
In Proceedings of the
8th International Workshop on Field Programmable Logic and Applications (FPL98),
pages 69-78, Tallinn, Estonia, Springer-Verlag, 1998.

Acceleration of Satisfiability Algorithms by

Reconfigurable Hardware

Marco Platzner and Giovanni De Micheli

Computer Systems Laboratory, Stanford University
Stanford, CA 94305, U.S.A.

marco.platzner@computer.org

Abstract. We present different architectures to solve Boolean satisfia-
bility problems in instance-specific hardware. A simulation of these ar-
chitectures shows that for examples from the DIMACS benchmark suite,
high raw speed-ups over software can be achieved. We present a design
tool flow and prototype implementation of an instance-specific satisfi-
ability solver and discuss experimental results. We measure the overall
speed-up of the instance-specific architecture that takes the hardware
compilation time into account. The results prove that many of the DI-
MACS examples can be accelerated with current FPGA technology.

1 Introduction

The Boolean satisfiability problem (SAT) is a fundamental problem in mathemat-
ical logic and computing theory with many practical applications in areas such
as computer-aided design of digital systems, automated reasoning, and machine
vision. In computer-aided design, tools for synthesis, optimization, verification,
timing analysis, and test pattern generation use variants of SAT solvers as core
algorithms. The SAT problem is commonly defined as follows [1]: Given

– a set of n Boolean variables x1, x2, . . . , xn,
– a set of literals, where a literal is a variable xi or the complement of a variable

x̄i, and
– a set of m distinctive clauses C1, C2, . . . , Cm, where each clause consists of

literals combined by the logical or connective ∨,

determine, whether there exists an assignment of truth values to the variables
that makes the Conjunctive Normal Form (CNF)

C1 ∧ C2 ∧ . . . ∧ Cm (1)

true, where ∧ denotes the logical and connective.
Since the general SAT problem is NP-complete, exact methods to solve SAT

problems show an exponential worst-case runtime complexity. This limits the
applicability of exact SAT solvers in many areas. Heuristics can be used to find
solutions faster, but they may fail to prove satisfiability.



The SAT problem is a discrete, constrained decision problem [1]. A straight-
forward but inefficient procedure to solve it exactly is to enumerate all possible
truth value assignments and check if one satisfies the CNF. Many of the im-
proved techniques that have been proposed to solve SAT problems eliminate one
variable from the CNF at a time. There are two basic methods: splitting and
resolution. Resolution was implemented in the original Davis-Putnam (DP) al-
gorithm [2]. Splitting was used first in Loveland’s modification to DP, the DPL
algorithm [3]. In splitting, a variable is selected from the CNF and two sub-CNFs
are generated by setting the variable to 0 and 1, respectively. The iterative ap-
plication of splitting generates a search tree; a leaf of the tree denotes a full
assignment of values to variables. Most practical SAT solvers use the splitting
technique and combine it with backtracking. Backtracking searches the search
tree in a depth-first order and thus avoids excessive memory requirements.

A general template for backtracking SAT solvers is described in [4] and in-
cludes 3 steps: decision, deduction, and diagnosis. In the decision step, a variable
is selected for the next assignment. In the deduction step, information is inferred
from the current partial assignment. This information is then used to guide the
search process, e.g., to prune the search tree. If the current partial assignment
leads to a contradiction, a diagnosis step can be used to analyze this situation
and to avoid running into the same contradiction in future.

Existing software SAT solvers use a wide variety of backtracking methods
and strategies for decision, deduction, and diagnosis. GRASP [4] is a sophisti-
cated SAT solver that implements all steps of the described template. We use
GRASP as software reference system in our work. The powerful strategies that
are implemented by sophisticated SAT solvers reduce the number of variable
assignments required to find a solution or to prove that there is no solution.
However, these strategies can be computationally very expensive.

The goal of our work is to speed up exact SAT solvers by exploiting the fine-
grain parallelism in the SAT problem instances. For each new problem instance
(CNF), a new hardware is generated that reflects the particular structure of the
CNF. This class of hardware architectures is called instance-specific and relys on
fine-grained reconfigurable computing structures, e.g., FPGAs. Instance-specific
SAT solvers use less powerful strategies than software solvers for decision and
deduction; diagnosis methods in hardware have not been reported at all. The
advantage of SAT in hardware is that the deduction step can be implemented
very fast. This is because many deduction strategies operate on values in 2-, 3-,
or 4-valued logic and show large amounts of fine-grained parallelism. This makes
fine-grained parallel computing structures, such as FPGAs, an optimal target.

