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Abstract

We present a tool that performs real-time analysis and pri-
ority assignment for software tasks in a mized hardware-
software system with a custom run-time scheduler. The
tasks in hardware and software have precedence constraints,
resource constraints, relative timing constraints, and a rate
constraint. A dynamic programming formulation assigns
the static priorities such that a hard real-time rate con-
straint can be predictably met.

We describe the task control/data-flow extraction, run-
time scheduler implementation, real-time analysis and pri-
ority scheduler template. We show how our approach fits
into an overall tool flow and target architecture. Finally,
we conclude with a sample application of the system to a
design ezample.

1 Introduction

Designers of real-time embedded systems often have tim-
ing constraints that they must meet for the design to be
successful. To support soft and hard real-time constraints,
system designers need tight bounds on execution delays. In
hardware-software codesign, scheduling resources to meet
these tight bounds is a critical problem because there may
be parallel threads of execution in the application with the
same resource required by different threads. In this paper,
we consider the following formulation of the real-time anal-
ysis problem : we represent the system with a single graph
where the nodes represent software or hardware, the graph
edges represent dependencies (precedence constraints), and
the graph is invoked at a fixed rate (a rate constraint). We
assume that to coordinate the system we use the run-time
scheduler of [19].

Previous approaches to real time analysis have focused on
software (1] since the performance analysis of ASICs is con-
sidered a well studied problem already. Rate Monotonic
Analysis (RMA) [3] and Generalized Rate Monotonic Anal-
ysis (GRMA) [4] both assume that tasks are independent
and that each task has its own period and deadline. RMA
has been extended to account for release jitter and resource
contention [5, 6]. RMA has also been extended to allow
precedence among tasks by formulating the problem as a big
task with the length of the least common multiple (LCM) of
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all the periods [7]. Unfortunately, this approach is usually
impractical for hardware-software codesign{10].

Our formulation is similar to [7, 10, 15]. However, in our
case we synthesize a custom run-time scheduler in hard-
ware and software for the application {19]. As a result, we
have more information about the scheduling of hardware
and software tasks. Given this more exact level of control,
we can perform tight real-time analysis with very high CPU
utilization. In performance- or safety-critical systems (e.g.
a mobile robot control system for capture of a satellite in
space) our approach can provide precise real-time bounds.

In our approach, if a solution is found, we output the task
priorities and guarantee that the system meets its relative
timing constraints and its rate constraint, assuming the sys-
tem uses a custom run-time scheduler. While the approach
of [8, 9] is more general for verification purposes after the
priority for each task is assigned, it does not address the
issue of finding optimal priorities.

The rest of the paper is organized as follows. Section 2 ex-
plains our design approach and corresponding requirements.
Section 3 talks about how we extract a graph of the system
corresponding to control fiow at the task level as opposed to
the operation level. Section 4 describes our implementation
of the run-time scheduler, including the priority scheduler
template. Section 5 presents the real-time analysis and pri-
ority generation for software tasks. Section 6 describes the
tool flow and target architecture. Section 7 gives some ex-
perimental results and presents an example from robotics.
Finally, Section 8 concludes the paper.

2 Motivation

System-level design requires a division of the system ap-
plication into tasks which coordinate with each other. We
call a task implemented in hardware a hardware-task; a task
implemented in software is called a software-task. A coarse-
grained partition specifies these tasks and their overall flow.
We consider the system application after a designer or a par-
titioning tool has split the application into hardware-tasks
and software-tasks.

We assume that the system requires some static schedul-
ing. especially in the coordination of hardware-tasks, as well
as dynamic scheduling, given the inexact delay of software
and the randomness of the stimuli coming from the envi-



ronment, The run-time scheduler synthesis of [19] supports
the execution of software-tasks through an interrupt trig-
gering mechanism where the hardware communicates to a
software scheduler which software-tasks are ready to exe-
cute. However, the software scheduler was implemented
by hand; in this paper, we implement the software portion
of the run-time scheduler with a preemptive fixed priority
scheduler. Our tool, called CLARA, automates the genera-
tion of priorities for the software-tasks, as well as worst case
ezecution time (wcet) calculation for subsets of hardware-
and software-tasks under a hard real-time rate constraint.

