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Abstract

Dynamic power management is a design methodology aiming at controlling perfor-
mance and power levels of digital circuits and systems, with the goal of extending
the autonemous operation time of battery-powered systems, providing graceful perfor-
mance degradationwhen supply energy is limited, and adapting power di. ip to
satisfy environmental constraints.
We survey system-level dynamic power management techniques. We first analyze
detection and shutd, isms for idle hardy and we re-
view industrial standardsfor operating system-based power management. We describe
system-level stochastic models for the power/performance behavior of systems. We an-
alyze different modeling assumptions andwe discuss theirvalidity and generality. Last,

idl mech.

we describe methads for de e Op power gies and also
describe various validation methods that can be employed to assess the effectiveness
of power-manageable architectures and the associt Vel schemes.

1 Introduction

Designmethodologiesforenergy-efficientsystem-level design are receiving anincreas-
ingly large attention. The motivations for such interest are rooted in the widespread
use of portableelectronic appliances (e.g., cellular phones, laptop computers, etc.) and
in the concerns about the environmental impact of electronic systems [21] (whether
mobile or not). System-level design must strike the balance between providing high
service levels to the users while curtailing power dissipation. In other words, we need
to increase the energetic efficiency of electronic systems, as it has been done, by other
means, with other types of engines.

Electronic sy are h g in nature, by combining digital with analog
circuitry, using semiconductor (e.g., RAM, FLASH memories) and electro-mechanical
(e.g., disks) storage resources, as well as electro-optical (e.g., displays) human inter-
faces. Power management must address all types of resources in a system. The power
breakdown for a well-known laptop computer [34] shows that, on average, 36% of
the total power is consumed by the display, 18% by the hard-disk drive (HDD), 18%
by the wireless local area network (LAN) interface, 7% by non-critical components
(keyboard, mouse etc.), and only 2165 by digital VLSI circuitry, mainly memory and
central processing unit (CPU). Reducing the power in the digital components of this
laptop by 10X would reduce the overall power consumption by less than 20%.

Lowering system-level power consumption, while preservin g adequate service and
performance levels, is a difficult task. Indeed, reducing system performance (e.g., by
using lower clock rates) is not a desirable option when considering the increasingly
more elaborate software application programs for computers and features of portable
electronic devices. On the other hand, present systems have several components which
are not utilized at all times. When such components are idle, they can be putin sleep
states with reduced (or nulf) power consumption, with a limited (or null) impact on
performance.

Dynamic power is a design methodology aiming at controlling per-
formance and power levels of digital circuits and systems, by exploiting the idleness
of their components. A system is provided with a power manager that monitors the
overall system and component states and controls state transitions. The control pro-
cedure is called power management policy. Power managers can be implemented in
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hardware or in software, depending on system architecture and constraints, When
considering general-purpose computer systems, the most natural implementation of
the power manager is software-based. In particular, the operating system (OS) is the
software layer where the manager can be implemented best. Operating system directed
power management (OSPM) is actively supported by industry-driven standardization
efforts such as Microsoft’s OnNow initiative [39] and the Advanced Configurationand
Power Interface (ACPI) standard proposed by Intel, Microsoft and Toshiba [37).

We believe that dynamic power management is a viable approach to reduce power
consumption of large-scale systems under performance constraints, because significant
power waste is associated with idle resources and because of its general applicability.
Note that support for dynamic power management must be provided by the overall
system organization, and system architects often envision system partitions that enable
power management. Moreover, system componentsshould be power manageable,i.e.,
the manager should be able to control their state of operation. Manageable components
can bebuild by exploiting several specific techniques, such as supply voltage, frequency
and activity control {1].

Needless to say, dynamic power management should be complementedby specific
chip-level design techniques for power reduction at the architectural Ievel [9], at the
RTL, logic and circuit levels [20, 25] and by customized devices and implementation
technologies [28]. However, in this survey we focus exclusively on dynamic power
management. We consider first system-level design issues, such as idleness detection
and shutdown mechanisms for idle resources. We review the OnNow and ACPI
standards, as well as previous work in the area of power management. Next, we
review system-level modeling techniques, and introduce stochastic models for the
pover/performance behavior of systems, We analyze different modeling assumptions
and we discuss their validity. We then consider a working model, for which optimal
policies canbe computed, and we discuss how policies can be implementedinelectronic
systems. Last but not least, we describe several methods for validating the policies,
based on simulation at different abstraction levels. We conclude by stressing the need
for CAD tools to support model identification, policy optimization and validation for
dynamically power-managed systems.

2 System design

In this section we consider issues related to system-level design. We view the system
hardware asacollection of resources, we characterize theiridlenessand presentmethods
for their shutdown. We consider then the interface standards that support resource
monitoring and control from the operating system, and we review currentrelated work
on dynamic power management.

2.1 Idleness and shutdown mechanisms

The basic principle of a dynamic power manager is to detect inactivity of a resource
and shut it down. A fundamental premise is that the idleness detection and power
management circuit consumes a negligible fraction of the total power.