2 Related Work

In this section, we mention related projects that apply reconfigurable hardware
to solve the SAT problem. Zhong et al. [5] [6] described an instance-specific
architecture to solve SAT problems that uses Boolean constraint propagation as
deduction strategy and models the variables in 4-valued logic. They simulated



their architecture and reported speed-ups in the order of several magnitudes for
the DIMACS benchmarks [7]. Their prototype translates a SAT problem into a
logic description in VHDL. This description is partitioned and mapped onto an
array of Xilinx XC4K FPGAs by an IKOS logic emulation system. Suyama et al.
[8] proposed an architecture for SAT that combines a forward checking technique
with non-chronological backtracking. They model the variables in 2-valued logic.
Their tool flow also targets the Xilinx XC4K line.

In [9], an instance-specific architecture for SAT problems in arbitrary Boolean
expressions was presented. This architecture uses a strategy similar to the PO-
DEM algorithm for automatic test pattern generation. The same architecture
is used in [10], with an emphasis on a fast hardware compilation. To address
this issue, the use of Xilinx XC62xx FPGAs is proposed which allows to develop
SAT-specific tools for synthesis, partition, placement, and routing.

3 Hardware Architectures

The basic architecture for backtracking search is shown in Figure 1 and consists
of three blocks: i) an array of finite state machines (FSMs), ii) a datapath,
and iii) a global controller. Each variable of the CNF corresponds to one FSM.
The FSMs are connected in a one-dimensional array; each FSM can activate
its two neighboring FSMs at the top and at the bottom. The datapath is a
combinational circuit that takes the variables as input and computes outputs
that are fed back to the FSMs. The global controller starts the computation
and handles I/O communication. All the architectures presented in this section
consist of these three blocks. However, they differ in the modeling of the variables
and the used deduction strategy, which is reflected in the actual implementation
of the datapath and the FSM.

3.1 Architecture CE

CE (CNF evaluation) models the variables in 3-valued logic. A variable can take
on the values {0, 1, X}, where X denotes an unassigned variable. The datapath
computes the 3-valued result of the CNF expression. Initially, all variables are
unassigned which also leads to CNF value X , and the global controller activates
the top-most FSM. The state diagram for an FSM is shown in Figure 2. An
activated FSM assigns 0 to its variable and checks the resulting CNF value.
If the CNF value is 1, the partial assignment already satisfied the CNF and
the computation stops. If the CNF value is 0, the partial assignment made the
CNF unsatisfiable. In this case, the FSM assigns the complementary value to its
variable. If the CNF value is X , the partial assignment did neither satisfy the
CNF nor did it make the CNF unsatisfiable. In this case, the FSM activates the
next FSM at the bottom. If both value assignments have been tried, the FSM
relaxes its variable by assigning X to it, and activates the previous FSM at the
top. When the first FSM relaxes its variable and activates the global controller,
the SAT problem is proven to be unsatisfiable. By this procedure, the array of
interconnected FSMs implements chronological backtracking.



x2

x3

xn

x1

2

2

2

2

2

#1

#n

#3

#2

host interface

CNF

global controller

datapath 

Fig. 1. Block diagram for the basic architecture (CE), consisting of an array of FSMs
(#1 . . . #n), a datapath, and a global controller. The variables xi and the CNF are
modeled in 3-valued logic.

true

0, 0, 0

init

FB FB

CNF=L CNF=LFT

CNF=X

1, 0, 0 X, 1, 0X, 0, 0

1, 0, 10, 0, 1

CNF=X

Fig. 2. State diagram for an FSM of the architecture CE. The inputs are FT (from
top) and FB (from bottom) that activate the FSM, and the 3-valued CNF. The output
signals displayed inside the states are the variable value, and the signals TT (to top)
and TB (to bottom) that activate the previous and next FSM.



