
Computer Systems Laboratory Technical Report Report No. CSL-TR-97-739

Hardware/Software Co-Design of Run-Time Schedulers for
Real-Time Systems

Vincent John Mooney III and Giovanni De Micheli
Computer Systems Laboratory, Stanford University

Gates Computer Science Building
Stanford, CA 94305

mooney@pampulha.stanford.edu, nanni@galileo.stanford.edu

November 22, 1997

Abstract

We present the Serra Run-Time Scheduler Synthesis and Analysis Tool which automatically generates

a run-time scheduler from a heterogeneous system-level speci�cation in both Verilog HDL and C. Part of the

run-time scheduler is implemented in hardware, which allows the scheduler to be predictable in being able

to meet hard real-time constraints, while part is implemented in software, thus supporting features typical of
software schedulers.

Serra's real-time analysis generates a priority assignment for the software tasks in the mixed hardware-

software system. The tasks in hardware and software have precedence constraints, resource constraints,

relative timing constraints, and a rate constraint. A heuristic scheduling algorithm assigns the static priorities

such that a hard real-time rate constraint can be predictably met. Serra supports the speci�cation of critical

regions in software, thus providing the same functionality as semaphores.

We describe the task control/data-
ow extraction, synthesis of the control portion of the run-time sched-

uler in hardware, real-time analysis and priority scheduler template. We also show how our approach �ts
into an overall tool
ow and target architecture. Finally, we conclude with a sample application of the novel

run-time scheduler synthesis and analysis tool to a robotics design example.

1 Introduction

We consider the design of mixed hardware/software systems, such as embedded systems and robots. We aim
at providing Computer-Aided Design (CAD) tools that help bring hardware and software design
ows closer

together in order to allow designers to make tradeo�s between software and hardware and thus more quickly
evaluate design alternatives. An indispensable component to a system of cooperating hardware and software is

a run-time scheduler.
The sequence of hardware and software tasks can change dynamically in complex real-time systems, since

such systems often have to operate under many di�erent conditions. For example, a robotics system which

comes into contact with a hard surface may have to change its force control algorithm, along with its attendant
sensor set, estimators, and trajectory control routines. Therefore the scheduler must be dynamic.

In hardware/software co-design an important problem is the management of software routines and their
coordination with hardware. A clear and easy solution is to put the run-time system in software and suitably
design the hardware such that it can be controlled from the software. Unfortunately, software schedulers may not

be predictable as far as being able to satisfy real-time constraints. Therefore we implement the time-constrained
portion of the scheduler in hardware, where delays are accurately known. This paper presents a strategy for

a mixed implementation of dynamic real-time schedulers in hardware and software, and a CAD tool, called
Serra, to synthesize the necessary hardware and software for the run-time scheduler as well as analyze the

performance of the system.

Approaches to hardware/software co-design of embedded systems [14] can be di�erentiated in several ways.

One way is to consider the system-level speci�cation, which is either homogeneous (i.e. in a single speci�ca-
tion language) or heterogeneous (i.e. involving multiple modeling paradigms). Another way to di�erentiate
approaches is to distinguish how the CAD tool partitions the system speci�cation: approaches consider either

�ne-grained partitions, i.e. at the operation or basic block level, or coarse-grained partitions, i.e. at the process
or task level ([19] de�nes granularity in a slightly di�erent way). For example, [20, 18, 5] can be classi�ed as

homogeneous and �ne-grained approaches, while [2, 36] are heterogeneous and coarse-grained. The method of
[32] supports homogeneous speci�cation in VHDL with both �ne- and coarse-grained partitioning. We take the
heterogeneous and coarse-grained approach in this paper.

There has been much previous work in hardware-software partitioning [18, 36, 14]. However, system de-
signs modeled by heterogeneous speci�cations are often already partitioned by designers into modules or tasks.

Whereas some optimality is lost in using a coarse granularity in partitioning, the resulting implementation is
often closer to what designers expect, and interfacing hardware to software blocks is easier. We assume the

availability of automated interface generation similar to [9, 36].
Designers of real-time embedded systems often have timing constraints that they must meet for the design to

be successful. To support soft and hard real-time constraints, system designers need tight bounds on execution

delays. In hardware/software co-design, scheduling resources to meet these tight bounds is a critical problem
because there may be parallel threads of execution in the application with the same resource required by di�erent

threads.
Previous approaches to real time analysis have focused on software [28] since the performance analysis of

ASICs is considered a well studied problem already. Rate Monotonic Analysis (RMA) [26] and Generalized

Rate Monotonic Analysis (GRMA) [35] both assume that tasks are independent and that each task has its own
period and deadline. RMA has been extended to account for release jitter and resource contention [3, 4]. RMA

has also been extended to allow precedence among tasks by formulating the problem as a big task with the
length of the Least Common Multiple (LCM) of all the periods [34]. Unfortunately, this approach is usually

impractical for hardware/software co-design because it is di�cult to handle a situation where the period and
computation times are nondeterministic but bounded, since a period of a LCM does not represent all possible
situations [37].