We classify idleness as external or internal. The former is strongly tight to the
concept of observability of a resource’s outputs, while the latter can be related to the
notion of internal state, when the resource has one. A circuit is externally idle if its
outputs are not required during a period of time. During such period, the resource is
functionally redundant and can be shut down, thus reducing power consumption. A
resource is internally idle when it produces the same outputovera period of time. Thus,
the outputs can be stored and the resource shut down.

While external idleness is a general concept applicable toall types of resources (e.g.,
digital, analog, memories, hard-disks, displays), internal idleness is typical of digital
circuits. Thus, we will be concerned with external idleness detection and exploitation,
since we address here system-level design,

There are several mechanisms for shutting down a resource. Di gital circuits can be
“frozen” by disabling registers (by lowering the enable input) or by gating the clack {1].
By freezing the informationon registers, data propagation throughcombinational logic
is halted, with acorresponding power saving. (This saving may be significantin CMOS
static technologies, where power is consumed mainly during transitions).

Aradical approachto shutdownis to dynamically scale downits supply voltage [2],
or to completely turn power off. While this mechanism is conceptually simple and



applicable in general, it usually jnvolves a non-negligible time to restore operation.
Note that in some cases the context must be saved before shutdown (e.g., in non-
volatile memory)and restored at restart.

Some components can be shut down at different levels, each one corresponding
to a power consumption level and to a delay to restore operation. As a first example,
consider a backlit display. When the display is used, both the LCD array and the
backlighting are on. When the user is idle, the backlighting and/or the LCD array can
be turned off with different power savings.

As a second example, a hard-disk drive [40] may have an operational state, in
addition to an idle, a low-power idle, a standby, and a sleep state. In the idle states the
disk is spinning, but some of the electronic componentsof the drive are turned off. The
transition from idle to active is extremely fast, but only 50-70% of the power is saved
in these states. In the standby and sleep states, the disk is spun down, thus reducing
power consumption by 90-95%. On the other hand, the transition to the active state is
not only slow, but it causes additional power consumption, because of the acceleration
of the disk motor.

This example shows the trade-off of power versus performance in dynamic power
management. The lower the power associated with a system state, the longer the delay
in restoring an operational state. Dynamic power management strategies need to take
advantage of the low-power states while minimizing the impact on performance.

2.2 Industrial design standards

Industrial standards have been proposed to facilitate the development of operating
system-based power management. Intel, Microsoftand Toshibaproposed the Advanced
Configurationand Power Interface (ACPI) standard [37]. Althoughthe standardtargets
personal computers (PCs), it contains useful guidelines for a more general class of
systems. The characterizing feature of ACPI is that it recognizes dynamic power
munagementas the key to reducing overall system power consumption, and it focuses
on making the impl tation of dynamic power m: h in personal
computersas straightforward as possible.

The ACPI specification forms the foundationof the OnNow initiative [39]1aunched
by Microsoft Corporation. The purpose of OnNow is to transform PCs into true
household appliances. A PC should appear as off when not in use, but it must be
capable of responding with negligible delay to wake-up events (originated by the user
or by a resource, such as a modem sensing an incoming call). Furthermore, power
consumption in both the on and off state should be as low as possible. OnNow relies
on the ACPI infrastructure to interface the software to the hardware components to be
managed.

ACPI is an OS-independent, general specification that emerged as an evolution of
previous initiatives {38] that attempted to integrate power management features in the
low-level routines that directly interact with hardware devices (firmware and BIOS). Itis
an open standard that is made available for adoption by hardware vendorsand operating
systemdevelopers The ACPI specification defines interfacesbetween OS software and
hardware, Applications interact with the OS kernel through application programming
interfaces (APIs). A module of the OS implements the power management policies.
The power management module interacts with the hardware through kernet services
(system calls). The kernel interacts with the hardware through device drivers. The
back-end of the ACPI interface is the ACPI driver. The driver is OS-specific, it
maps kernel requests to ACPI commands, and ACPI responses/messages to kernel
signals/interrupts,

It is important to notice that ACPI specifies neither how to implement hardware
devices nor how to realize power managementin the operating system. No constraints
are imposed on implementation styles for hardware and on power management poli-
cies. Implementation of ACPI-compliant hardware can leverage any technology or
architectural optimization as long as the power-managed device is controilable by the
standard interface specified by ACPL

ACPI describes the behavior of a PC with an abstract, hierarchical finite-state
model. States represent modes of operation of the entire system or its components.
Transitions between states are controlled by the OS-based power manager. States and
transitions for an ACPI-compliant system are shown in Figure 1. Usually the system
alternates between the working (G0) and the sleeping (G'1) states. Inthe working state
the system appears fully operational, but the power manager can put idle devices to
sleep (states D1 to D4). Eventhe CPU can be put in sleep state (C1 to C3). When
the entire system is idle or the user has pressed the power-off button, the OS will drive
the computerinto one of the global sleep states on the right side of Figure 1. From the
user’s viewpoint, no computation occurs.