3.2 Architecture CEDC

CEDC (CE + don’t cares) extends CE by introducing don’t care variables.
Don’t care variables are unassigned variables that appear only in clauses that
are already satisfied. For example, the assignment (x1 ← 1) for the CNF

(x̄1 ∨ x2) ∧ (x1 ∨ x̄3 ∨ x4) ∧ (x2 ∨ x̄4) (2)

makes x3 a don’t care variable. Don’t care variables cannot change the CNF
value and should not be selected for assignment. This strategy is similar to
clause-order backtracking in software.

The don’t care condition for a variable is a Boolean function of x1, . . . , xn

and can be easily derived from the CNF. In the above example, the don’t care
condition for variable x3 is (x1 ∨ x4). In the architecture CEDC, the datapath
computes the CNF value and the don’t care conditions for all variables in parallel.
The FSM accepts an additional input, the don’t care condition for its variable.
If the FSM is activated while this condition is set, it passes control directly to
the next or previous FSM.

3.3 Architecture IM

IM (propagation of implications) exploits logical implications that are caused
by value assignments. For example, the assignment (x1 ← 1) for the CNF in
Formula 2 implies the variable x2, i.e., x2 must be assigned 1 to satisfy the first
clause. An implied variable can in turn imply other variables. An implication
condition can be derived from the CNF for every literal. In the above example,
the implication condition for x2 is (x1 ∨ x4). If both literals of a variable are
implied, a contradiction has occurred. To model the variables, IM uses 4-valued
logic with the values {0, 1, X, C}, where C denotes the contradiction.

An FSM in this architecture sets its variable according to value assignments
or value implications. If a contradiction occurs, the FSM sets a local contradic-
tion flag. The datapath takes as input the variables as well as the local contra-
diction flags and generates as output the implications for all literals of the CNF
and a global contradiction flag in parallel.

Resolving logical implications in CNFs is known as the unit-clause rule and
is the basic mechanism in the DP algorithm. The iterative application of the
unit-clause rule is called Boolean constraint propagation. Using this method in
instance-specific hardware was first proposed by [5]; a detailed description of the
datapath and the FSM can be found in [6].

3.4 IMCE, IMDC

IMCE and IMDC are combinations of the previous architectures. IMCE com-
bines propagation of implications with the evaluation of the CNF expression.
This can be helpful in cases, where a partial assignment already satisfies the
CNF, but the IM strategy continues to assign values to unassigned variables.
IMDC combines propagation of implications with don’t cares, and has poten-
tially the most deductive power.



4 Simulation

In order to compare the different architectures we have implemented a program
in C, that solves SAT problems by simulating the different hardware architec-
tures. The simulator estimates performance and hardware cost. The performance
is measured in number of visited levels in the search tree, number of value assign-
ments, and number of clock cycles. The hardware cost is estimated in number
of gates (NOT and 2-input AND/OR) and flip-flops (FFs).

In this paper, we report on simulation results for three benchmark classes
from the DIMACS satisfiability benchmarks suite [7]: class par (instances from
learning the parity function), class jnh (randomly generated instances), and class
hole (instantiations of the pigeon hole problem). These classes are well-suited for
evaluation, as they include examples with long software runtimes.

Table 4 presents the simulation results for the architecture IM. The speed-up
Sraw is defined as tsw/thw, the ratio of software and hardware execution times
and does not include the hardware compilation time. The speed-ups in Table
4 are remarkably high and motivate solving SAT in instance-specific hardware.
Similar speed-up numbers have also been reported in [5]. Excellent candidates
for instance-specific hardware are SAT problems, where high raw speed-ups are
combined with long software runtimes. The estimation further shows that for
the targeted FPGA line (Xilinx XC4K), the combinational logic dominates the
hardware cost. Although the estimation of hardware cost is not very accurate,
most of the examples in Table 4 should fit into one FPGA.

The comparison of the different hardware architectures relative to each other
revealed the following facts:

– The architectures can be divided into two groups, {CE, CEDC} and {IM,
IMCE, IMDC}. Inside each group, the performance differences are below
1%.

– For classes par and jnh, IM performs at least 100 x better than CE; for class
hole, IM performs about 10 x better than CE.

– The estimated hardware cost for IM is at most twice the cost for CE.

Hardware is used more efficiently by IM, as this architecture achieves with
at most twice the hardware cost a performance at least 10 times better than
CE. However, CE may be an option when the hardware resources are limited.
Further, the performance measure counts clock cycles. Architectures that have
more complex hardware designs will also have lower clock frequencies. CE is less
complex than IM and will very likely lead to faster FPGA designs.

