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Abstract

The power dissipated by digital systems under realistic input stim-
uli is not accurately described by a single average value, but by a
waveform that shows how power consumption varies over time
as the system responds to the inputs. In this paper, we face the
problem of obtaining accurate power waveforms for combinational
and sequential circuits under typical usage patterns. We propose a
multi-level simulation engine that achieves high accuracy in esti-
mating the average power as well as the time-domain power wave-
Jorm with high computational efficiency.

1 Introduction

Power estimation for validation and sign-off is a critical step in
the design process. In this phase, accuracy is a key requirement,
but there are hard constraints on the time that can be dedicated
to power estimation. Moreover, it is important to estimate the
power dissipated by the system while running typical applica-
tions, i.e., streams of validation patterns are usually available
or can be produced with a relatively low effort by the designer.
Unfortunately, such pattern sets are usually extremely large;
hence, performing accurate (and slow) power estimation on the
complete sets is simply computationally infeasible.

Recent research [1, 2, 3] has addressed the problem of selecting
small subsets of large pattern sets so as to guarantee that the
estimate of the average power obtained on the subset is as close
as possible to the actual average power dissipation of the circuit
when simulated with the complete pattern set.

In this paper, we tackle the problem of input pattern selection
from a novel point of view. Based on the observation of real-life
systems, we claim that the average power does not fully charac-
terize the power dissipation of a circuit, and that a time-domain
power waveform can provide a much more complete source of
information. We move from the experimental evidence that typ-
ical, deterministic input streams are such that the average power
dissipated by the circuit can vary widely when distinct subsets
of consecutive patterns are simulated. We thus propose a tech-
nique, leveraging multi-level simulation, that can be used to
quickly, yet accurately extract the average power, as well as
the power waveform for deterministic input streams for which
the running average, taken over a fixed number input patterns,
of the circuit power dissipation follows an “up-down staircase”
curve.

From the user point of view, a fast cycle-based simulation is
performed on the complete input stream. During the simulation,
the monitoring of an indicator function provides information
on the variations of the input stream and power dissipation.
Accurate power simulation is automatically dispatched when
needed for tracking the changes in the “local” mean value of
the input stream. The tool automatically constructs the time-
domain power waveform and optionally computes its average.
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The indicator function may not depend on the primary inputs
only. Aslong as the internal state of the system is available dur-
ing cycle-based simulation, its value can be taken into account
as well. The same holds for the system outputs. In general, any
information available during cycle-based simulation can be ex-
ploited for constructing an indicator function. Obviously, there
is a trade-off between the accuracy of such function and the
overhead it imposes on cycle-based simulation. Our method is
practical only if it guarantees that the time spent on fast cycle-
based simulation (T¢), plus the overhead for the computation
of the indicator function (I},4), plus the time required to per-
form accurate power simulation on the the sample (Tsampic) is
much smaller than the time required to perform accurate power
simulation on the entire input stream (Tpow).

We have benchmarked the capabilities of our tool on large sub-
sets of the ISCAS'85 [4] and the ISCAS’89 [5] circuit suites. In
particular, given a circuit and an input stream, we have com-
pared the average power value calculated using our technique to
that obtained by switch-level simulation [6] of the entire input
stream. Results are highly satisfactory, since the average error
is between 4.5% and 6.1% for the combinational examples, and
between 2.2% and 6.4% for the sequential circuits, depending
on the type of indicator function used. Moreover, the estimated
power waveforms match closely the actual ones.

2 Related Work

There are two techniques in the literature which are somehow
related to ours. The power ratio method [7] is based on multi-
level simulation. It postulates that the power estimate, FPeet,
provided by high-level, fast power simulation is proportional to
the power, Pacc, estimated with accurate simulation. In sym-
bols: Pace = Pest * K. The unknown proportionality constant,
K, is simply obtained by first computing both Pacc and Pegt for
a small subset of the complete input stream, and then by taking
their ratio. Unfortunately, for deterministic, designer-supplied
streams, K is usually far from being constant; in these cases,
the method may lead to inaccurate estimates.

Stratified random sampling [8], though developed as an alter-
native to Monte Carlo methods, has some similarities to the
technique we propose here. In fact, it generally requires only a
small number of accurate simulations to achieve power estimates
which are acceptable and, as for our method, it exploits a high-
level power estimator to direct the choice of the patterns that
will be simulated with high accuracy. In the form it has been
presented, however, it targets the estimation of average power
of input streams for which some statistical constraints, such as
error and confidence level, are given; in addition, its effective-
ness has been demonstrated only for combinational circuits. On
the contrary, our approach works for purely deterministic input
streams, it can provide the user with information on the average
power values, as well as the changes of power dissipation over
time, and it properly and accurately handles sequential circuits.