The sleeping sub-states (S 1to §4) differin which wake events can force atransition
into a working state, how long the transition should take and how much power is
dissipated in the state. If the only wake-up event of interest is the activation of the
user turn-on button and a latency of a few minutes can be tolerated, the OS could save
the entire system context into non-volatile storage and transition the hardware intoa
soft-off state (G2). In this state, power dissipation is almost nuil and contextis retained
(in non-volatilememory) for an arbitrary period of time. The mechanical off state (G3)
is entered in the case of power failure or mechanical disconnection of power supply.
Complete OS bootis requiredto exit the mechanical off state. Finally, the legacystate is
entered in case the hardware does not support OSPM. It is importantto note that ACPI
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Figure 1: Global and power states and substates

provides only a framework for designers to implement power management strategies,
while the the choice of power management policy is left to the engineer.

23 System-level power management

We consider now work in different areas related to dynamic power management. The
common theme is the search of methods for power/performance management. Tech-
niques and application domains vary widely.

Chip-level power management features have been implemented in mainstream
commercial microprocessors[11, 12, 13, 16, 31). Microprocessor power management
has two main flavors. First, the entire chip can be put in one of several sleep states
through external signals or software control. Second, chip units can be shut down by
stopping theirlocal clock distribution. This is done automatically by dedicated on-chip
control logic, without user control.

Outside the general-purpose microprocessorarena, designers have becn even more
aggressive. Specialized power management schemes have been devised for digital
signal processors[3], signal processing ASICs [4] DRAM memories [5], and many other
applications. Techniques for the automatic synthesis of chip-level power management
logic are thoroughly surveyedin [1].

At a much higher level of abstraction, energy-conscious communication protocols
based on power have been extensively studied [19, 27, 29, 35). The main
purpose of these protocols is to regulate the access of several communication devices
to a shared medium trying to obtain maximum power efficiency for a given throughput
requirement.

Powerefficiencyisastringent constraint for mobile communicationdevices. Pagers
are probably the first example of mobile device for personal communication. In [19],
communicationprotocols for pagers are surveyed. These protocolshave been designed
for maximum power efficiency. Protocol power efficiency is achieved essentially by
increasing the fraction of time in which a single pager is idle and can operate in a
low-power sleep state without the risk of loosing messages.

Golding et al. considered HDD sub-systems [14, 15}, and presented an extensive
study of the performance of various disk spin-down policies, The problemof deciding
when to spin down ahard disk to reduce its power dissipationis presented as a variation
of the general problemof predicting idleness for a system or a system component. This
problem has been extensively studied in the past by computer architects and operating
system designers (reference [15] contains numerous pointers to work in this field),
because idleness prediction can be exploited to optimize performance (for instance
by exploiting long idle peried to perform work that will probably be useful in the
future). When low power dissipation is the target, idleness prediction is employed to
decide when it is convenient to spin down a disk to save power (if a long idle periodis
predicted), and to decide when to turn it on (if the predictor estimates that the end of
the idle period is approaching).

The studies presented in [30, 17} target hypothetical “interactive terminals”. A
common conclusions in these works is that future workloads can be predicted by
examining the past history. The prediction results can then be used to decide when and
how transitioning the system to a sleep state. In [30], the distribution of idle and busy
periods for the interactive terminal is represented as a time series, and approximated
with a least-squares regression model. The regression model is used for predicting
the duration of future idle pericds. A simplified power management policy is also
introduced, that predicts the duration of an idle period based on the duration of the last
activity period. The authors of [30] claim that the simple policy performs almost as
well as the complex regression model, and it is much easier to implement. In {17),
an improvement over the simple prediction algorithm of [30] is presented, where
idleness prediction is based on a weighted sum of the duration of past idle periods,
with geometrically decaying weights. The weighted sum policy is augmented by a
technique that reduces the likelihood of multiple mispredictions. A common feature of




these power management approaches is that policies are formulated heuristically, then
tested with simulations or measurements to assess their effectiveness.

3 System modeling

Inthe sequel we consider the hardware part of the system as a set of resources, We model
the resources at a very-highlevel of abstraction, i.c., we view them as units that perform
or request specific services and that communicate by requesting and acknowledging
such services. Resources of interest are, of course, those that can be power managed,
i.e., those that can be set in different states, as in the ACPI scheme.

From a power management standpoint, we model the hardware behavior as a
[finite-state system, where each resource is associated with a set of states and can be
in one of the corresponding states. Power and service levels are associated with the
different states and transitions among states. In this modeling style, we abstract away
the functionality of the resource, and we are concerned only with the ability of the
resource to provide and/or request a service.

Because of the high-level of abstraction in resource modeling, it is difficult, if not
impossible, to have precise information about power and performance levels of each
resource. This uncertainty can be modeled by using randomvariables for the observable
quantities of interest (eg., power, performance), and by considering average values as
well as their statisucal distributions {1]. This stochastic approachis required to capture
both the non-duterminism due to lack of detailed information in the abstract resource
models as well as the fluctuations of the observed variables due to environmental
factors.

With this modeling style, computing optimum dynamic power management poli-
cies becomes a stochastic optimum control problem [8), The problem solution, and its
accuracy 1n modeling reality, depend highly on the assumptions we use in modeling.
We will discuss next the impact of some modeling assumptions, and then consider
is detail a system model under some specific assumption that enables us to compute
optimum policies, as shown in Section 4.

3.1 Assumptions

A system model can be characterized by the ensemble of its components, their mode
of interaction and their statistical properties.

