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Abstract

We present a sample implementation of a run-time
scheduler, split between hardware and software, control-
ling a real-time robotics application. The hardware part
of the run-time scheduler, implemented «s a Finite State
Machine (FSM), schedules the tasks for the application
and can be readily extended to include additional tasks
in hardware or in software. The software part executes
tasks based on which tasks are ready to ezecute as in-
dicated by the FSM. We have successfully implemented
the scheduler on @ working prototype which shows the
feasibility of our approach.

1 Introduction

Hardware-software co-design[6] is becoming more impor-
tant as the performance of applications increasingly de-
pends on the interaction between hardware and software.
Designers would like to have some routines implemented
in software, other routines in hardware. and vet others
split between them. This is especially true of embed-
ded systems where high performance is required for the
applications. One of the important problems faced in
such systems is the synchronization and scheduling of
routines (tasks) in software and in hardware. A clear
and easy solution is to put the run-time system in soft-
ware and suitably design the hardware such that it can
be controlled from the software [4]. Unfortunately soft-
ware run-time schedulers may not be predictable as far
as being able to satisfy real-time constraints; for exam-
ple, there may be different hardware blocks that need
to be dynamically coordinated while satisfying relative
timing constraints. Another solution is to design the
system as a set of communicating Finite-State Machines
(FSMs) and design the software run-time system to re-
act to input events [1]. Yet a third approach keeps track
of software routines ready to execute next in a FIFO [3].
A fourth way is to model all communication as Remote
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Procedure Calls where one process (in hardware or soft-
ware) can trigger the execution of a thread in another
process [11].

In this paper, however, we consider the mixed imple-
mentation of a run-time scheduler in hardware and soft-
ware as first proposed in [7]. The basic idea behind the
run-time scheduler is as follows. First, we consider the
application to consist of tasks in hardware and software,
where a task is a hardware module or a software thread.
Second. the scheduler only keeps track of which tasks
are ready to start execution and which tasks are done
execution. Third, we implement in hardware a state ma-
chine to sequence the signals starting execution of the
tasks. Clearly, the state machine represents the overall
control flow of tasks in the application. Finally, in soft-
ware we implement a priority scheduler to execute the
highest priority software task based on which software
tasks are ready to start execution.

Figure 1: Haptic Robot With Graphics



2 Motivation

We look at a real design case where a designer has to
make a system work within timing constraints. We
wanted to experiment with our co-design methodology
in the context of a robotics application where we can test
our implementation on a prototype. By looking closely
at the requirements for this case, we can then character-
ize the CAD requirements from the designer’s perspec-
tive. This helps us identify problem areas both in the
design flow and in the CAD tools used or proposed for
use. The specific co-design methodology we wanted to
test was the run-time scheduler of [7]. We were able to
implement a simple version of the scheduler. Thus, this
paper presents a “proof of concept” example of a run-
time scheduler split between hardware and software.

3 Design Case Study

For our case study we considered the design of the fol-
lowing real-time robotics application: a Haptic robot im-
plementing force-feedback based on interaction through
a graphics display [9]. The Haptic robotics device con-
tains a thimble where the user places his or her finger.
The thimble is connected to the end of a small robot arm
which can exert force on the thimble in any direction.
The object in the graphics display is represented by a
collection of polygons, usually in the range of 10,000 to
20,000 polygons. Figure 1 shows a user interacting with
a graphic display where the Haptic device gives feedback
based on the position of a small point (called a prozy)
on the screen. In particular, whenever the proxy col-
lides with a graphical object, a force is generated and
the user’s finger in the Haptic device is stopped from
continuing penetration in that direction. In fact, the
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Figure 2: System Architecture
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feedback is quite complex: the tactile interaction in-
cludes contact constraints, surface shading, friction, and
texture [9]. Such a system has wide-ranging application
possibilities, from helping surgeons operate on patients
to training pilots with flight simulation. This applica-
tion is a good case study because there are some tasks
which are poorly implemented in software, e.g. collision
detection, which could potentially run much faster in
hardware. The first step towards integrating a hard-
ware implementation of such a task into the system is
to have a scheduler for the application.

3.1 Original Design

The original design consists of an all software solution
running on a Silicon Graphics Indigo (SGI) workstation
and an IBM compatible PC. The SGI client contains
the graphics routines which update the display, and the
PC server runs the low level routines for controlling the
Haptic device. Our system architecture can be seen in
Figure 2.