3 Tracking Staircase Behavior

Consider a measurable property P(T') of a circuit that changes
over time {in our case, power is the property of interest). We
assume discretized time. A time quantum is called cycle. The
property has an up-down staircase average behavior, staircase
for brevity, over time when its running (or sliding) average taken
over a window of N cycles, Py(T), changes in a non-monotonic
fashion, with long plateaus where Py (T') is approximately con-
stant mixed with regions where it changes rapidly. Figure 1 (a)
shows the diagram of a time-varying property P(T) with stair-
case behavior, and Figure 1 (b) shows the diagram of Py (T).
The value of N (the averaging length) is shown as well. Notice
that Py (T) is not defined for the first N time points.
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Figure 1: Waveforms for P(T) (a) and Py (T) (b).

The power dissipated by many real-life circuits, such as mi-
croprocessors running realistic work-loads, has staircase behav-
ior [9]. The key observation is that such behavior appears to
be induced by the input streams which are processed by the
circuits in typical operating conditions. Extensive experimenta-
tion [10, 11} has shown that, when the input streams are ran-
domly generated, composed by uniformly distributed, uncorre-
lated patterns, the power dissipation does not have a staircase
behavior. On the contrary, Py(T) is a roughly constant func-
tion, as long as N is sufficiently large to smooth out cycle-by-
cycle variations due to the strong pattern dependency of power.
Obviously, we would like to accurately estimate the power dissi-
pation induced in a circuit by realistic input streams which are
not uniformly distributed, nor uncorrelated. Most of the pat-
tern sets usually provided by the designers for typical hardware
modules (e.g., RT-level macros, cores, microcontrollers) tend to
induce a staircase behavior on the power dissipation.

Our target is a challenging one, because it requires a difficult
trade-off choice. The number of samples, N, taken to compute
the running average is the key parameter for achieving the de-
sired accuracy. If we choose an excessively large N, we loose ac-
curacy in the estimation of the average power waveform Py (T).
The larger N, the more Py (T) resembles to a constant. On the
other hand, if NV is too short, the noise in the estimation of the
average power will be too large (because of the effect of pattern
dependency) and accuracy will be compromised as well.

Power estimation in the staircase situation is further compli-
cated by computational issues. As explained in the introduc-
tion, we cannot afford to simulate entire input streams with
an accurate power simulator. Therefore, we exploit informa-
tion available during fast high-level simulation (hereafter called
Level 1 for brevity) to reduce the number of slow, accurate low-
level simulations (hereafter called Level 2) needed to estimate
the power. Differently from the existing techniques, this infor-
mation is used to estimate how power changes over time when
the given input stream is applied at the circuit inputs.
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3.1 The Indicator Function

We call indicator function the Level 1 information exploited to
track the variations in switching activity of the input stream.
The basic requirement for the indicator function is that it must
change over time, and its changes should be related to the varia-
tions of the power dissipation. Notice that this is a much milder
requirement than simple proportionality (as requested by the
power ratio method).

We propose a set of alternative indicator functions based on
sampling the (zero-delay) switching activity and the value of
the nodes in Level 1 simulation. Tuning the number and choice
of the sampling points allows us to:

¢ Trade off accuracy for computational overhead (increas-
ing the number of sampling points increases the overhead
in Level 1 simulation);

o Exploit designer knowledge, if possible, to select specific
nodes that should be sampled to increase the accuracy of
the indicator.

‘We focus on indicator functions that do not require any designer
intervention in the choice of the sampling points. Our target
is to build a fully automated procedure for power estimation
that can be applied successfully even without complete under-
standing of the design functionality and hardware architecture.
In [12], it was observed that there exists strong correlation be-
tween power dissipation in a combinational logic circuit and the
switching activity at its inputs and outputs. A similar conclu-
sion was reached in [13, 14]; in these works, the power dissipated
by a combinational design, possibly described at the functional-
level, was approximated by a combination of the circuit input
and output entropy, two quantities which are strictly related to
the input and output switching activities.

The basic claim in [12] is that power dissipation can be pre-
dicted with reasonable accuracy by computing a function of
input-output switching. In symbols:

. . . . 1 . 1
PM = fGT @i il @il ol @ ot 0l @inT (1)

where P"*1! is the power dissipated during the n + 1-st simula-
tion cycle, ¢} and iZ'H are respectively the value of input k at
the beginning of cycles n and n+1, o} and OZ'H are respectively
the output values at the end of cycles n and n+1. The function
f is a general (possibly non-linear) mapping f : Bnitne o, R,

The choice of the sampling points for our indicator functions is
based on a similar assumption. We propose the following crite-
ria, sorted by increasing accuracy and computational overhead:

o Sampling only the primary inputs. The main limitation
of this criterion is that it does not consider any infor-
mation on how input switching propagates through the
logic. Moreover, for sequential circuits, the effect of inter-
nal state on power dissipation is not taken into account.
On the other hand, this criterion has minimum overhead.
Indeed, Level 1 simulation is not even needed, and analy-
sis of the input stream is sufficient to extract the required
information.

¢ Sampling primary inputs and outputs. This criterion in-
creases the information on internal switching, since the
end effect of the input propagation is sampled. Again,
this criterion is targeted towards combinational circuits,
since it does not account for internal state. Compared to
the previous one, this choice of sampling points has higher
overhead: The number of sampling points increases and,
more importantly, Level 1 simulation must be executed
for computing the correct output values.



