, (8) input word width, and (9) output word
width. Parameters that are used to compute the value of
these equations are determined from the specification and
can be either block specific or global. For example, a
library element that is an 8 bit multiplier and is to be
implemented in a process with minimum feature size
lambda may be described as shown in Fig. 1. The argument
lambda must be defined within a pragma statement.

6. Allocation

In allocating elements that can implement a
specification, our methodology attempts to find complex
blocks that match part or all of the specification’s
functionality. This task is complicated by several factors:
(1) a function can generally be implemented in many
different ways, (2) an existing design may implement only
part of specification, and (3) the functionality of existing
design may approximate, but not match exactly, the
functionality of the specification. By representing thc
functionality of both the specification and the existing
design with polynomials, unnecessary implementation
details can be ignored, partial implementations can bc
detected algebraically, and approximation differences can
be quantified.

6.1 Component Matching

Once polynomial representations have been
determined for each system partition, the representation is
compared against the functionality of library elements. This
is performed by determining the maximum value of the
difference between the polynomial representations of the
specification partition and the library element. For an exact
match, the differnce between these polynomials must be
zero and the bit width of the implementation must be
greater than or equal to that of the specification. For
example, the following library element that describes a 12
bit adder can be used to implement the partition (fwoVdx =
d + dx) of the Antialias specification:

Adder12 |

domain0 = 1;

function0 = x + y;

period = 20*lamba;

latency = 1;

precision = 0;

area = 2¢5*lambda?;

input_width = (12, 12);

output_width = {13);

)
A library element that does not match »

1196

DividerS8 { Adder8 (
domain0 = (1, 2]; domain0 = 1;
function0 = 384-128x; function0 = x + y;
domain) = (3, 4]; Fnod S‘Iamba
‘fjuncuoril oo 1+ (7)(-2)l2+(x -2)222-(x-2)12%; ;:gglyo; 1 o
omain2=
)i 242 x4\ area = Sed*lambda’:
f\:)ncnm_?’ 1- (x 4)/4+(x-4)/4%-(x-4) 14", input_width = (8, 8);
domain3 = [9, 16]; idth = (0
fonction? = |- Qc8VB (s -8)/8%-(x-8)12; gutput_width = (9):
omain
functiond = 1- (x-le)ne»(x-16)1/167-(»16)‘/163
domain$ = [33, 64]; Mnltlphe_rﬂl
functions = 1- (x 32324 3232003232, gomain0 = 1:
function0 = xy;
domain6 = (65, 128]; riod = 5*lamba;
function6 = 1- (x 64)/64+(1&-6¢l)2122 (x-64)*/64%; alcncy 3;
domain? = [129, 255]; = 2*lambda;
function? = 1- (x~|2sylzs+(x-|28)211282-(x 128)*/128%; prccmon 0;
area = Ie6‘|ambda
! input_width = (8, 8);
(Siquarc(l)loollﬂ { output_width = {16};
omamny =
function0 = & + (x-64)/16 - (x-64)22'2 4+ (x-64)°12'%;
riod = 10*lamba; BasicGates |
atency = 5, And
precision = 2; Or
area = 4¢6*lambda; Nand
input_width = (8%) Nor

t))utplll width =)

Fig. 1 Library elements used to synthesize an
antialiased line rasterizer.
specification partition may still be used to implement a
subset of that partition. This can be achieved by composing
the library element with other elements to implement the
specification. Composition is performed efficiently using
polynomials, as the polynomial representations of the
elements in question can be composed using traditional
algebra to match the polynomial representation of the

specification. For example, consider the partition {J/dec = -

2*dx*invDenom + twoVdx*invDenom}. Comparing the
specification for that partition against the polynomial
representation for Adderl2 yields a match under the
conditions {x = 2*dx*invDenom, y = twoVdx*invDenom}.
These conditions can be satisfied by instantiating the
Multipler8 library element in the design.