3.1.1 Collision Detection

face covered
-a— Dby hierarchical
spheres

Figure 3: Sphere Characterization

From measurement, we observed that approximately
50% of the CPU time is spent in detecting when the
proxy collides with an object in the graphics display.
Collision detection is achieved by an algorithmic ap-
proach first described in [8]. The basic idea is to take a
polygonal surface and cover each polygon with a small
sphere. Then, from this initial set of spheres, they are
hierarchically covered. Figure 3 shows the beginnings of
covering a face using this method (the actual algorithm
was written for three dimensions). At the end., we have
a root sphere with covers the entire graphical object and
all subspheres. The resulting tree data structure of hier-
archical spheres has height O(lg n). Since the collision



detection algorithm checks the sphere hierarchy to see if
collision has occurred, O(lg n) checks are needed.

3.1.2 Timing Constraints

Standard solutions are used for the low level hardware
interactions that might otherwise involve strict timing
constraints. For writing torque values to the Haptic de-
vice, we use a device driver: for reading in the joint po-
sitions. we utilize the same device driver to read values
from the port.

Model information about the graphics objects and the
proxy are communicated between the SGI workstation
and the PC by sending and receiving packets using the
TCP/IP protocol. In the actual code on the PC, we
never perform a blocking wait: instead. we check to see
if a packet has arrived. and if so we accept the packet
and continue.

The overriding timing constraint we have is a rate con-
straint: the tasks of the following section must complete
before a hard real-time deadline is reached. Any delay
in updating the torques could damage the Haptic device
or the user.

3.1.3 Haptic Library

The original code (called the “Haptic library™) for con-
trolling the Haptic device was written in C. Some of the
most time-consuming tasks, such as that of communi-
cating the polygons composing the graphics objects and
then building a sphere hierarchy, are performed during
the initialization and sphere building phases. Once a
particular graphical display is up and running, the fol-
lowing tasks are executed in each iteration of a core loop
called the servo loop:
ewait for next millisecond clock tick
ewrite torques to Haptic device
eread joint angles of Haptic device
econvert joint angles to x,v.z coordinates
ecollision detect
ecalculate new proxy position based on collision or
not
ecompute new torques for Haptic device
oif ready, send/receive network packets (new proxy
position, etc.)

For example, consider a user interacting with a graph-
ical display of a teapot. When the proxy is in space
not near the teapot, the user can move the proxy freely.
However, as soon as the proxy comes close to the teapot,
penetrating the sphere hierarchy (an example penetra-
tion in two dimensions is shown in Figure 3). collision
detection is used to check if the user’s proxy on the
screen has hit the teapot. The Haptic device provides
force-feedback control to simulate the interaction of the
proxy with the graphical object, e.g. when sliding along
the curved surface of the teapot. Figure 1 shows a user
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utilizing the proxy to push around a spaceship merry-
go-round. An execution of the servo loop for controlling
the robot must complete once every millisecond.

3.2 New Design

The new design contains a slightly altered scheduler for
the servo loop. We divide the loop into tasks in order
to control their execution from a hardware FSM. Before
entering the loop, we kick off execution of the FSM.
Within the loop, we execute tasks as directed by the
FSM.

3.2.1 Task Execution

We divided the tasks of Section 3.1 into three coarse
grained groupings as follows:
¢ “Phantom” routines:
—wait for next millisecond clock tick
—write torques to Haptic device
—read joint angles of Haptic device
—convert joint angles to x,v.z coordinates
o “Proxy” routines:
—collision detect
—calculate new proxy position based on colli-
sion or not
—compute new torques for Haptic device
o “Network” routines, executed only if there are net-
work packets ready to send/receive:
—send new proxy position to graphics over net-
work
—receive new graphics info over network
We implemented an FSM in hardware to sequence the
above three course granularity software threads. For
the sake of experimentation, we use an FPGA-based
board (the PCI Pamette[10]) for the hardware imple-
mentation. This hardware FSM portion of the run-time
scheduler is specified in Verilog and synthesized using
the Synopsys-Xilinx interface; the tool flow is shown
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Figure 4: Synopsys-Xilinx Tool Flow




in Figure 4. The Synopsys tools used are the Behav-
ioral Compiler™ (BC)[5], Design Compiler”™ (DC)
and FGPA Compiler™ (FPGA).

Task execution is described in [7]. Briefly, we asso-
ciate a start and a done event with each software task
(thread). In software, we have a start vector and a done
vector which encapsulate the start and done events for
each software-task. Since there are less than 32 distinct
software-tasks, each vector is contained in a single word
with a simple one-hot encoding.