¢ Sampling primary inputs and outputs, as well as the in-
puts and outputs of the flip-flops. This is the full cycle
boundary information that is usually available in Level 1
simulation (which is cycle accurate). This criterion has
considerably higher overhead than the first two {the num-
ber of sampling points is greatly increased), but it is well-
suited for dealing with sequential circuits, because the
internal state is exposed.

Estimating the full zero-delay activity (as in the power
ratio method and in stratified random sampling), includ-
ing internal nodes in the combinational logic. This cri-
terion has very high overhead, because it prevents fast
compiled cycle-based simulation (at Level 1) to “com-
pile away” internal nodes. Moreover, it is not possible
to perform Level 1 simulation at a different level of ab-
straction, because the values of the internal nodes can-
not be sampled (they do not exist at higher abstraction).
Although zero-delay simulation is still much faster than
full-delay event-driven simulation (or switch-level simula-
tion), it may be more than one order of magnitude slower
than compiled, cycle-based simulation.

The sampling criteria listed above span the trade-off between
completeness of the monitored information and computational
overhead. It should be noted that the overhead strongly de-
pends on the available Level 1 simulation. State-of-the-art fast
cycle-based simulators have the capability of collapsing inter-
nal nodes or using compact data representations to accelerate
the computation. The overhead can be estimated based on how
much of this acceleration capability must be given up.

The computation of the indicator function requires not only the
choice of the sampling points, but also the specification of how
the sampled information should be used to compute a measure
that tracks the temporal variations of the average power. The
main problem is that power is strongly pattern dependent: Its
value can change widely in successive clock cycles. For this
reason, our indicator function must include a short-term time
averaging operation. The simplest one is then the number of
switching events averaged over a short number of cycles, N.:

Z?:T—Nc Zies P

e @)

where S is the set of sampling points, pf» are Boolean variables
that have value 1 when the sampling point ¢ switches between
cyclet—1andt (p} = i*=1 @1t). The choice of N in Equation 2
is critical. It should be long enough to smooth out fluctuations
due to single-pattern dependence, but it should be short enough
to capture the staircase behavior. The issue of how to select N,
will be discussed in Section 4.

Notice that Equation 2 defines the indicator as a function of
time. The short-term average can be seen as a sliding window:
At time T, we consider N, sets of values of the sampling points,
one for each simulation cycle from time T — N, to T'. The sliding
window average is well-suited to estimate variations over time,
because it evolves in parallel with the advancement of the global
simulation time. This is in sharp contrast with stratified random
sampling, where samples can be selected and averaged together
in any order, without any constraint on temporal adjacency.
The simple time-averaged sum of switching events can be re-
placed by more complex indicator functions. The one we have
adopted computes the weighted sum of switching events aver-

aged over Ng: -
ot
Zf:T—NC Zies wip;
NC

I(T) =

Ty = (3)
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In this case, p! of Equation 3 is replaced by w; p!. The weights
w; represent the relative influence of the switching of sampling
point ¢. Several algorithms can be devised for the computation
of w; (notice that such algorithms must be run only once at the
beginning of the estimation process). Possible choices of w; are:
1. Expected capacitance (based on node fanout) for internal
nodes when the most expensive choice of sampling points

is used;

2. For primary outputs and flip flop inputs: Estimate of the
complexity (i.e., number of gate equivalent) in the fanin
cone;

3. For primary inputs and flip-flop outputs: Estimate of the

complexity (i.e., number of gate equivalent) in the fanout
cone.

A generic, user-specified non-linear (weighted) combination of
values and transitions averaged over N, might also be adopted.
However, this indicator function is not investigated here, since
we target a fully automated power estimation process.
Concluding the section, we want to stress that the fundamental
use of any indicator function I(T) is not to provide an esti-
mate of the power consumption at Level 1 (such estimates have
limited accuracy and may be interesting only during design ex-
ploration). Instead, we use I(T) to extract information on the
variations over time of the average power dissipation. How this
can be done and how such information is fruitfully exploited to
determine accurate power estimates is the subject of the next
section.

4 Multi-Level Power Simulation

Our multi-level simulation engine is conceptually simple. Given
a long stream of Nt input patterns, a high-level and a low-level
description of the circuit under analysis, the Level 1 simulation
is started. Level 1 simulation runs three additional tasks:

1. Monitoring the sampling points required for the compu-
tation of the indicator function;

2. Computing the indicator function I(T);
3. Performing the staircase test on I{T).

The choice of the sampling points and the computation of I(T)
have been discussed in Section 3. The purpose of the stair-
case test is to decide, based on the changes over time of I(T),
when to fire the Level 2 simulation. Whenever the staircase test
triggers, the inputs and state values are extracted from Level 1
information and used to set the initial state for Level 2 sim-
ulation. After that, the multi-level simulation can proceed in
lock-step.