6.2 Inexact Matching

In allocating complex designs to implement a
specification, trade-offs can be made between performance
and precision. However this requires ‘the identification of
library elements that implement a specification within some
bound. For example, the specification for the antialiased
line rasterizer operated on 8 bit pixels (outputs J, linc, and
Idec, were 8 bits long). Library elements may exist that can
perform this operation on 6 bit pixels with greater
throughput than would be possible with 8 bit pixels. By

identifying a match within the bounds [0, 22-1] between the
specification and the library element, the precision of the
specification may be sacrificed for reduced power or area,
or higher frequency of operation. Inexact matching can be
performed in several ways, by matching a specification and
library element that have: (1) equivalent polynomial
representations, but different bit widths, (2) polynomial
representations that are the same within some error bound,
or (3) similar Taylor expansions.

As outlined above, an implementation . and
specification may perform the same functionality, as
specified by their polynomials, but with different bit
widths. For example, assume the 8 bit adder shown in Fig.
] (Adder8) could be instantiated in place of Adderl2 by

1197

shifting the outputs of the previous stages right by 2 bits
and the output of Adder8 left by two stages. The resulting
implementation would be smaller and could operate at a

higher frequency, and would be accurate within [0, 22-1].
In the second application of inexact matching, the
polynomial representations of the specification and the
library element may be different, but the maximum
magnitude of their difference may be small. For example,
in synthesizing invDenom = 1/2*((dx"2 + dy"2)"(1/2))), a
library element that performed x/2 could be used. However,
x/2 can not be performed exactly with binary values since
the result is non integer for odd values of x. A library
element that performs x>> 1], with an 8 bit input, has the
approximate polynomial representation .498x (see
[SmDe99]). In instantiating x>>/ to implement x/2 for an 8
bit input, the maximum error between specification and
implementation is guaranteed to be less than the maximum

value of .5x - .498x over the interval [0, 281], which is .51.

A third application of inexact matching is required
for specifications that do not have exact polynomial
representations. For example, in synthesizing invDenom =
1/2%((dx™2 + dyM2)¥1/2))), a library element is
required to perform the function J/x. This specification
does not have an exact polynomial representation, but can
be approximated by a polynomial using Taylor’s expansion
(within a neighborhood of a):

Y '
i=0

A library element that performed 256/x for an eight bit
input would be split into eight subdomains, since Taylor’s
approximation converges to an accurate polynomial
representation only when the input domain is restricted. As
a result, the functionality characteristics of 256/x are
modeled by Divider8, as shown in Fig. 1. Using the error
bound from Taylor’s expansion, J/x can be inexactly
matched to Divider8 within the bounds [0, 1].

1/x = -(x—a)i/ai

7. Implementation and Example

The techniques presented above for allocating
reusable designs have been implemented in the POLYSYS
synthesis tool and are used here to the synthesize the
antialiased line rasterizer. The library of reusable designs
contains elements that perform multiplication, addition,
inversion, and square root. These elements are
characterized in the library, as shown in Figure 2, from their
Verilog implementation. The Verilog module for each
reused design, along with the Verilog code for logic that is
not be mapped 1o a complex library element, is passed to
the Synopsys Design Compiler for gate level synthesis.

The first partition for which a match to an existing
component is sought is {dx = x2 - xJ}. While there is no
exact match for this specification, the polynomial
representation for Adder8, x + y, matches the specification
if x = x2 and y = -xJ. In order to complete this match, a
component is then sought with polynomial representation -
x. Since no such component exists, synthesis using logic
gates is performed to invert xJ. A similar set of steps is
required 10 synthesize the next partition {dy = y2 - yJ}.

The partition {incrE = 2*dy} is matched to

Adder8 Adder8
| Logic | .
g
2*dy - dx
L ismsadan -I_I(Z'-((t;lx? +dy"2)"(ll2)))
Logic

AdderS AdderB Addcr8 Addch
twoVd:
o Y Chadert

yinc ydec

é

Adderd
ldec “Aader8 7
linc

Fig. 2 Antialiased line rasterizer mapped to reusable designs
and optimized through scheduling and resource sharing.

Multiplier8 under the condition x = 2. Furthermore,-the
partition {incrNE = 2*dy - dx) is matched to Adder8 under
the conditions x = 2*dy and y = -dx. Multiplier8 and basic
gates are then allocated to implement 2*dy and -dx.