The run-time scheduler hardware FSM, synthesized to
implement the control-flow of task invocations, updates
the start vector in software as follows. First, it updates
a local register containing the start vector. Then the
CPU reads in the new value on a polling loop. When a
software-task is finished executing, it updates the done
vector by writing the value out with memory mapped
1/0. Thus. the the done vector in the run-time scheduler
in hardware is updated.
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Figure 5: Run-Time Scheduler Control Communication

Note that we wanted to be able to turn the hard-
ware FSM on and off from software. since the system
initialization is directed by software. Thus. we added
FSMstart and F SMdone signals to kick off and termi-
nate, respectively, FSM execution. Figure 5 shows the
communication of the F'SAM start. FSMdone, start and
done vectors.

Therefore we split the run-time scheduler into two
parts:

eAn executive manager in hardware with cycle-
based semantics that can satisfy hard real-time
constraints.
oA polling scheduler that executes different threads
based on eligible software-tasks as indicated by the
start vector.
The Haptic library code was altered to accommodate
this new split. In particular. a polling scheduler was
written as the inner core loop implementing the three
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course-grained tasks as described here.
4 System Implementation

The original system in the CS Robotics Lab at Stanford
was successfully ported to the NT environment all in
software. Then we successfully implemented the split
run-time scheduler in the actual design.

4.1 System Architecture

Our system architecture consists of an SGI workstation
for the graphics, a PC with a Pentium” processor, and
a Haptic device connected to the PC.
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Figure 6: PCI Pamette Version 1 - Architecture

The PC has a PCI Pamette[10] board connected to
one of its slots. The PCI Pamette. shown in Figure 6.
has one FPGA dedicated to talking to the PC using
the 32 or 64 bit PCI protocol, with four more Xilinx
4020E FPGAs configurable by the user. The two 128KB
SRAMSs are essentially scratchpad memories which the
nearest FPGA can use. 16 bits of memory can he written
to or read from each SRAM every cvcle,

For communication with the FPGAs. we use the PCI
protocol as implemented by the PCI Pamette software
library for Visual C++4 and the FPGA on the PCI
Pamette. From the point of view of the software code,
this appears as a memory-mapped read or write. How-
ever, there are timing constraints which must he oh-
served by the two FPGAs that can read data from the
32-bit bus coming out from the FPGA implementing
the PCI protocol: once an address appears on the hus.
the data corresponding to that address must be read in
the following cycle. Similarly. for writing to the bus
(in which case the software is executing a read from
memorv-mapped I10). the dara read must be driven to
the bus on the following cycle and held there for six cv-
cles. There are many more constraints explained in the
PCI documentation [10].

In order to meet these exact timing constraints. we
latch values going on/off chip using DC and then read
the values using behavioral Verilog synthesized in cycle-
accurate mode with BC.



4.2 Software Generation

The software for programming and controlling the PCI
Pamette is available for Microsoft Visual C4++ 4.077
with Windows NT 4.07Y or for the DEC Alpha. Be-
cause we wanted to use a PC, we utilized the NT ver-
sion.

The original code (called the “Haptic library™) for con-
trolling the Haptic device was written in 10.000 lines of
C for Linux. In order to use the Pamette, we ported
the Haptic library to Visual C4++ 4.07Y with Windows
NT 4.07Y. This porting effort included writing a de-
vice driver in NT to control the Haptic device as well as
rewriting the network code for communication with the
SGI workstation using TCP /IP.

Reading and writing to the SRAM on the Pamette is
accomplished using memory-mapped I/O and hardware-
tasks in the FPGA. The PCI interface takes an average
of 5 t0 9 CPU clock cycles to communicate a single 32-hit
read or write.

Therefore, given a particular value of the start vector.
the appropriate software-task(s) can be executed. The
scheduler for the software is a simple polling loop. Note
that for this to work we have to guarantee that after
indicating that a particular software-task has completed
by writing to the done vector, the next start value must
be updated and ready to he read before the software
polling loop next reads in the start vector. Otherwise,
the software scheduler could read in the exact same start
vector again and thus fail to meet the rate constraint
of updating the robot’s torque values every millisecond.
We verified that the FSM implemented in the FPGA
was fast enough by extensive simulation.