Level 2 simulation continues until a stopping criterion is sat-
isfied. Such criterion decides when sufficient accurate power
data have been collected to obtain a reliable short-term average
power estimate Poyg(T) (notice that Poayg is a function of time).
The value Pgyg(T) is a point in the average power waveform.
T is conventionally set to the value assumed in the last cycle of
Level 2 sirnulation.

At the end of the simulation, all N;o: patterns have been simu-
lated at Level 1, but only Nggimpie patterns have been simulated
at Level 2. Typically, Neampie << Ntot- The end results is a
set of values P = {Pavg(T1), ... Pavg(T:)}, where Ty < ... < Ts.
The power values Pyy ¢(T;) and the times T are a set of samples
of the power waveform of the circuit. :

The performance of our multi-level scheme is measured by the
speed-up achieved with respect to accurate simulation of the en-
tire input stream, because this is the only known way to extract
complete power information on systems with staircase behavior.



The speed-up is defined by the following equation:
SP = Tpow
Tc + Tind + Tsample

where Tpoy is the time needed to simulate the circuit for Nyot
cycles at Level 2, T, is the time for simulating Niot cycles at
Level 1, T;,,4 is the time overhead caused by the calculation of
both the indicator function and the staircase tests, and Tsample
is the time required to simulate N,4mp1. cycles at Level 2 during
multi-level simulation.

The accuracy of the multi-level scheme can be measured by
comparing the average power, Paug, obtained by simulating
the complete input stream at Level 2 with the estimate, Pgyt,
obtained by averaging the power samples Pgyq(T;).

4)

Clearly,
the latter must be weighted with the duration of the samples:

P;j; = 2;1 7iPavg(T;). The duration 7; of Payg(T}) is de-
fined as:
Ti —Tig1
= L 5
i NtotTclk ( )

where T is the clock period of the system. The weighted
average is needed because our technique extracts new power
samples only when the staircase behavior is detected, i.e., when
we are moving from one plateau to another. If the average power
remains on a plateau for a long time, only one power sample is
extracted, but it represents the average power dissipation of a
very long time interval.

The definition of our multi-level estimation strategy is com-
pleted by addressing the following three open issues:

¢ How to choose N¢, i.e., the length of the short-term, slid-
ing window average needed for computing I(T').

¢ How to use the value of I(T) to decide when firing ac-
curate simulation to track the staircase behavior (i.e.,
providing the definition of the staircase test).

o How long to run accurate power simulation every time
it is started by the staircase test on I(T) (i.e., providing
the definition of the stopping criterion).

4.1 Choosing N,

The choice of the parameter N, that is, the length of the sliding
window for the running average, is a key point for the success
of the entire strategy. If N. is too small, the value of I(T) will
be noisy: The pattern-dependent fluctuations of the indicator
function may change the value of I(T) too much and too rapidly.
As a result, it may become impossible to discern slow variations
of I(T) due to staircase behavior from fast variations due to
pattern dependence. The consequence of this problem is that
the staircase test is triggered too often and too many Level 2
simulations are executed, causing a marked slow-down of the
multi-level simulation engine.

On the other hand, if N¢ is too large, I(T) may have excessive
tnertia and change too slowly. In this case, the variations of
I{T) over time may be smoothed down to a constant average
value that does not represent the variation of the average value
over time. As a consequence, the staircase test is almost never
satisfied. The multi-level simulation becomes really fast (a min-
imum number of Level 2 simulations is executed), but accuracy
in tracking the power waveform is lost.

To avoid both pitfalls, the choice of N; must be a compromise
between good tracking capability and noisiness. Our procedure
for choosing N, is based on a calibration process. We move from
the observation that, when uniformly distributed, uncorrelated
patterns are fed to the system, the average power does not have
a staircase behavior and tends to converge to a constant value.
We conjecture that the same holds for the indicator functions.
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Before starting the multi-level simulation on the input stream,
we perform a calibration Level 1 simulation with independent,
uncorrelated input patterns. The simulation is run until con-
vergence is reached on the average value of I. Assume that
the calibration simulation converges in Njs, cycles. Ny, is the
number of simulation cycles needed for convergence on a sta-
ble average value of I when the input patterns are independent
and uncorrelated. This value is significant for our purposes, be-
cause it gives us information on the number of cycles needed to
smooth out only the power variations due to strong pattern de-
pendence. The calibration sitnulation allows us to separate the
effects. During calibration, the power does not have a staircase
behavior, but it is still strongly pattern dependent.

The number of cycles for short-term average, N, is chosen to
be Ne = kNpr,, 0 < k < 1. When k =1, we have a high incrtia
I{T). When k < 1, we may be able to track fast step-wise
variations, but we may sometimes take a simple fluctuation due
to strong pattern dependency at the beginning (the end) of a
step. The choice depends on the target of the power estimation
process. If we are mainly interested in obtaining a single average
power value with maximum efficiency, £ should be chosen close
to one (or even larger, if we suspect extremely long plateaus and
we have huge Nzot). On the contrary, if we need great accuracy
on the estimate of the average power value, or we want to finely
sample the power waveform, k should be close to 0.5. The price
paid for the increase in accuracy is a longer runtime (a larger
number of Level 2 simulations are required). Values of k£ < 0.5
are not advisable for performance reasons.