A typical application domain for such a design style is em-
bedded systems. We assume the existence of mature high-
level synthesis tools and software compilers, as well as the
availability of processor cores. A typical task size is 50 to
200 lines of Verilog or C; the only limit on task size, how-
ever, comes from the high-level synthesis tool or compiler
chosen. We assume that tasks are custom written for a tar-
get architecture. This approach matches design practice,
where designers often describe their systems in a heteroge-
neous way, using description languages appropriate to the
subsystem being implemented.
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Figure 1: Robotics Example: Concurrent Control Laws
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3 TaskSIF Extraction

The input specification is a collection of tasks written in
Verilog or €. with one of the tasks designated as the main
task. The main task begins execution and calls the other
tasks. The main task specifies the overall sequence of tasks
in the application (an example of a main task can be seen in
Figure 2). From each task we extract a Control/Data-Flow
Graph (CDFG) of the tasks it invokes, where each node in
the CDFG corresponds to a call to another task. If a task
does not call any other task, then it has no such CDFG. We
call this kind of task a leaf task. A task which is not the
main task nor a leaf task is an intermediate task. An in-
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termediate task must trace back its invocation to the main
task, and the intermediate task must itself invoke at least
one leaf task. We assume that an intermediate task has all
computation specified in leaf tasks. If an intermediate task
does contain some computations, a new leaf task can be
generated containing these computations. This allows us to
flatten the hierarchical description and generate a CDFG
of the system where all nodes are leaf tasks. We represent
the flattened CDFG in ASCII in the Task Sequencing Inter-
mediate Format (TaskSIF). We assume that we have a rate
constraint specified for the TaskSIF graph of the system. In
other words, we assume that the main task is invoked at a
fixed rate.

We support the specification of tasks that cannot execute
concurrently through the use of NEV ER sets. In general,
NEVER sets can model mutual exclusion; here, we use
NEV ER sets to model resource constraints. For example,
NEVER = {a,b,c} indicates that tasks a, b, and ¢ can
never be active at that same time. We make use of this
feature to specify resource constraints such as (i) multiple
calls to the same piece of physical hardware (which imple-
ments a hardware-task), or (ii) software-tasks executed on
the same microprocessor. In general, you can have mul-
tiple NEVER sets. In this paper, however, we consider
the case in which we have a single NEV ER set which we
use to serialize the software-tasks executed on the same
CPU. Similarly, tasks that must begin execution at the same
time are specified through the use of ALWAY' S sets; e.g.
ALWAYS = {a,b,c} indicates that tasks a, b, and ¢ must
each begin execution at the same time. Note that this is
the same as having bilateral relative timing constraints of
zero weight, which our run-time scheduler also supports[19)].
Thus, we do not consider ALW AY S sets explicitly in the
formulation of our problem.
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Figure 2: Robotics Example: Main Task



Example 1 As a motivational example, consider a set of control
algorithms (laws) used to calculate appropriate torques for a robot
arm. We assume that the controlier manages two arms at the same
time. Thus, any two of the laws (algorithms) may be selected in
each execution. An execution of the arm controller must complete
once every millisecond. Figure 1 shows three of the ten different
laws used with a PUMA arm; Ohold2 Law, Ohold Law, and Jhold
Law are intermediate tasks which call other intermediate tasks and
leaf tasks in a particular sequence.

Figure 2 shows the overall flow of execution of the robot controller
in the form of a CDFG of the main task for the system. The original
specification of the main task was in Verilog. The other tasks are
specified in C and Verilog.

Note that Figure 2 must complete once every millisecond. Thus,
we have a rate constraint on the graph. 0O

We wrote a new backend for CINDERELLA[1] for MIPS as-
sembly run on a MIPS R4K processor; we call the new
tool CINDERELLA-M. The leaf software-tasks are compiled
and input to CINDERELLA-M, which outputs a worst-case
execution time (wcet) for each task. Similarly, the Synop-
sys Behavioral Compiler”™ (BCTM)[11] generates an exact
execution time for each hardware-task, which we take as a
weet for the hardware-tasks. These values are used to anno-
tate the leaf nodes in the final TaskSIF graph of the system
specification. Figure 3 will show a sample TaskSIF graph
and a corresponding table with the wcet annotations.