In general, we can view resources both as providers and requesters of services to
other resources. In practice, some resources will be limited to providing or requesting
services We call system structure the system abstraction where resources are vertices
of adirected graphand where resource interactionis shown by edges. The interactionis
the requestof a service and/orits delivery. Queues, are used to model the accumulation
or requests waiting for services [33].

A simple exampleof a CPU requesting data to a hard-disk driveis shown in Figure
2(a). A more complex example is reported in Figure 2 (b): it shows a CPU interacting
with a LAN interface, a HDD, a display, a keyboard and a mouse. Requests to the
CPU can be originated from the keyboard, mouse and LAN interface. Requests to
the display come from the CPU (which also forwards requests from the keyboardand
mouse). The CPU can request services to the HDD and LAN. Note that the keyboard
and mouse models can express also the behavior of the human user who hits their keys
and buttons,

A modeling trade-off exists in the granularity of the resources, i.e., between the
number and average complexity of the resources. Whereas a system model with
several resources and an associated structure can capture the interaction of the system
components in a detailed way, most researchers view systems with a Very coarse
granularity. Namely, systems are identified by one resource providing aservice, called
service provider, and one unit requesting a service, called service requester. The
requester models the workload source. This granularity can be used to model systems
like user-PC, as shown in Figure 2 (c), where the keyboardand mouse are lumped as a
single requester and the CPU, HDD and LAN are seen as a single provider.

Let us consider now the statistical properties of the components of a system.
Stationariry of a stochastic process means that its statistical properties are invariant to
a shift of the time origin [24). When resources are viewed as providers of services
in response to input stimuli, it is conceivable to model their behavior as stationary.
Conversely, when resources actas workload sources,and when we model users’ requests
> such, the stationarity assumption may not hold in general. For example, patterns
of human behavior may change with time, especially when considering the fact that
an electronic system may have different users. On the other hand, observations of
workload sources over a wide time interval may lead to stationary models that are
adequately accurate. An advantage of using stationary models is the relative ease of
solving the corresponding stochastic optimization problems.

The statistical properties of each component are captured by their distributions.
An important aspect is the statistical independence (or dependence) of the resources’
statistical models from each others. When a system structure can be captared by
disjoint graphs corresponding to statistically-independent resources, the system de-
composition allows us to consider and solve independent subproblems. In practice,
weak dependencies can sometimes be neglected. Conversely, system structures with
many dependencies correspond to complex meodels requiring a large computational
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Figure 2: (a) CPU requesting data to a HDD. (b) Simple model of some resources of
a personal computer and their interaction. (c) User-PC model where the requests sent
by the keyboardand by the mouse are lumpedasa single requester and the CPU, HDD,
LAN and display are lumped as a single provider.
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Figure 3: Coarse-grained system model

effort to solve the related optimization problems. As a result, the identification of the
system resources, interactions and statistics is a crucial step in modeling real systems.

3.2 A working model

We consider here a working model, with one provider that receives requests through
aqueue, and that is controlled by a power manager (PM), as shown in Figure 3. This
model is described in more detailed in [23). We summarize here the salient features of
the model.

We assume stationary stochastic medels service provider (SP), service requester
(SR), and queue (Q). We assume also that the service fequester is statistically indepen-
dent from the other components. We consider a discrete-time setting, i.e., we divide
time into equally-spaced time slices. We use a parametrized Markov chain model
to represent the statistical properties of the system resources. By using the Markov
assumption, transition probabilities depend only on the current state and not on the
previous history. Moreover, we assume that transition probabilities depend on a pa-
rameter, that models the command issued by the power manager. We consider next the
system components in detail.

Service provider. Itisa device (e.g., HDD) which services incoming requests
from a workload source. In each time interval, it can be in only one state. Each
state sp € {1,2,..., Sy} is characterized by a performance level and by a power-
consumption level. In the simplest case, we could have two states (Sp = 2): onand
off. Otherwise, the states may be more, and in particular match states (and substates)
as defined by the ACPI standard. At each timepoint, transitions between states are
controlled by a power manager through commandsa € A = {1,2,...,N,}. For
example, we can define two simple commands: switch on (s-on) and switch off (s-off).
When a specific command is issued, the SP will move to a new state at the next
timepoint with a fixed probability dependentonly on the command a itself, and on the
departure and arrival states. In other terms, after being givena transition command by
the power manager, the SP can remain in its current state duringthe nexttime slice with
a non-zero probability. This aspect of the model takes into account the uncertainty in
the transition time between states caused by the abstraction of functional information.
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Figure 4: An example of a system model with one service provider, one service
requester and one queve,with corresponding Markov chains.

Our probabilistic model is equivalent to the assumption that the evolution in time of
states is modeled by a Markov process that depends on the commands issued by the
power manager. Each state has a specific power consumption rate, which is function
both of the state and the command issued. The SP provides service in one state only,
that we call active state.

Service requester. It sends requests to the SP. The SR is modeled as a Markov
chain, whosestate correspondstothe numberof requests s (withs» € {0,1,...,5r—
1}) sent to the SR during time slice of interest.

Queue. Itbuffers incoming service requests. We define its length to be (Sq—1).
The quene length is also Markov process with state s4 € {0,1,...,Sq}. The state
of the queue depends on the state of the provider and requester, as well as on the
commund issued by the power manager in the time slice of interest.