4.2 Staircase Test

During Level 1 simulation, I(T) is computed on every simulation
cycle. Although I(T) is defined at every clock cycle, it is mean-
ingless formulating a staircase test that involves decisions taken
on time intervals shorter than N, being this the maximum res-
olution. The test is based on an upper bound on variations of
I(T); the procedure for its application is the following:

o Level 2 simulation is first started to obtain the first power
sample. Concurrently, I(T) is computed. When Level 2
simulation is stopped (through the criterion described
later), the value of I(Tp) at the stopping time Tj is stored.

Level 1 simulation and the computation of the indicator
function are carried on to T > Tp. The staircase test
is not applied until T = T + 8T ¢iockNc, where 8 2> 1.
As mentioned above, the rationale for this choice is to
provide a lower bound on the granularity at which the
staircase behavior is tested. The interval during which
the test is disabled is called recovery interval

After the recovery interval, the test is applied at every
clock cycle T. A staircase behavior is detected when:

AT > YA maz|1] (6)

where A|I(T)| = |I{To) — I(T)], v is a coefficient smaller
than one, and Amaz}I| is an upper bound to variations
of |I|. In the case of the simple indicator function of
Equation 2, Ajaz = Nc|S|, where |S| is the cardinality
of the set of nodes in the circuit whose switching activity
is sampled by the indicator function.

o If the test is satisfied, the power is estimated through
Level 2 simulation. Upon stopping of the latter (at time
T2), I(1T2) is stored and the process is restarted.

Parameter -y controls the sensitivity of the test; its typical range
is 0.1 < v < 0.5. The choice of v is again dictated by a trade-off
between sensitivity and accuracy in the estimation.



4.3 Stopping Criterion

The last decision to be taken is when to stop the Level 2 sim-
ulation after it is started by the staircase test. The simplest
choice is to execute Level 2 simulation for a fixed number of
clock cycles. Unfortunately, no simple criterion is available for
the choice of such number.

We adopt an adaptive strategy, where the number of Level 2
simulations is variable and depends on the operating conditions.
More specifically, the stopping criterion is based on a conver-
gence test on the average power value. Although this choice is
intuitively attractive, it is heuristic and relies on the assumption
that on the short term, the average power dissipation appears
non-staircase, hence it converges rather rapidly to a constant
average value.

Clearly, this assumption is not true in general. More in detail,
two problems may arise. The first is premature convergence:
The Level 2 simulation is stopped because convergence on the
average is reached too rapidly (for example, if, by chance, the
power dissipated at the first two or three cycles of Level 2 simu-
lation is almost constant). The second, and more serious, is lack
of convergence. In this case, Level 2 simulation never stops. To
mitigate both problems, we provide the following lower bound
on the number of vectors that must be simulated in Level 2:
1L Ne, with n, < 1, typically between 0.5 and 1. Similarly, the
upper bound is ny N, with ny > 1, typically between 2 and 3.
The rationale of these bounds is based on the observation that
the convergence of power estimation is related to convergence
on the indicator function, although it is expected to be slower.
Concluding this section, we would like to emphasize that, al-
though no strong convergence results or accuracy bounds are
available for our technique, this limitation is shared by all other
methods presented in the literature when applied to realistic
power estimation problems (i.e., estimation of the power dissi-
pation for sequential systems with user-provided input streams).
Experimental evidence, detailed in Section 5, confirms the ro-
bustness and flexibility of our approach, which appears to be a
viable, albeit heuristic, power estimation strategy for the realis-
tic staircase situation. More work is needed to gain a complete
theoretical understanding of the mathematical models for power
dissipation in this general setting.

5 Experimental Results

In order to investigate the applicability and the accuracy of
our methodology, we have performed three sets of power es-
timation experiments, and we have checked the so computed
results against the ones we have obtained through exhaustive
transistor-level simulation using Irsim [6]. In the following sec-
tions we report on our findings.

The algorithm has shown remarkable robustness for what con-
cerns the values of the user-defined tuning parameters that con-
trol the performance and accuracy. To select such values we
have ran a set of experiments on a small combinational circuit
(a few tens of gates) and we have chosen the values that have
given the minimum error (on average power estimation) for an
overall 100X speed-up. The parameter values are the following:
k=05,8=1,9=0.2,n; = 0.5 and ny = 2. The same values
have been used for all experiments described in the following
three sections.

In spite of the satisfactory results we have obtained, we con-
jecture that even more accurate (or faster) estimates could be
obtained by tuning the parameters for each example. However,
this would greatly increase the time required to obtain the power
estimates {parameter tuning should be taken into account when
measuring the speed-up).
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5.1 Combinational Circuits

In afirst set of experiments, we have considered all the ISCAS’85
examples [4]. The circuits were first optimized for area, and then
mapped for area using SIS [15] onto a gate-library consisting of
2-input NAND and NOR gates, inverters, and buffers.