4 Run-Time Scheduler Implementation

We implement our run-time scheduler as follows. Starting
from the hierarchical CDFG specified by the main task, in-
termediate task(s), and leaf tasks, we flatten the description
until we have a single TaskSIF graph. Since we assume that
the main task in invoked at a fixed rate, the TaskSIF graph
we obtain is also invoked at a fixed rate. The TaskSIF graph
has an equivalent Control-Flow Expression[23] which is used
to synthesize a hardware FSM/[19]. This FSM implements
the overall system control and can predictably meet the
relative timing constraints, if satisfiable, specified in exact
numbers of cycles between the start times of tasks, which
we hypothesize cannot be satisfied by software.

4.1 Task Execution

Task execution is described in [19]. Briefly, we associate a
start and a done event with each task. In hardware the two
events are simply signals on an input port and an output
port, respectively. For software, we have a start vector and
a done vector which encapsulate the start and done events
for each software-task. If there are less than 32 distinct
software-tasks. each vector can be contained in a single word
with a simple one-hot encoding (otherwise more words can
be used).

The run-time scheduler hardware FSM, synthesized to im-
plement the control-fiow of the TaskSIF graph, updates the
start vector in software as follows. First, it updates a lo-
cal register containing the start vector. Then it triggers
an interrupt on the CPU. The CPU Interrupt Service Rou-
tine (ISR) reads the register using a memory-mapped I/O
read and places it into the software copy of the start vector.
When a software-task is finished executing, it updates the
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done vector by writing the value out with memory mapped
I/0. Thus, the the done vector in the run-time scheduler in
hardware is updated.

The start vector may specify that several software tasks
are ready. Thus, we generate a preemptive static priority
scheduler which executes the highest priority software-task
among the tasks indicated by the hardware FSM as ready
to execute. The priority based scheduler is always called by
the ISR after fetching the new start vector into memory.

Therefore we split the run-time scheduler into two parts:

¢ An executive manager in hardware with cycle-based
semantics that can satisfy hard real-time constraints.

e A preemptive static priority scheduler that executes
different threads based on eligible software-tasks as
indicated by the start vector.

We have described the synthesis of the hardware executive
manager in [19, 23]. In this paper we focus on the generation
of a priority scheduler for the software-tasks.

4.2 Priority Scheduler Template for Software

A task can be in one of four distinct states: ready, running,
suspended, or terminated. We accomplish this with a sin-
gle ready list, implemented as a linked list. The running
task is at the top of the ready list. Ready tasks are be-
low the running task in the order of their priorities. A
suspended task is pushed down the ready list according to
its priority, with the higher priority task which caused its
suspension on top. A terminated task does no appear on
the list. (Note that we eliminate the delay list tradition-
ally used in priority schedulers, e.g. as described in [18].)
The register file that contains the process state information
is saved only when a task is suspended (i.e. we eliminate
context switching when one task ends and another begins,
in which case there is no need to save the register file). In
operating systems terms, the run-time scheduler software
portion implements priority-based job scheduling (multipro-
gramming). Strictly speaking, this is not multitasking since
there is no time-shared access to CPU compute cycles.

Clearly, for this implementation to work, we need a priority
for each software-task. We obtain the priorities from the
real time analysis.

5 Real Time Analysis

We aim to predictably satisfy real-time constraints in the
form of control-flow (precedence) constraints, resource con-
straints, relative timing constraints, and a rate constraint.
We assume that we have as input a TaskSIF, a rate con-
straint on the graph. and a NEVER set specifying a
resource constraint on software-tasks. The formulation
shown here does not include NEVER sets of hardware-
tasks (hardware resource constraints) for the sake of sim-
plicity.

To predictably satisfy the rate constraint, we need a worst
case execution time (wcet) for each task and a wecet for the
control-flow of the set of tasks under the rate constraint.
We obtain the wcet times for the individual tasks from
CINDERELLA-M and BCTM[11]. We need some assump-



tions to compute the wcet for the set of tasks.
Assumption 5.1 We have a directed acyclic graph
{TaskSIF) representing the set of tasks under the rate con-
straint, a weet for each task, and a NEV ER set specifying
tasks that must be executed in a mutually exclusive manner.
The use of NEVER sets to provide mutual exclusion for
hardware-tasks is covered in [23]. We consider here only a
single NEV ER set of software-tasks executed on the same
CPU.