Power manager. It communicates with the service provider and attempts to set
jts state at each timepoint, by issuing commands chosen among a finite set A. For
example, the commandscan be s.on, and s-off. The power manager containsall proper
specifications and collects all relevant information (by observing SP and SR) needed
forimplementing a power managementpolicy. The consumptionof the power manager
is assumed to be much smaller than the consumption of the subsystems it controls and
itis nota concern here.

The state of the system consisting of {SPSR,Q} and managed by PM is a triple
s = (s, §p, 84). Being the compositionof three Markov chains, s isaMarkov chain
(with S = §, X S, X Sy states), whose transition matrix depends on the command
a issued by the PM.

Let us consider a simple example, as shown in Figure 4, representing a power-
managed HDD. The service requester has only two states, 0 and 1, representing the
numberof requests per time slice sent to the provider. The queue of the service provider
has twosstates, 0 and 1, representing the number of requests to be serviced. The service
provider has two states, on and off, representing its functional state. When on, it
services up to one request per time slice taken from the queue. The comresponding
power consumptionis of 3W. When off it does not service any request and it consumes
no power. However, a power consumption of 4W is associated with any transition
between the two states. SR evolves independently, while the transition probabilities
of SP depend on the command issued by the power manager (s-on, s-off) and those of
the queue depend on the states of both SP and SR, as well as on the command. For
example, consider the SP in state on. (Center-left of Figure 4.) When command s.on
is issued, the SP will stay in state on with probability 1, and transit to state off with
probability 0. Conversely, when command s.off is issued, it will stay in state on with
probability 0.8, and transit to state off with probability 0.2.

3.3 Extensions and limitations

System providers, requesters and queues with several internal states can be modeled
in a straightforward way. Power costs and performance penalties can be associated
with states and transitions of the Markov models. Thus, the simple model exemplified
by Figure 4 can be made more detailed, to capture subtle differences among resource
states (e.g., discniminating soft off states from sleeping states).

Similarly, more complex system structures (with multiple providers, requesters
and queues) can be modeled by considering the combined effect of the resources’
medels. ‘This can be easily done under the hypothesis of statistical independence of
the resources’ behavior, as in the case of severalindependentprovidersrespondingtoa
single workload source. In this particular case the overall system model can be derived
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Figure 5: Statistical analysis of the inter-arrival times between service requests for
CPU, keyboard, mouse and HDD of a personal computerduring software development.
For each device, three curves are plotted in lin-log scale: the probability density (solid
line), the probability distribution (bold line) and its complement to 1 (dashed line).

by composing the Markov chains associated with each resource.

Unfortunately, in the general case, the system model is not amenable to a simple
decomposition. Consider for example systems such as the one depicted in Figure 2 (b).
The interaction among components causes statistical dependence. Most requests to the
display from the CPU are triggered by the mouse and keyboard, Thus it is not possible
to view the resources as having an independent behavior.

Even when considering systems with simple structures, the identification of the
statistical distributions is not a simple matter. The use of i discrete-time stationary
Markov models corresponds to use geometric distributions for requests and service
times. Such amodel may deviate fromreality. For example, resources may have known,
deterministic service delays compounded with non-deterministic delays depending on
the environment.

3.4 Extracting models for the user

System users can be viewed as workload sources and modeled as service requesters.
Anapproach to model the user behavior consists of monitering the system during a user
session with no power management and then extracting a statistical model of his/her
behavior.

System monitoring has to be sufficiently accurate to provide time-stamped traces
of service requests. The cumulative counts provided by the system utilities of many
computer systems are not sufficient to steer power management. In addition, monitoring
has to be non-perturbative in order to affect usage patterns as little as possible. A
monitoring system specifically designed for supporting dynamic power management
in personal computers is described in reference [6): the prototype implementation is
conceived as an extension of the Linux operating system [32]. The monitoring tool can
be configuredto collect informationabout many resources at the same time. Measured
overhead for data collection is quite small (around 0.4%). Figure 5 shows usage
statistics simultaneously extracted for the CPU, the keyboard, the mouse and the HDD
of a personal computer during one-hour of software development.

Once time-stampedrequest traces have been collected, they areused to characterize
the abstract model for the SR. If a discrete-time setting is assumed for modeling, the
trace need to be discretized first. For a given time step T, that is usually of the same
order of the minimum time constant of the SP, a discretized trace is a stream of integer
numbers representing request counts. The k-th number in the stream (i.e., ng) is the
number of requests with time stamps in the interval (£ — 1) - T, k - T]. According
to the definition of SR proposedin Section 3.2, nx. represents the state of the SR at the
k-th time step. Characterizing a Markov model for the user consists of tuning the state
transition probabilitiesin order to make the statistical properties of the model as similar
as possible to those of the stream. To this purpose, state transition probabilities are
directly computed from the discretized trace. For instance, the probability associated
with the transition from state s, = O to state s, = 1 is obtained as the ratio between
the number of 0, 1 sequences in the stream and the total numberof 0’s.