The partition {invDenom = 1/2%(dx™2 +
dy™2)™(1/2)))} is not in polynomial form, thus the first
step is 10" create a polynomial representation of that
specification. Computing the Taylor series expansion about
2%((dx™2 + dyM2)™\(1/2))) reveals a match to Divider8
under the conditions X = 2*((dx™2 + dy™2)™(1/2))). This
statement is matched to Multiplier8 under the conditions x
= 2and y = (dx™2 + dyM2)\(1/2)). The latter condition is
not in polynomial form, requiring Taylor expansion about
dx*2 + dy™2. The resulting polynomial matches
SquareRoot8 under the conditions x = dx™2 + dy™2. This
condition is then satisfied by allocating Adder8 and two
instances of Multiplier8.

The next partitions for which a complex element is
sought are those that specify the computation of woVdx, d,
X, ¥, yinc and ydec. Adder8 is allocated to implement each
summation and additional logic gates are required to
implement subtraction, as performed earlier. The last three
minimal partitions that are bound are those for computing /,
linc, and Idec. Logic level synthesis is performed to
implement the partitions with unbound logic, such as {if
(init) ... else ...}.

Scheduling the operations 1o be performed and
sharing resources among partitions results in the binding
shown in Figure 2. In this case, since components do not
employ complex communication protocols, interface
synthesis is reduced to connecting the ports of the complex
elements. The physical characteristics of the synthesized
antialiased line rasterizer are shown in Figure 3.

1198

Library LSILCBO007
Gate Count 14094

Max. Operating Frequency 25MHz

Est. Area 8.85mm*
Est. Power Consumption 3.35W

Fig. 3 Physical characteristics of antialiased line
rasterizer synthesized from reusable blocks.

8. Conclusion

In performing high level synthesis and reusing
existing designs, a mechanism for representing the
functionality and physical characteristics of complex
blocks efficiently and accurately is required. We have
presented a methodology in which the functionality of
complex blocks can be canonically represented at a high
level of abstraction. This allows existing designs to be
allocated efficiently in implementing a specification. This
methodology can be followed in tandem with existing
methodologies that operate at the bit level, as demonstrated
in the synthesis of an antialiased line rasterizer.

Polynomial methods are ideally suited for
automating the allocation of existing designs that perform
arithmetic computations, such as those required for DSP
and graphics applications. They provide a mechanism for
performing exact and inexact matching of a specification,
generated from a high level tool such as MATLAB, to an
existing implementation, described in Verilog or with
Boolean equations.

Future work will focus on expanding the
application of the methodology presented here to high level
synthesis of hardware/software systems and to synthesis
with complex analog elements. Software modules that
implement arithmetic functionality and complex analog
blocks are prime candidates for polynomial representation.

References
[1) Dataquest report on the Ek ic Design A ion industry, D ber, 1996
{2] J. Smith and G. De Micheli, “Polynomial Methods for C Matching and

Verification”, Proceedings nj the ACM/IEEE lnumauonal Conjerzncr on
Computer Aided Design, 1998.

[3] R. Bryant “Graph Based Algorithms for Boolean Function Manipulation”, JEEE
Transactions on Computers, C-35(8), 1986.

14) R. Bryant and Y.A. Chen, “Verification of Arithmetic Circuits with Binay
Moment Diagrams”, Proceedings of the 32nd ACM/IEEE Design Automation
Conference, 1995.

[5) Y.A. Chen and R. Bryant, “ACV: An Arithmetic Circuit Verifier”, Proceedings o/
the ACM/IEEE International Confe e on Comy Aided Design, 199

[6) E.M. Clarke, M. Fujita, and X. Zhao, “Hybrid Decision Diagrams™, Proceedinys
of the ACM/IEEE Inte ional Conf ¢ on Computer Aided Design, 1995

[7) EM. Clarke, K. McMillan, X. Zh.o M Fujita, and J. Yang, “Specu al
transformations for Large B { with Appli "
Technology Mapping”, Proceedings nj the 30th ACMﬂEEE Design
Automation Conference, JEEE Computer Society Press, 1993.

[8) G. Martin, “Design Methodologies for System Level IP”, Proceedings of th
Conference of Design Automation and Test in Europe, 1998.

[9] J. Smith and G. De Micheli, “Polynomial Methods for Allocating Complex
Components”, Proceedings of the Conference of Design Automation and e
in Europe, 1999.

[10]) D. D. Gajski, N. Dutt, A. Wu, and S. Lin, High Level Synthesis: Introduction .-
Chip uand Sysiem Design, Kluwer Academic Publishers, 1992,