The results presented in this section depend strongly on the benchmark class.
The exact trade-offs between the architectures in terms of performance and
hardware cost must be evaluated for each new benchmark class.

5 Prototype Implementation

The design tool flow of our prototype implementation is shown in Figure 3 and
consists of three parts: the front-end, the generator, and the back-end. The front-



benchmark variables clauses tsw simulated number Sraw hardware cost
[s] of cycles at 10 MHz (Kgates)

par16-1-c 317 1264 203.03 63171 32140 30 K

par16-1 1015 3310 321.25 158934 20212 87 K

par16-2-c 349 1392 3111.20 225408 138025 32 K

par16-2 1015 3334 1009.00 422295 23893 88 K

jnh16 100 850 2.11 20052 1052 26 K

jnh19 100 850 0.11 6432 171 26 K

hole7 56 204 4.56 351042 129 4.7 K

hole8 72 297 54.98 4342574 126 6.1 K

hole9 90 415 627.52 60162652 104 7.3 K

hole10 110 562 7616.40 922461250 83 9.7 K

Table 1. Simulation results for examples from the DIMACS benchmark suite. The
table shows the problem size in number of variables and clauses, the runtime of the
software SAT solver GRASP, the simulated number of cycles for the IM architec-
ture, the raw speed-up at an assumed clock frequency of 10 MHz, and the estimated
hardware cost. GRASP was executed with parameters +bD +dDLIS on a Pentium-
II/300MHz/128MB RAM PC platform running Linux.

end reads a SAT problem and checks for special cases, such as clauses that are
always satisfied, reorders the variables and computes the assignment order. The
generator compiles this modified SAT problem into a configuration bitstream
for a Xilinx XC4K device. The back-end loads the bitstream onto the FPGA
and waits for the end of the computation. If there is a solution, the back-end
reads the FPGA register configuration, and extracts the variable values. The
generator consists again of two blocks. The first block is the generation of the
FPGA netlist, the second block invokes the Xilinx M1 design implementation
tools for mapping, placement, and routing.

The architectures presented in Section 3 consist of the three blocks array of
FSMs, datapath, and global controller. The global controller and the single FSM
depend only on the chosen architecture, they do not change with the problem-
instance. Therefore, these components are pre-designed, i.e., they are specified
in Verilog HDL, synthesized and optimized by Synopsys FPGA Express II, and
stored in a library as FPGA netlists. At hardware generation time, the required
number of FSMs is instantiated and placed. Placement is done for two reasons:
First, placing the FSMs allows the back-end to extract the result of the compu-
tation by the read-back facility of the FPGAs. Second, placement of the FSMs
results in faster designs. The datapath depends totally on the problem-instance
and is generated directly as FPGA netlist.

Our prototype is implemented on a PC platform running Windows NT4.0. As
reconfigurable resource we use a Digital PCI Pamette board, which is equipped
with 4 FPGAs of the type Xilinx XC4020. In our current experiments, we use
only one of these FPGAs for implementing the SAT architecture.

The overall runtime for computing a SAT problem in hardware consists of the
hardware compilation time, tcomp, the time for configuring the FPGA, tconfig,



front-end

generator

back-end

generate
netlist

place,
map,

route

result

SAT problem

Fig. 3. Prototype design tool flow.

the actual hardware execution time, thw, and the time for reading back and
extracting the result, tread.

toverall = tcomp + tconfig + thw + tread (3)

The overall speed-up Soverall is then given by tsw/toverall. With our design
tool flow, the times for FPGA configuration and read-back can be neglected
compared to the hardware compilation time, which itself is strongly dominated
by the Xilinx design implementation tools. At the time of this writing, we have
successfully compiled and run CE architectures for the hole benchmark class.
The examples hole7 to hole9 can be mapped onto one Xilinx XC4020, for hole10
an FPGA of type XC4025/XC4028 is required. All the FPGA designs run at 20
MHz. Table 5 and Figure 4 present the experimental results

benchmark tsw [s] tcomp [s] thw [s] Sraw Soverall

hole7 4.56 134 0.181 25.14 0.03

hole8 54.98 249 2.398 22.93 0.22

hole9 627.52 439 35.229 17.81 1.32

hole10 7616.40 597 567.255 13.43 6.54

Table 2. Experimental results for the CE architecture and the hole benchmark class.
The table shows the GRASP runtime, the hardware compilation time, the hardware
execution time, and the resulting speed-ups.