Figure 7: Teapot Graphical Object With Proxy

Figure 7 shows a graphical teapot model which we used
to test the design. The proxy is shown on the teapot
near the base of the spout. The teapot is composed
of 3.416 triangular surfaces. The client computer was
an SGI Indigo2 High Impact running IRIX 6.2 and the

Haptic server was a PC with a 266 Mhz Pentium Pro
running Windows NT 4.0. The PC has 32 MB of main
memory and a 512IKB cache. Communication hetween
the two computers was done through a standard ether-
net TCP/IP connection. The Haptic device used was a
ground based PHANToM manipulator with 3 degrees of
freedom in it force-feedback.

Task Lines |
C
wait for next millisecond clock tick 65
write torques to Haptic device 50
read joint angles of Haptic device 48
convert joint angles to x.,v,z coordinates 428
collision detect 2189
calculate new proxy position 664
compute new torques for Haptic device 10
send/receive information over network 1328
device driver 899

Table 1: Code space for software tasks.

Task Lines Stvle of
| Verilog Verilog,
ebusreadl.v 146 | behavioral
ebuswritel.v 114 | hehavioral
generatecontrol.v 48 | behavioral
haptic.v structural
hapticcontrol.v 78 | behavioral
startcontrol.v 150 | hehavioral
transactionmodelib.v 154 | structural
writestart.v 99 | behavioral

Table 2: Code space for hardware tasks.

Nilinx No. | Max. | DPercent
Measure Used | Avail. Used
Occupied CLBs 401 784 51%
Bonded I/0O Pins 72 160 45%
F and G Function Generators 494 1568 31%
H Function Generators 93 784 11%
CLB Flip Flops 217 1568 13%
I0B Input Flip Flops 33 224 14%
I0B Output Flip Flops 18 224 8%
3-State Buffers 0] 1680 0%
3-State Half Longlines 0 112 0%
Edge Decode Inputs 0 336 0%
Edge Decode Half Longlines 0 32 0%
CLB Fast Carry Logic 8 784 1%

Table 3: Statistics for Xilinx 4020E Mapping

Table 1 shows the code space used for the various soft-
ware tasks in the inner servo loop. The final executable
took up 485K B of memory: however, the code and data



used in the servo loop is much less and likely fit entirely
in the 512KB cache on the PC (however, we did not
verify this). Table 2 shows the code space used for read-
ing and writing data from/to the bus and the SRAM,
starting/terminating the hardware FSM, and the hard-
ware FSM itself (in hapticontrol.v). Notice that the
FSM takes only 178 lines of Verilog. while the support-
ing Verilog code takes 1195 lines. Table 3 shows the
various measures of utilization provided for the Xilinx
4020E which implements the Verilog code. The 4020E
can fit at most around 20k logic gates. We are currently
using about half of the available CLBs.

5 Conclusion and Future Directions

For future work, an ASIC implementation of the col-
lision detection algorithm would drastically speed up
the application. especially since the sphere checking is
quite naturally parallelizable. The run-time scheduler
described here could quite easily be augmented with
such an ASIC. In fact. the inclusion of multiple hard-
ware ASICs could be easily added to the system. The
major practical design cost would be the specification
and design of the collision detection ASIC.

The PC-Pamette architecture described in the previ-
ous sections provides the basis for a modular extendable
hardware-software run-time system. Since the hardware
part of the run-time system is in FPGAs, it can be re-
configured quickly with the synthesis path of Figure 4.
Currently we only use one of the four available FPGAs.
Portions of the real-time Haptic control system can be
migrated to hardware. either into FPGAs. ASICs or
DSPs. For example, an ASIC implementing the colli-
sion detection algorithm (which has a lot of parallelism)
could be integrated cuickly into the run-time system.

For the final embedded application. the hardware part
of the run-time system is synthesized into hardware
rapidly since it is described in behavioral Verilog and
uses synthesis all the way down to the bitstream for
programming the XILINX 4020E FPGAs. For example,
given a working prototype, one could design a single chip
implementation of the control system using a Pentium
core, dedicated logic for the logic implemented in FPGAs
in the prototype. and a core for the ASIC implementing
the collision detection algorithm. In other words, given
the Intellectual Property (IP) for each component used
in the prototype. it is possible that the entire design
could be placed on the same single chip and fabricated.

In conclusion. we have shown a sample application of a
run-time scheduler split between hardware and software.
The scheduler has been successfully implemented on a
real-time robotics system. The fact that the main loop
controlling the Haptic device has its sequence of tasks
scheduled by an FSM in hardware is transparent from
the user’s perspective. Finally, this work provides the
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basis for an extendable run-time system in hardware and
software.
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