Assumption 5.2 Each task, once started, runs to comple-
tion.

We will relax this assumption later when calculating wcet
involving software-tasks which can be partially executed be-
fore being interrupted.

Assumption 5.3 Hardware-software communication time
18 included in the wcet of each task and/or is included as a
distinct task.

We have several communication primitives, such as shared
memory and FIFOs, with interface generation along the
lines of 16, 17].

Assumption 5.4 Interrupts that switch context come only
from the hardware run-time scheduler as described in Sec-
tion 4.1.

NEVER = {oh0,0h1,cjd}

Ohold Law Jhold Law
task wcet (cycles)
mvm 4,400
oh0 2,554
oht 20,581
fk 4,500
cid 14,878
cg 11,000
src O
sink O

Figure 3: Dynamic Programming Example

Example 2 As an example, consider Figure 3. This represents
a subset of the tasks in our robot control algorithm. The weet
times for the individual tasks have aiready been calculated by
CINDERELLA-M and BCTY. Three tasks are specified in Ver-
ilog: mvm, £k, and cg, corresponding to matrix vector multiply,
(diff) forward kinematics, and calc gravity, respectively, in
Figure 1. Similarly, three tasks are specified in C: oh0, ohl, and
cjd, where cjd corresponds to calc joint dynamics in Figure 1
and both ohO and oh1 are coarser-grained groupings of tasks called
by Ohold Law in Figure 1. Since our target architecture for this

example contains only one microprocessor, all three software-tasks .

are put into a single NEV ER set which states that their execution
times cannot overlap at all. Thus, the tasks must be serialized.

Consider the NEV ER set shaded in Figure 3. A first-come-first-
serve scheduling algorithm would schedule oho first, then oh1 (since
mvm is still executing when ohO finishes), and cjd last, resulting in a
weet of 49,013 cycles for the graph. However, if oh1 were executed
after cjd, the wcet would be 39,859 for the graph. O

Example 2 shows a difficult problem in that a NEV ER set
of software-tasks may cross paralle] paths. We cannot use
one execution of a longest path algorithm to solve this prob-
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lem because the execution time of each node in a NEVER
set depends upon the scheduling of the other nodes in the
NEVER set [2]. We could enumerate all the possible or-
derings and then execute a longest path algorithm for each
permutation. However, we would then perform many re-
dundant calculations. This problem can be shown to be
NP-Complete using the Resource Constrained Scheduling
NP-Complete problem of [20].

5.1 Dynamic Programming

We want to find an exact scheduling of the tasks, with a
NEVER set containing all the software-tasks, where the
other tasks are all hardware-tasks. So we design an algo-
rithm to suit this specific problem.

We find an optimal ordering of the software-tasks with
a dynamic programming formulation of the problem. Dy-
namic programming is an exact solution method that in our
application is above polynomial in the worst case. However,
due to the coarse granularity of the model, the number of
tasks is usually not large and dynamic programming can be
executed quickly. Dynamic programming allows us to take
into account the control-flow constraints and store subcalcu-
lations, thus reducing the number of computations. A good
overview of dynamic programming is contained in [22].

5.1.1 Dynamic Programming Formulation

We take as input both the TaskSIF graph annotated with
wcets for each leaf task and a NEV ER set specifying the
mutually exclusive tasks. We divide the problem into stages
according to the number of elements in the NEVER set.
We use the following definitions:

Definition 5.1 Let there be n stages, where in each stage
we decide which among n tasks to schedule.

The number of stages n is set equal to the number of nodes
in the NEVER set plus two (for the source and the sink).
Definition 5.2 Let state s in stage 1 denote the current
task ready to start exzecution and the subsequent tasks exe-
cuted in stages {i +1,...,n}.

We name state s with the name of the current task ready
to start execution. Note that given an ordering of software-
tasks, the rest of the graph is scheduled with an ASAP
schedule. Since dynamic programming stores all optimal
states, i.e. sets of task schedules for stages {7,7 + 1,...,n},
the Markov property necessary for dynamic programring
to produce an optimal solution holds {22].

Definition 5.3 Let the deciston wvariables z;, i €
{1,2,...,n — 1} denote the task scheduled to occur next,
w.e. after stage i.