This simple procedure extracts 2 Markov model from any trace, but it does not
guarantee that the Markov model is statistically significant. The statistical sig,niﬁca.nce
of the extracted model can be tested with well-knownproceduresuch as the x“ test [33].
If the significant test fails, more complex Markov models can be formulated. In some



casey, it is posuble to use a simple Markov model even if it does not perfectly match
the statistical properties of the trace. In these cases, all optimization performed on the
models should be carefully validated through simulation, as described in Section 5.

U:er model extraction can be further complicated by depzndencies between user
and system behavior. In many cases, a change in how the system responds to requests
causes a change in how requests are issued. For instance, if a user is typing and the
typed characters do not appear immediately on the screen, she/he may type slower.
User models constructed by observing the system without power managementmay be
inaccuratef there is a strong depedency between system responses and user requests.
Characterizing user models in such systems, which are known as “closed queueing
networks”, is a challenging task [36]).

4 Policy optimization

We consider now the policy optimization problem, for the working model described
in Section 3.2. Policy optimization strives at minimizing the average power con-
sumption under performance constraints. Similarly, we can define the complementary
optimization of maximizing system performance under a bound on the average power
conmsumption. With the working model of Section 3.2, performance relates to the av-
erage delay in servicing a request (i.e., wait time on a hard-disk access). Due to space
limitation, we ducribe only the major steps toward solving the problem. The interested
reader is referred to [23] for details.

We need to analyze first how the PM controls the system, to define formally the
notion of policy, which is the unknown of the problem to optimize.

At each time point, the power manager observes the history of the system and
controls the SP by taking a decision. A deterministic decision consists of issuing
a single command. A randomized decision consists of specifying the probability of
issuing a command. Randomized decisions include deterministic decisions as special
cases (i ¢, the probability of a commandis 1).

A policy is a finite sequence of decisions. A stationary policy is one where the
same dechion {(as a function of the system state) is taken at each time point. Note
that stationarity means that the functional dependence of the decision on the state does
not change over tme. Obviously, as the state evolves, the decisions change. Markov
stationary polictes are policies where decisions depend only on the present system
state.

The importance of Markov stationary policies stems from two facts: they are easy
to implement and it is possible to show that optimum policies belong to this class.
Narnely. it is possible to prove formally that the aforementioned policy optimization
problems have an optimum solution that is a unique randomized Markov stationary
policy. In the particular case that either the problemis unconstrained or the constraints
are inactive, then the solution is also deterministic {8, 23]. It is possible to show
that the policy optimization problem can be cast as a linear program. An intuitive
formulation is described here in an informal way. Consider the PM, that observes
the system state and issues commands. For each possible pair (state,command), we
can compute its frequency, ie., the expected number of times that a system is in that
state and issues that command, The frequency is a non-negative number subject to
the following conservation law. The expected number of times state z is the current
state is equal to the expected initial populationof & plus the expected number of times
1~ reached from any other state. Moreover, average power and performance loss
can be expressed as linear functions of the (state, command) frequencies. Thus,
mininmizing power consumption can be expressed as minimizing a linear function of
the (state, command) frequencies, under linear constraints.

Overall, lineur programs modeling policy optimization can be efficiently solved
by sundard software packages, for simple topologies and a reasonable number of
commands The policy optimization tool described in [23] is built around PCx, an
advanced LP solver based on an interior point algorithm {10].

Figure 6 “how. the power-performance trade-off curve obtained for the example
system of Figure 4 by iteratively solving the policy optimization problem for different
performunce constraints. Performance is expressed in term of average queue length,
that is the average waiting time for a request. An additional constraint is used, called
request loss, 1o represent the maximum probability of Ioosing a request because of
a queue-full condition. It is worth noting how the power-performance trade-off is
affected by the additional constraint. In particular, if a request-loss lower than 0.1337
has to be puaranteed, the SP can never be shut down. In this case, no power savings
can be achieved regardless of the performance constraint.

The trade-off curve for a more complex system is reported in Figure 7. The SPis a
commurcially-avallable power-manageable HDD with one active state and fourinactive
states, spanmng the trade off between power consumption and shut-down/wake-up
times {42]. The average power consumption of the disk when in the active state is of
2.5W. The SR model was extracted as described in Section 3.4 from the time-stamped
traces of disk accesses providedin [41]. A queue of length 2 was used.

Points associated with several heuristic policies are also plotted in the power-
performance plane for comparison. Although we cannot claim that our heuristic policies
are the best that any experienceddesigner can formulate, some of them provide power-
performance points not far from the trade-off curve. Note that heuristic solutions do
not allow the designer to automatically take constraints into account. On the other
hand, trial and error approaches may be highly expensive due to the large number of
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Figure 6: Power-performance trade-off curves for the example system.
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manageable hard disk.

parameters (in our case study the policy is represented by a 66x5 matrix with 330
entries). Moreover, even if it is possible to produce heuristic policies that produce
“reasonable” results, there is no way for the designer to estimate if the results can be
improved. For these reasons, computer-zided design tools for policy optimization can
be of great help to system designers.

4.1 Power manager implementation

Power management policies can be computed off-line or on-line. In the former case,
a policy is computed once for all for the system being designed, and implemented
in hardware or software as described in this section. Alternatively, several policies
can be computed off-line and stored, each corresponding to a different environmental
factor, such as a workload source. The power manager can switch among the policies
at run time. On-line policy computation is also possible. Once the power manager
has identified a change of the environmental conditions that make the current policy
no longer effective, a new policy can be computed which takes into account the new
environmental parameters (e.g., request arrival rate). Once the policy is computed, it
can be executed until the power manager deems it appropriate.