Table 1 reports the data for the ten considered benchmarks.
Columns Cire, I, O, and G give the number of circuit inputs,
outputs, and gates. Column Estimated Power shows the average
power values obtained with the technique of this paper, while
column Actual Power provides the values obtained through com-
plete transistor-level simulation of the input stream. Column
Estimated Power is further split in three sets of columns, one
for each of the three sampling points selection criteria we have
considered, namely, input {column In), input/output (column
In-Out), and global activity (column Iniern). Each column re-
ports the average power (Pow), the absolute value of the rela-
tive error, with respect to the actual power (|E|), the number
of Level 2 simulations triggered (L2), and the time required to
complete the estimation (7)), measured in seconds on a DEC
AXP 1000/400 with 256 MB of RAM. Finally, column N tells
the size of the sliding window N, specific for each circuit, that
we have used in the indicator function. All power values in this,
and in the following tables, are expressed in mW.

Since the benchmark circuits do not come with typical input
patterns, we built input streams trying to emulate real-life us-
age sequences. The generated input streams have very high
temporal correlation (i.e., correlation between successive pat-
terns), very high spatial correlation (i.e., correlation between in-
put variables) and, more importantly, are highly non-stationary.
The average input switching activity is changed abruptly and
wide variations are imposed several times in the stream. Be-
tween variations, the average input switching activity is roughly
constant, although the vectors are correlated. The complete
streams consisted of 50,000 patterns.

The error between the power values provided by our tool and
the ones obtained through complete transistor-level simulation
of the input stream are very limited, namely, 6.1%, 5.9%, and
4.5%, depending on the selected sampling criterion. On the
other hand, the simulation time reduction is substantial (be-
tween one and two orders of magnitude).

As expected, the choice of a more accurate criterion for sample
points selection yields increasingly accurate estimates. However,
it should be observed that the difference in accuracy is quite
small. This is of great interest when the Level 1 simulation is
carried out at a high level of abstraction, e.g., behavioral simu-
lation. In this case, the knowledge of the internal switchings is
not available, and the designer can rely only on I/O information.
Figure 2 shows, in the case of benchmark c432, how the three
sampling criteria (the top three plots, from left to right), be-
have in tracking the power waveform obtained by simulation of
the given input stream. The piecewise-constant approximation
of the power waveform, obtained with the indicator function
The actual
power waveform is the bottom right plot. Obviously, the scales
for the ordinates of the top three plots are different from those
of the bottom two, since the indicator function provide num-
bers of weighted switching events, as opposed to actual power
values. Comparing the two bottom plots, it can be observed
that the indicator function based on I/O activity provides suf-
ficient information to track the staircase behavior of the power
for combinational circuits. Notice, however, that we approxi-
mate the power with a piecewise-constant waveform, hence the
cycle-by-cycle accuracy is limited. More refined interpolation
schemes can be used to improve cycle-by-cycle accuracy [16].

based on I/O sa.n')pling, is the bottom left plot.



Circ I [ G Estimated Power Actual Power
In In-Out Intern [ Nc Pow T
Pow [ TET TL2 ' T [Pow | JE[ [ L2 | T [ Pow | [E[ [ L2 [ T |
c432 37 6 265 0.72 7.5 15 9 0.72 7.5 15 9 0.71 6.4 15 9 158 0.67 2125
c499 41 32 525 1.33 6.4 13 10 1.36 8.8 11 8 1.30 4.0 15 11 110 1.25 2281
c880 60 26 431 1.42 9.2 18 11 1.42 9.2 15 11 1.41 8.4 13 9 91 1.30 2160
c1355 41 32 525 1.38 2.2 9 6 1.38 2.2 9 6 1.38 2.2 8 5 220 1.35 4813
1908 33 25 529 1.78 2.3 13 21 1.75 1.1 16 30 1.74 0.9 13 24 197 1.73 7804
c2670 [ 233 140 808 2.69 0.4 13 21 2.69 0.4 13 21 2.69 0.4 13 21 112 2.68 9483
c3540 50 22 1289 5.43 4.4 12 252 5.31 2.1 15 301 5.14 1.1 12 246 311 5.20 12102
c5315 178 123 1759 6.50 1.7 12 170 6.52 2.0 13 171 6.50 1.7 19 311 303 6.39 10209
c6288 32 32 3240 9.79 8.1 9 3237 9.81 7.9 9 3316 9.96 6.5 8 3675 307 10.66 32663
c7552 | 207 108 2314 10.14 18.9 8 1432 10.19 18.5 16 1560 10.82 13.6 15 1470 425 12.51 10812
[ Average [ 61 ] 597 [ 45 ] ]
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Figure 2: Indicator Functions, Piecewise-Constant Approximation, and Actual Power Profile for Benchmark c432.

5.2 Sequential Circuits

The second set of experiments concerns sequential circuits. We
have selected a subset of the ISCAS’89 benchmarks [5], so as to
create a representative sample, in terms of functionality, size,
and topological structure (sequential depth, number of inputs,
outputs, and flip-flops), of the existing examples.