Note that the decision variable in Operations Research lit-
erature is not restricted to binary values. In this case, r;
takes on symbolic values, i.e. task names.

Example 3 For Figure 3 we have n = 5: tasks under consider-
ation are src, oh0, ohl, cjd, and sink. Since the sink is always
sink. The possible tasks executed

executed last, z,_; = x4
before the sink, and thus in stage 4, are s = oh1 and s = cjd. O
Definition 5.4 Let fi(s,z;), i € {1,2,...,n — 1}, be the
worst case execution time for stages {i,i 4+ 1,...,n}, given

that the first task in s is ezecuted in stage i and task x; is



ezecuted in stage 1 + 1. f,(s) is defined to be zero since
there is no task to execute after the last stage, and the last
task ezecuted is always the sink, which tekes zero cycles.
Recall that tasks not in the NEV ER set are all hardware-
tasks and are scheduled ASAP.

Definition 5.5 Let f;"(s), i € {1,2,...,n—1}, be the cor-
responding minimum value of fi(s,z;) over all possible z;.
Definition 5.6 Given state s and stage i, let x;* denote
the value of x; that minimizes fi(s,z;).

Example 4 Continuing with Figure 3, f5(s) is defined to be zero,
and, as in Example 3, z4 = sink. Then f5(ohl,z4) = 20,581 and
fa(cjd, z4) = 25,878. Since there is only one possibility for z4,
fa*(oh1) = 20,581 and f,*(cjd) = 25,878. Figure 4 shows the
two sets of nodes scheduled and their wcet paths. O

Definition 5.7 Given state s, task x; to ezecute nezt, and
wceelgyee = weet of the successors of task s, let

if weetgyee > weet,,
otherwise

weetgyee — weely,

weetezirg = { 0

and let weets,, = weety + weetepyrg.

In calculating weetgye, we schedule the subgraph covered
by the successors of task s using an ASAP schedule (a worst-
case polynomial time computation). If we find a successor
that is in the NEVER set, then we use wcet,;, where z;
is the decision variable, already scheduled, corresponding
to the successor (if no such z; exists, then we disallow this
order of tasks).

Thus we have the following:

fi*(s) = n;i_nf,-(s,z,-) = fi(s,z;7),i € {1,2,...,n -1}

where fi(s,2;) = weetsy, + fit17(z:).

5.1.2 Dynamic Programming Solution

The number of stages n is set equal to the number of nodes
in the NEVER set(s) plus two (for the source and the
sink). Our approach starts with the last stage, stage n, and
progressively works its way back to the first stage. We set
the last stage to be the sink and the first stage to be the
source {we always have a source and a sink according to
Assumption 5.1).

In order to begin with the last stage, we schedule the sink,
yielding f,,"(s) = 0.

For stage n — 1, the wcet is determined entirely by the
current state (whichever task is chosen to execute). There-
fore, our dynamic programming table need only include s,
fao17(s), and x,,_1".

s fi(s) | 247
oh0 - | sink
ohl | 20,581 | sink
cjd | 25,878 | sink

Table 1: Dynamic Programming Example Stage n — 1

Example 5 Consider Figure 3. We have n 5 stages. For
stage 3 we found that f,*(s) = f5*(s) = 0. Table 1 shows the
calculations for stage 4. Note one optimization already: ohO is
not schedulable in this stage due to control-flow (precedence) con-
straints.
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NEVER = {oh0,0h1,cjd}

G
oht 20,581
cd 25,878

Figure 4: Dynamic Programming Example Stage n — 1

Figure 4 shows the two sets of nodes scheduled and their wcet
paths in this pass of the algorithm. O

For stages n — 2 through 2, we calculate a table of values
containing each possible task that can be scheduled in that
stage and each possible task than can be scheduled in the
next stage. In the worst case, the table has (n — 2)2 — n
entries. Note that for each entry, in the worst case |V| op-
erations have to be performed in calculating weet,,,, where
V denotes the vertices in the task-CDFG graph.