In the cane of simple systems, it may be practical to implement the dynamic power
management policy as a hardware control circuit. Since circuit synthesis methods are
currently used for hardware design, policy implementation consists of representing
the policy in a synthesizable hardware description language (HDL) model for the
power manager. In general, the circuit input is the system state and the output are the
communds,

Deterministic policies can be implemented by table look-upschemes. Randomized
policies require stoning the conditional probabilities of issuing a commandin any given
state and companng them with a pseudo-random number, which can be generated by
using a linear feedback shift register (LFSR). The command probabilities should be
normalized to the length of the LESR. In particular, when only two commands are
possible (e.g.. s-on and s.off), their conditional probabilities sum up to 1 and thus
only one probability needs to be stored. The binary outcome of the comparison with
a pseudo-random number corresponds to the chosen command. This scheme can be
casily extended to handle N, commands by means of a table with N, — 1 entries per
<tate and N, — 1 comparisonswith the pseudo-randomnumber, which can be executed
in paraflel.

The implementation of policies in software requires the software synthesis of the
power manager (¢ g., the generation of a C program that issues the commands as a
function of the system state) as well as its embedding in the operating system. In the
case of randomized policies, the programshould make use of a pseudo-randomnumber
generator for deciding which command should be issued. The power manager may be
executedin kernel mode and be synchronizedand/or merged with the OS task scheduler
to reduce the performance penalty due to context switch.

5 Validation

In this section we address the problem of bridging the gap between the high level
of abstraction at which policy optimization is performed and the real-world systems,
where optimal policies have to be applied. In Section 3 we have described a general
approach for modeling power-manageable systems as interacting Markov processes.
In Scetion 4 we have shown that such an abstract model allows us to cast the policy
optimization problem as a linear program that can be solved in polynomial time. All
modeling assumptions made to formulate and solve the policy optimization task need to
be tested in orderto validate its results. We briefly describe validation techniquesbased
on simulation and emulation at different abstraction levels, ranging from the direct
simulation of the Markov models used for optimization to the actual implementation
of the optimal policies in the target systems. We discuss the main strengths and the
inherent limitations of each approach.

Discrete-time simulation of Markov processes. Discrete-time sim-
ulation is performed at the same abstraction level used for optimization. The sim-
ulator takes the policy and the Markov models of the components and iteratively
performs the following steps: i) take a decision (based on the currentstate), i) evaluate
cosvperformance metrics, i1f) evaluate the next state of all components, #v) increment
time, update the state and iterate. Notice that both the policy and the next-state func-
tions of the Markov chains are non-deterministic discrete functions (NDFs): inputs are
present-state variables and commands, whereas outputs are the outcomes of random
processes. NDFs can be represented as matrices having as many rows as input con-
figurations und v many columns s output values. Entries represent the conditional
probabilities of all possible outcomes for all given input configurations. To evaluate
a function, the row associated with the current input configuration is selected and
a preudo-random number (uniformly distributed between 0 and 1) is generated and
compared to the entries in the row to select the actual command.

Needless to say, this simulation paradigm cannot be used to validate the pol-
icy against the modeling assumptions of Section 3, since it relies on them as well.
However, it provides valuable information about the time-domain system behavior.
Constraints and objective functions used for optimization are average expected values
of the performance/cost metrics of interest. Simulation allows us to monitor the instan-
taneous values of such parameters (to detect, for instance, the temporary violations of
performance constraints) and to measure their variance.

Discrete-time simulation with actual user traces. The simulation
paradipmis the sume described in the previous paragraph. The only difference is that
the model of the service requester is now replaced by a trace taken from a real-world
application. Ateach time step, the present state of the SR is read from the trace, instead
of being non-deterministically computed from the previous one.

Thoughthe abstraction level is still very high, trace simulation allows us to remove
all assumptions on the time distribution of service requests. As a result, it can be used
to check the validity of the Markov model used for the SR during optimization.

Discrete-time simulation with real request traces was performed to validate the
trade-off curve of Figure 7. Simulation results are denoted by eircles in figure. The
small distance of the circles from the solid-line curve is a measure of the quality of the
SR Markov model extracted from the user traces and used for optimization.

Event-driven stochastic simulation. In event-driven simulation, model
evaluation is no longer perodic. The model of each component is re-evaluated only
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when an event (i.e., achange) cccurs on some of the state/command vatiablesit depends
on. The evaluation of a component may produce new events to be scheduled at a future
time. Both the output events and their scheduling times may be non-deterministic.
For instance, the command issued by a randomized policy can be modeled as an
instantaneous non-deterministic event, while the transition between two states of the
SP can be viewed as a deterministic event (if the next state is uniquely determined
once a command has been issued) to be scheduled at a non-deterministic ime (if the
transition time is a random variable). The scheduling time is pseudo-randomly chosen
according to a given probability distribution. An event-drivenstochastic simulator is
described in [7).