Table 2 shows the results obtained for these circuits (column FF
indicates the number of flip-flops). Notice that for these exper-
iments the indicator functions we have used are the following:
i) primary input and primary output activity (column In-Out);
ii) primary input, primary output, and state (i.e. flip-flop in-
puts and outputs) activity (column In- Out-State); iii) complete
internal activity (column Intern).

As for the combinational examples, our method yields accurate
estimates, the average errors being 6.4%, 3.5%, and 2.2%, de-
pending on the sampling points selection approach. Execution
times are still much smaller (about one order of magnitude) than
those required by exhaustive simulation.

For some sequential circuit topologies, the temporal behavior
of the indicator function based solely on input-output switch-
ing is not necessarily informative enough on the actual power.
This is because, for sequential circuits having far more latches
than primary inputs, the degree of switching at the primary in-
puts has a limited correlation to the overall activity (and thus
power); rather, this is mainly driven by the switching at the
present state lines, which induces most of the switching inside
the combinational logic.
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Figure 3 shows a graphical view of this fact. The plots at the top
of the figure refer to circuit s298. This circuit clearly falls into
the class of circuits just described, since it has 3 inputs and 14
latches. Although the input stream for the circuit has an average
switching activity with staircase behavior, the power dissipation
(the top right plot) has very weak correlation with the input
switching activity (the staircase behavior is heavily smoothed
out). Nevertheless, our tool tracks the behavior of the power
dissipation very well, because the indicator function observes the
switching activity of the state variables as well. The piecewise-
constant approximation of the power dissipation is shown in
the top left plot. The plots at the bottom of the figure, on the
other hand, refer to circuit s344; in this case, waveforms seem to
exhibit a “combinational” behavior, in the sense that the input
activity has a considerable control over the internal degree of
switching (and, consequently, power dissipation). Power has a
staircase behavior that is easily tracked by our tool.

In general, we expect realistic sequential circuits to have a be-
havior similar to s298. In other words, sampling state infor-
mation is key for achieving good accuracy. This conjecture is
confirmed even by our average power dissipation estimates. The
accuracy of the estimate based on input, output and state ac-
tivity is much better than that based on just input and output
activity. Obviously, the most accurate estimate is obtained if we
use the complete internal switching activity information (but,
in this case, the computation of I{T) may be computationally
expensive, because it requires gate-level zero-delay simulation).



Cire 1 O FF G Estimated Power Actual Power
Tn-Out In-Out-State Intern 1T Ng Pow 1 T
Pow [ JE] [ 2 [ T [ Pow [ BT [ L2 [ T [Pow [[E[ILZT T |
5298 3 3 11 136 ] 0.045 | 9.6 | 20 30 ] 0.048 | 2.8 | 24 31 ] 0.048 | 2.6 | 31 34 | 115 | 0.050 393
3344 B 11 15 151 ] 0.080 | 2.2 | 10 21 ] 0.080 | 2.2 | 10 21 | 0.081 | 1.9 | 14 28 | 122 | 0.082 354
5420 8 T 16 168 | 0.035 | 12.7 | 12 20 | 0.038 | 6.1 | 14 30 | 0.039 | 4.4 | 15 23 | 125 | 0.640 272
3444 3 6 21 181 | 0.038 | 16.5 | 10 14 |0.042 | 51 | 12 29 | 0.046 | 0.8 | 23 26 | 123 | 0.046 136
5510 19 7 6 268 | 0.095 | 8.2 | 15 43 [ 0091 | 4.6 | 17 41 [ 0.098 | 3.5 | 27 33 | 131 | 0.095 225
s713 35 23 17 189 | 0.061 3.9 | 13 25 | 0.061 | 4.4 | 14 27 | 0.060 | 2.2 | 16 29 | 142 | 0.058 122
31196 14 14 | 18 647 | 0.189 | 50 | 12 67 | 0.188 | 4.4 | 12 66 | 0.185 | 2.7 | 13 80 | 115 | 0.180 956
51423 17 5 74 757 | 0.250 15 | 12 83 | 0250 | 1.4 | 24 | 172 | 0253 | 0.3 | 13 | 179 | 180 | 0.254 825
55378 35 49 164 1585 0.444 0.7 14 198 0.444 0.7 13 154 0.444 0.7 15 208 154 0.447 1513
513207 | 31 121 | 669 | 2693 | 0.5615 | 4.3 | 12 85 | 0.510 | 3.4 | 12 85 | 0.510 | 3.2 | 12 50 | 163 | 0.493 | 1770
[ Average ] 6.4 | ][ 3.5 2.2 | |
Table 2: Power Estimation Results for Sequential Circuits.
Figure 3: Different Behavior of Two Sequential Benchmarks.
It is worth observmg. thf‘l.t tlhxe accuracy of. the average power CADDR®) LD RESET
estimates for sequential circuits is not deteriorated with respect
to the combinational ones. Average errors are indeed inferior, xt] IN (8 * ’
although this is probably due to the nature of the benchmarks. l : l n
In the general case, we expect similar accuracy when an Input- d o ler e lesle
Output-based I(T) is used for combinational circuits and an co 5 C'dP a®
Input-Output-State-based I(T) is used for sequential circuits. A By yin)
5.3 Case Stud
y c® o® )
The effectiveness of the power estimation methodology of this Filter o0t ®)
paper is best illustrated by analyzing its application to a real- n u
life system. We designed a fully-functional programmable digi-
tal filter. Starting from a behavioral description in Verilog, we @) (b)

synthesized a gate-level implementation using Synopsys Design
Compiler, then we obtained the transistor-level implementation
in a 2um CMOS technology. The design contained 2190 gates
(approximately 4000 transistors).