23 | fa(s,x3) = weete, + fa7(23)
s ohl cid | f37(s) | zs™
oh0 | 23,135 - | 23,135 | ohl
ohl - 46,459 | 46,459 | c¢jd
cjd | 35,459 - | 35,459 | ohl

Table 2: Dynamic Programming Example Stage n — 2

Example 6 Continuing our attempt to optimally schedule Fig-
ure 3, we pass now to stage 3. Table 2 shows the calculations for
this stage. The first entry contains the it wcet if ohO is scheduled
in stage 3 and oh1 in stage 4 (and the sink in stage 5). Note that
it is not possible to schedule oh0 in stage 3 and cjd in stage 4 due
to control-flow constraints, so the entry is empty. Note also that
there is no column for ohO since it was not possible to schedule it
in stage 4.

To calculate the additional weet, wcet,.,, given that we execute
task s in this stage (3) and task z; in the next stage (4), requires
scheduling the subgraph covered by task s, task z; and their suc-
cessors. We use an ASAP schedule. O

zy | fols,22) = weetyr, + fa7 (22)
s oh0 ohl cid | f2"(s) | =2~
oh0 - | 49,013 38,013 | 38,013 | cjd
oht - - - - -
cjd | 38,013 - - | 38,013 | ohO

Table 3: Dynamic Programming Example Stage 2

Example 7 Next consider stage 2. Table 3 shows the calcula-
tions for this stage. Note that for state s = oh1, it does not make
sense to consider r» = cjd since we cannot have z, = oh0 (oh0
must execute before ohl, not after). Since the other entries are
similarly not possible, the entire row is empty. O

For our last computation, namely stage 1, there is only one
starting state: the source. So the table has only one row.
Example 8 Now for the last set of computations, stage 1. Ta-



Ty fl(s’xl =wcet82'1 +f2*(.’12])
s oh0 | ohl cjd
src | 39,859 - 42,413

fi'(s) | =1~
39,859 | oh0

Table 4: Dynamic Programming Example Stage 1

ble 4 shows the calculations for this stage. Note that the algorithm
finally takes into account the wcet for task mvm, making the option
of selecting cjd to execute before oh1 less favorable. O

The final optimal ordering of tasks can be found by tracing
back the z;* vectors, starting with z;*.
Example 9 The optimal order for our example starts with z;*
= oh0. The entry for oh0 in 22" is cjd. Finally, the entry for cjd
in z,* is ohl. So the optimal order of execution is oh0 first, cjd
second, and ohi last. O
Thus we have the optimal order {given our assumptions) of
execution of tasks in the NEVER set. We use this order
to statically set the priorites for the software-tasks.

5.2 Calculation of wcet

To calculate the wcet of the entire graph, we use the fol-
lowing costs, obtained by analyzing our run-time scheduler
software code executed on a MIPS R4K model: context
switch = 126 cycles, interrupt overhead = 20 cycles, and
priority scheduler task selection = 44 cycles.

For the interrupt, we use pin Int(0) on the MIPS R4K
model and do not save the register set before passing con-
trol to the priority scheduler software. Otherwise our inter-
rupt overhead would be much larger. The priority sched-
uler software executes a context switch only if necessary to
save/restore the state of a suspended process. Note that
the context switch time includes time for storing the float-
ing point registers.

With these costs, we calculate the wcet of the entire graph.
We use the priority scheduler with the priorities found via
dynamic programming. This increases our CPU utilization
by starting execution of a low priority task that is ready
when no higher priority task is yet ready. In other words,
we relax Assumption 5.2 and support multiprogramming.
However, without Assumption 5.2, our static priorities are
no longer optimal — in fact, priorities may have to by dy-
namic to guarantee optimality with tasks allowed to inter-
rupt each other. However, relaxing Assumiption 5.2 can
allow us to reduce wecet for the graph, thus improving our
solution.

Note that we assume no semaphores are used, and that
precedence constraints are enforced by the run-time sched-
uler. We could support the use of semaphores in two ways.
One simple way is to reinstate Assumption 5.2 and execute
software-tasks only in order of priority (e.g. the task with
priority 3 cannot execute until the task with priority 2 has
completed, and the priority 2 task can only execute after
the priority 1 task has completed). Another way is to in-
crease the time for priority scheduler task selection to allow
enough time for any task to exit a critical section; in other
words, calculate a wcet for any task’s critical section, and
add that amount to the priority scheduler task selection
time (the scheduler would know, of course, if a task is in a
critical section and when the task has exited).
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Example 10 Consider Figure 3. We use the priorities found in
Example 9. We find that the run-time scheduler causes three inter-
rupts. After the second interrupt, ohl executes until it is suspended
when task cjd is ready. After cjd finishes, the priority scheduler
switches back to ohl.