The main advantage of the event-driven paradigm is that it can easily handle
stochastic processes with arbitrary distributions. Conversely, discrete-time simulation
is implicitly based on the memory-less assumption that is behind Markov models, that
allows us to represent and simulate only geometrically-distributed random variables.
Adding memory information to a Markov model in order to represent different distri-
butionsis nota practical solution since it causes the exponential increase of the number
of states. Event-driven simulation providesa more practical way of applying optimal
policies to arbitrary SP models in order to check the validity of the Markovmodelused
for optimization.

Fully-functional simulation. The functionality of a system canbe described
at many levels of abstraction. Functional simulation can be performed at any level,
Here we focus on cycle-accurate simulation, that is the most accurate simulation
paradigm that can be used to handle systems as complex as a personal computer.
Cycle-accurate simulation matches the behavior of the real system at clock boundaries.
When the system is a computer, cycle-accurate simulation provides enough detail to
boot an operating system and run an actual workload on top of it. A fully-functional
simulator specifically designed to study computer systems is SimOS [26], that can
handle multi-processor architectures and provides models for simulating commercial
microprocessors, peripherals and operating systems.

When system functionality comes into the picture, most of the simplifying mod-
eling assumptions can be eliminated. In particular, stochastic models for SP and SR
are no longer required, since even their functionality can be exactly simulated. Per-
formance penalties can be realistically estimated and accurate cost metrics (i.e., power
consumptions)can be associated with the operating states of the resources. In addition,
functional simulation realizes a unique trade-off between realism and flexibility. On
one hand, it provides a means of validating the policies against the real world and
gives the designer a direct hands-on experience of most of the implementation issues
involved in OS-directed power management. On the other hand, it allows the designer
to explore the entire design space, balancing hardware and software solutions.

The main drawbackof functional simulation is performance: simulation times may
be more than three orders of magnitude slower than the run times on the comresponding
real system, making the approachimpractical to study complex workloads.

Emulation. We use the term emulation to denote a validation approach that uses
functionally-equivalentreal hardware componentsto exercisethe behaviorof partof the
system. Inparticular, we areinterested in using a computer without power-management
features as the hardware platform to emulate a power-managed functionally-equivalent
one. As an example, suppose that we are designing a power-management policy for
the HDD of a laptop computer, having one active state and several inactive states (with
different power consumptions and wake-up times). If such a HDD is not available
for validation, the power-managed system can be emulated on an equivalent computer
(with the same workload of the target one) with a non-power-manageable HDD. As
long as the device used for emulation has the same performance of the target one, it
can be employed to emulate the active-state functionality, while inactive states (and
transitions between them) can be simulated by the software device driver. The code
of the original device driver needs a few changes: i) an additional state variable
representing the power state, ii) a routing for updating the power state according to
power-management commands, iif) a timer to simulate state trapsition times, iv) a
routine to provide power consumption estimates and v) a request-blocking mechanism
that enables actual accesses to the disk only when in the active state. In general,
emulation of power-managed systems is based on the observation that dynamic power
managementcan only reduce system performances. Hence, if a functionally-equivalent
real system is available for exercising the active-state performance, lower-performance
states can be emulated as well.

Emulation has two desirable features. First, it runs at the same speed of the actual
system, thus enabling policy validation against realistic workloads of any complexity
and real-time interactive user sessions. This gives the user a direct experience of
performance degradations possibly induced by power management. Second, it enables
the software specification of the low-power states of the SP. The possibility of easily
changing the SP model can be exploited both during the design of a power-manageable
resource, to verify the effectiveness of a given low-power state, and during system-level
design, to select among equivalent power-manageable components. The main drawback
with respect to simulative approaches is that the system architecture is assigned once
forall: no architectural choices can be explored.



Implementation. Policies can be validated by testing their implementations.
Since the policy is directly applied to the target system, its actual impact on the cost
mutrics of interest can be measured accurately. Thus experimentation at this level is
useful as a final step in validating a given policy.

6 Conclusions

Dynamic power management is an effective means for system-level design of low-
power electronic systems. Dynamic power management is already widely applied
to system design, but today most electronic products rely on ad-hoc implementation
frameworks (e g., firmware code) and on heuristic management policies (e.g., timeout
policies). We expectthat the use of industrial standards, such as OnNow and ACP1, will
soon fucilitate the clean implementation of operating system based power management.

This survey has shown how systems can be modeled so that optimal management
policies can be computed, validated and implemented. The computation of optimal
policies iy a new problem for system-level design. In particular, we have shown a
working model for which the optimal stochastic power-management control problem
can be efficiently and exuctly solved. The solution method we have analyzed relies
on a modeling abstraction of system resources in terms of Markov processes. Several
extensioncan be made to the model, at the price of complicating the solution procedure,
by considering more detailed system models. As in many design problems, good
engineering judgment is key in determining the right balance among model accuracy,
exactness of the solution (for the given model), and computational effort.

Dug to the proliferation of handheld electronic systems, and due to increasingly
stringent environmental constraints on non-mobile systems, we believe that designers
will be very often confronted with the challenge of deriving optimal, or near optimal,
dynamic power management solutions. As a result, computer-aided design tools for
power management will be extremely useful is system-level design for model identifi-
cation, policy optimization and validation.
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