The flow graph of the filter is shown in Figure 4 (a). All coeffi-
cients are programmable, hence any transfer function with three
forward and two backward coefficients can be implemented. The
input, output, and coefficients are 8 bit wide. The high-level ar-
chitecture of the design is shown in Figure 4 (b). The inputs
are: IN (the input bus, 8 bit wide), CADDR (the address bus,
3-bit wide, used for programming the coefficients), LD (the load
signal, used for programming the coefficients) and RESET. The
only output is OUT (the output bus, 8 bit wide).
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Figure 4: Flow Graph (a) and Architecture (b) of the Filter.

During normal operation, the LD and RESET signals are low,
the input data streams are provided on IN, one new datum
per clock cycle, and the output contains the filtered data, one
per clock cycle. The filter coefficients can be re-programmed
by: i) Setting LD; ii) Selecting the coefficient with CADDR;
i11) Providing the coefficient value on IN. One new coefficient
can be programmed per clock cycle. During programming, the
output does not contain valid data. The coeflicients and the
internal registers are reset (to 0) by rising the RESET signal.
Reset takes one clock cycle.
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Figure 5: Piecewise-Constant Approximation (Left) and Actual Power Profile (Right) for the Simulated Input Stream.

Although this is a simple design, the programmable filter is
complex enough to show the usefulness of our power estima-
tion methodology. First, notice that even during normal opera-
tion, successive inputs IN can be strongly correlated, and have
widely varying switching activity over time (consider, for exam-
ple, speech signals, with bursts of sounds and pauses). More-
over, by re-programming the coefficients, we can completely
change the type of filtering performed, and the switching ac-
tivity. Since re-programming is expected to be a rather rare
occurrence, it is important to detect when it happens, because
power dissipation after re-programming can change widely.

In our experiments, we created a (long) typical usage stream,
including reset and re-programming phases. Then, we tracked
the power dissipation of the filter over time using our power
estimation tool. One important characteristics of the design is
that it is has internal state, and its behavior is determined by
the coefficient values, that change very rarely (and require a
maximum of 5 consecutive clock cycles to be modified).

The filter has been simulated under an input stream consisting
of the repeated and interleaved application of a set of patterns
to program the coefficients and a burst of input data. Obvi-
ously, depending on the type of data to be processed, not all
five coeflicients need to be re-programmed. The total length of
the stream was 50,000 patterns. Figure 5 compares the esti-
mated power waveform of the input stream to the actual power
waveform calculated by exhaustive simulation. For this experi-
ment, N. was equal to 147, all other tuning parameters have the
same values used for both the combinational and the sequential
benchmarks. Table 3 shows the power values obtained from the
application of the input patterns of Figure 5 to the filter.

Estimated Power | Actual Power

{
[ I(T)_

[ Pow JTTEITJL2 [ T | Pow | T |
In-Out 2.362 4.4 24 513
In-Out-State 2.351 3.9 23 442 2.262 5020
Intern 2.334 3.1 20 382

Table 3: Power Estimation Results for the Programmable Filter.

6 Conclusions and Future Work

In this work we demonstrated how a multi-level simulation en-
gine can be exploited to achieve accurate power estimation in a
small fraction of the time that would be needed to perform an ac-
curate simulation on the entire pattern stream. Under realistic
input stimuli, the average power dissipation of digital systems
is often better described by an up-down staircase function than
by a single value. Our multi-level simulation approach achieves
high accuracy in tracking how average power varies over time.

A fast simulation of the entire, user provided, input stream is
performed. During high-level simulation an indicator function
is computed that provides information on when and how often
the short-term average power dissipation is expected to change.
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Low-level accurate simulation is dispatched on small portions
of the input stream whenever it is needed for quantitatively
tracking how power dissipation is changing over time. When
the entire input stream has been simulated, only a small fraction
has been simulated with the slow and accurate power simulator,
but the power waveform and the average power are estimated
typically within a few percents from the actual ones.

Although we provided extensive experimental evidence of the ef-
ficiency and accuracy of our approach (on both standard bench-
marks and a realistic case study) more work needs to be done in
two directions. First, we plan to apply our tool to much larger
systems such as microprocessors and DSP chips, where typical
input streams are actual user applications and software bench-
marks. Second, we want to investigate the theoretical properties
and the domain of applicability of our method.
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