A straightforward ASAP schedule is used. Several of the software
tasks have loops, but none of the tasks use semaphores. In this
example, the critical path is in the execution of software.

sw-task # cycles | hw-task | # cycles
int-ser-routine 20 mvin 4,400
priority-sch-sw 44
oh0 2,564
int-ser-routine 20
priority-sch-sw 44
ohl 1,718
int-ser-routine 20 fk 4,500
context-switch 126
priority-sch-sw 44
cjd 14,878
priority-sch-sw 44 cg 11,000
context-switch 126
ohl 18,863

Table 5: WCET Calculation Example
The overali weet is 38,501 cycles. O

This final output is an upper bound on the wcet of the
graph given the priorities assigned to software-tasks in the
same NEV ER set.

So we now can analyze satisfiability of a rate constraint in
a dynamically changing, concurrent execution of hardware-
tasks and software-tasks, given our run-time scheduler im-
plementation.

6 Tool Flow and Target Architecture

ystem Specification

b::;:igral Cc constraints
er opnons Interf Rsne rr1‘3m wcet
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(ﬁios, RAM Generation Scheduler Cinderella
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core, RAM size)
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Figure 5: Tool Flow and Target Architecture

Figure 5 shows our tool flow, where BC labels the Synopsys
Behavioral Compiler”#[11] and DC labels the Synopsys De-
sign Compiler™™. Hardware-tasks are specified in Verilog
and software-tasks are written in C. Microprocessor cores,



memories (DRAM, SRAM), FIFO models, and other cus-
tom blocks are assumed as available inputs to the system.
The implementation of a synthesized system can vary from
a system on a chip to a board or set of interconnected com-
ponents.

Constraints include rate constraints, relative timing con-
straints (minimum and maximum separation}, and software
resource constraints. Precedence constraints are implicit in
the task specification.

The system-level tasks in Verilog and C, as well as con-
straints, are input to SERRA and to a tool that generates
the interface. One of the tasks is specified as the main task.
CINDERELLA-M, which we have ported to the MIPS R4K,
takes input in C and outputs a worst-case execution time
(weet) for each software-task (note that bounds on loops
must be provided by the user){1]. Similarly, BCTM gener-
ates an exact execution time for each hardware-task, which
we take as a wcet (loop bounds must be provided here in
some cases as well). When comparing BCTM_generated
weets with software wcet, we convert all delays to the num-
ber of microprocessor clock cycles (since the hardware clock
speed is typically slower.)

ISR
generation

riority Scheduler
eneration

Run-Time
Scheduler
control FSM

Run-Time
Scheduler
assembly code

Figure 6: Block diagram of SERRA

6.1 SeErrRA Run-Time Scheduler Synthesis

The flow of the SERRA Run-Time Scheduler Synthesis tool
is shown in Figure 6. SERRA synthesizes the control-unit of
the scheduler into a hardware FSM and generates the static
priorities for the software-tasks. SERRA does not generate
the run-time C code but instead uses templates of the pri-
ority scheduler in C, the Interrupt Service Routine (ISR) in
MIPS assembly and context switch code in MIPS assembly.

For the software that runs on the microprocessor core
(CPU), the individual software-tasks are compiled together
with the priority scheduler, ISR, and context switch code
using standard C compilers and linkers. Memory-mapped
I/0 is called with C pointers set explicitly to the appropri-
ate addresses.
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Data and program memory are statically allocated. The
ISR, which is the interrupt handling portion of the run-time
scheduler, reads in a start vector that specifies which tasks
are ready to be executed in software.

We end up with a set of software-tasks and their start
addresses in the program code. Thus, we have a table of
software-tasks and their entry points as seen in Table 6.

Entry | Value

0 Pointer to sw-task 0
1 Pointer to sw-task 1
n Pointer to sw-task n

Table 6: Entry Table for Software-Tasks
Therefore, given a particular value of the start vector, the
appropriate software-task(s) can be executed by the priority
scheduler.