The results show that we could generate faster designs as assumed in Section
4. The execution times of hardware and software SAT solvers increase with the



10000

1000

100

10

1

runtime

[s]

benchmark

hole7
hole8

hole9

hole10

software

hardware

13.43

22.93

25.14

17.81

Fig. 4. Software runtime tsw, hardware runtime thw, and the resulting raw speed-up
Sraw for the CE architecture and the hole benchmark class.

problem size more rapidly than the hardware compilation time. This leads to a
cross-over point in the overall speed-up around hole9, i.e., here the SAT solver in
reconfigurable hardware is for the first time faster than the software SAT solver.
For hole10 we achieve a speed-up of 6.54, which reduces the runtime from more
than 2 hours in software to about 20 minutes in hardware.

For the hole benchmarks, the architecture IM requires about 10 times less
clock cycles than CE. This would lead to an overall speed-up of 8.77 for hole10,
assuming the same hardware compilation time than for CE. However, IM for
hole10 will not fit onto one FPGA XC4025.

6 Conclusion, Further Work

We have presented different architectures for solving SAT problems in instance-
specific hardware. These architectures offer trade-offs between performance and
hardware cost, depending on the benchmark class. Simulations revealed that
for larger problems from the DIMACS benchmark suite, instance-specific SAT
solvers can achieve significant raw speed-ups over software SAT solvers. We have
implemented a prototypical design tool flow and discussed first experimental
results. The results show that architectures with less deductive power can be
competitive when the hardware compilation time is not neglectable compared
to the hardware execution time. This is the case for all currently implemented
benchmarks.

As the density of FPGAs increases, many interesting SAT problems can
be accelerated by instance-specific hardware. Although FPGA-based computing
machines still require relatively long compilation times, instance-specific archi-



tectures are promising for hard SAT problems, where software algorithms show
a long runtime.

Further work includes:

– Implementation of instance-specific architectures for minimum-cost prob-
lems. A SAT problem with unit cost or integer cost values assigned to the
variables forms a minimization problem. Finding minimum-cost solutions to
SAT problems is a frequent task in CAD algorithms.

– Application of the instance-specific SAT solver to CAD tools. CAD applica-
tions have to be found, that generate SAT problems that are hard to solve
in software, i.e., problems that have a relatively small number of variables
but show long software runtimes.

Acknowledgment

This work was partially supported by the Austrian National Science Foundation
FWF under grant number J01412-MAT. We would also like to thank Alessandro
Bogliolo and Luca Benini for their contributions and discussions in the early
phases of this work.

References

1. Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms for the
Satisfiability (SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 35:19–151, 1997.

2. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, (7):201–215, 1960.

3. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, (5):394–397, 1962.

4. J. Silva and K. Sakallah. GRASP – A New Search Algorithm for Satisfiability.
In IEEE ACM International Conference on CAD ’96, pages 220–227, November
1996.

5. Peixin Zhong, Margaret Martonosi, Sharad Malik, and Pranav Ashar. Implement-
ing Boolean Satisfiability in Configurable Hardware. In Logic Synthesis Workshop,
May 1997.

6. Peixin Zhong, Margaret Martonosi, Pranav Ashar, and Sharad Malik. Accelerating
Boolean Satisfiability with Configurable Hardware. In IEEE Symposium on FPGAs
for Custom Computing Machines, April 1998.

7. DIMACS satsifiability benchmark suite,
available at ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/.

8. Takayuki Suyama, Makoto Yokoo, and Hiroshi Sawada. Solving Satisfiability Prob-
lems on FPGAs. In International Workshop on Field-Programmable Logic and
Applications (FPL), pages 136–145, 1996.

9. Miron Abramovici and Daniel Saab. Satisfiablity on Reconfigurable Hardware.
In International Workshop on Field-Programmable Logic and Applications (FPL),
pages 448–456, 1997.

10. Azra Rashid, Jason Leonard, and William H. Mangione-Smith. Dynamic Circuit
Generation for Solving Specific Problem Instances of Boolean Satisfiablity. In
IEEE Symposium on FPGAs for Custom Computing Machines, April 1998.