Ohold Law Jhoid Law

Figure 7: TaskSIF graph of Robot Arm Controller

7

For our example, we consider the code of Figure 2. Jhold
Law and Ohold Law of Figure 2 are implemented with the
subtasks shown in Figure 3. The TaskSIF graph, including
the leaf tasks that implement Set Torque, are shown in Fig-
ure 7. Note that Xmit Framel (zf1) and Xmit Bit1 (zbl)
of Set Torquel have a strict relative timing constraint of
zbl starting no less than 2 cycles after zf1 and no more
than 8 cycles after. The exact same constraint holds for
Set Torque2. This constraint could not always be satisfied
with control signals generated by a run-time scheduler in
software (note in Figure 5§ we have an L1 cache).

We perform real-time analysis using the CLARA tool which
has been implemented in 14,000 lines of C. The optimal
order of execution for the software-tasks is passed to the
priority scheduler. This provides for the upper bound on
execution speed for the code under worst-case conditions.

The system begins each iteration once a millisecond. After
obtaining the positions and velocities of the two robot arms,
the run-time scheduler starts the execution of mvm in hard-
ware for Jhold Law and oh0 in software for Ohold Law. It

Example and Experimental Results



continues with interleaved hardware-software execution as
shown in Table 5. Finally, it tightly schedules accesses to
Xmit Frame and Xmit Bit to set the torques for the robot.

The scheduling of tasks shown in Figure 7 but not in Fig-
ure 3 — wnt, gpl, zfl, hm, etc. — together take 61,200 cycles
in the worst case. Since our MIPS R4K core runs at 100
MHz, the rate constraint allows us to use 100,000 cycles.
Thus, we have 38,800 cycles left for the remaining tasks —
oh0, ohl, fk, mvm, c¢jd and cg. The wcet found in Example 10
fits our rate constraint (note that the two schedules consid-
ered in Example 2 would violate the constraint). Thus, our
schedule guarantees that we meet our hard real-time rate
constraint.

Software-Task || Lines Lines beet weet
C | Assem.
cjd 286 1177 1 9,989 | 14,878
oh0 90 237 1,598 2,554
ohl 693 3263 | 12,424 | 20,581
int-ser-routine N/A 26 11 20
context-switch || N/A 42 34 126
priority-sch-sw 107 141 26 44

Table 7: Code space, bcet and wcet for sw-tasks.

Hardware-Task Lines Area beet weet
Verilog

mvm 629 | 33,645 | 4,400 | 4,400

fk 2362 | 42,168 | 4,500 | 4,500

cg 2897 | 59,587 | 11,000 | 11,000

run-time-sch-hw 484 413 | N/A | 99,701

Table 8: Results for the synthesis of hw-tasks.

Table 7 presents the results for the compilation of the
software and best- and worst-case execution time estima-
tion with CINDERELLA-M. Unfortunately, due to the pres-
ence of interrupts and context switches, we had to turn
CINDERELLA-M’s instruction cache analysis capabilities off.
In Table 8, we see the results for the synthesis of the hard-
ware tasks of Figure 3 using the Behavioral Compiler™™,
except for the run-time scheduler hardware part which was
synthesized with the Design Compiler™ . The third col-
umn in Table 8 shows the number of gate equivalents the
hardware required using the LSI 10K Logic library. We
clock the hardware at 10 MHz. Using a MIPS R4K model
in Verilog, we simulated the Robot Arm Controller in Ver-
ilog using Chronologic’s VCSTM,

8 Conclusion

We have addressed the important problem of real-time anal-
ysis in hardware-software codesign with a custom run-time
system. The CLARA Real-Time Analysis tool, in conjunc-
tion with the SERRA Run-Time Scheduler tool, helps de-
signers perform system-level design with hardware and soft-
ware at a coarse level of granularity. We can predictably
meet hard real-time constraints with our approach, based
on static priority assignment, a custom priority scheduler,
and a synthesized run-time scheduler, which allows a more
detailed analysis of the system. The final result is tighter
execution bounds thus squeezing more performance out of
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the same components than with a traditional RTOS and
associated real-time analysis.

For our future work we plan to address more fully the
issues of semaphores and hardware-software partitioning of
the run-time scheduler.
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