Our formulation is similar to [8, 13, 33, 34, 37]. However, in our case we synthesize a custom run-time
scheduler in hardware and software for the application [30]. As a result, we have more information about the

scheduling of hardware and software tasks. Given this more exact level of control, we can perform tight real-time
analysis allowing high CPU utilization. In performance- or safety-critical systems (e.g. a mobile robot control
system for capture of a satellite in space) our technique can provide precise real-time bounds.

In the approach of this paper, if a solution is found, we output the task priorities and guarantee that
the system meets its relative timing constraints and its rate constraint, assuming the system uses the custom

run-time scheduler generated. While the approach of [6, 7] is more general for veri�cation purposes after the
priority for each task is assigned, it does not address the issue of assigning the priorities, nor does it address rate-

constraint analysis to �nd a worse case execution time (WCET) for the application implemented in hardware and
software. Similarly, [5, 13] assume the task priorities are given and does not guarantee their WCET calculations
are never exceeded.

The rest of the paper is organized as follows. Section 2 explains our design approach and corresponding
requirements. Section 3 describes our target architecture for the system and the run-time scheduler. Section 4

discusses how we model our system of hardware and software. Section 5 presents the real-time analysis and
priority generation for software tasks. Section 6 presents how we account for worst-case context switch and

scheduling cost when running the application, and presents a heuristic for decreasing WCET when allowing
tasks to be suspended and context switched out. Section 6.6 presents our support for critical regions. Next,
Section 7 shows the
ow of the Serra Run-Time Scheduler synthesis and analysis tool. Section 8 gives some

experimental results and presents an example from robotics. Finally, Section 9 concludes the paper.

2

2 Motivation and CAD Requirements

We aim at supporting system-level design with hardware/software tasks custom designed for a target architec-

ture. We refer to the tasks in hardware as hardware-tasks and to the tasks in software as software-tasks. We
assume the existence of mature high-level synthesis tools and software compilers, as well as intellectual prop-

erty in the form of processor and controller cores. We assume that the system requires both static scheduling,
especially in the coordination of hardware-tasks, and dynamic scheduling, given the inexact delay of software
and the randomness of the stimuli coming from the environment. A run-time scheduler must meet both of these

scheduling requirements. Our tool, called Serra, automates the generation of the run-time scheduler, thus
providing for the synchronization and scheduling of system-level components in hardware and software.

Our approach assumes a coarse-grained partition of the system into tasks. We assume tasks model system
components of signi�cant sizes, and that the system consists of around ten to a hundred tasks. The tasks are

assumed to be written either in Verilog or in C. This approach matches design practice, where designers often
describe their systems in a heterogeneous way, using description languages appropriate to the subsystem being
implemented.

Figure 1: PUMA Arms (Courtesy of the Computer Science Robotics Lab at Stanford)

Example 1 As a motivational example, consider the set of control algorithms of Figure 2. These algorithms calculate

torques for the PUMA robot arms shown in Figure 1.

We assume that the controller manages two arms at the same time, and thus any two of the algorithms may be selected

in each execution. An execution of the arm controller must complete calculation of new torques for the arms once every

millisecond. Since each arm has six degrees of freedom, only six new torque values need to be communicated for each update;

thus, the amount of data
ow in the system is small. However, the algorithms (\laws" in robotics terminology) need to

maintain
oating point matrices representing the kinematics and dynamics of the arms, so that the computation would be

di�cult to represent concisely in, for example, �nite-state machines. This control approach is also drastically di�erent than

the fuzzy logic adaptive control in [1].

Figure 2 shows three of the ten di�erent algorithms (laws) used with a PUMA arm; Ohold2 Law, Ohold Law, and Jhold

Law are top-level tasks which call subtasks in a particular sequence. The coarse-grained partitions of Ohold2 Law, Ohold Law,

and Jhold Law contains calls to many common subtasks. Some of the subtasks involve hardware components with timing

constraints speci�ed on a cycle basis. 2

The CAD requirements for co-design of a system such as Example 1 are as follows. First, we need to
satisfy hard real-time constraints imposed by some of the hardware components in the system as well as by

3

calc
joint
dynamics

saturate
velocity

sat

convert
force
torque

find
jacobian

find
jacobian
transpose

calc
gravity

singular

calc
lambda
mu

sum
vector

matrix
vector
multiply

Jhold
 Law:

matrix
vector
multiply

oh2

oh3

matrix
vector
multiply

oh4

Ohold
 Law:

Ohold2
 Law:

find
jacobian

matrix
vector
multiply

oh2

Ohold
 Law

0 1

oh3

0

1
calc
joint
dynamics

matrix
vector
multiply

calc
gravity

sum
vector

matrix
vector
multiply

matrix
vector
multiply

 forward
kinematics

Figure 2: Robotics Example: Concurrent Control Algorithms

external hardware. Second, we need to optimize the run-time system over calls to multiple tasks in hardware
and software. This involves allocation of tasks to hardware and software as well as interface generation for

communication. Third, we need to guarantee a hard real-time rate constraint across tasks in hardware and in
software. The handling of multiple-rate constraints is beyond the scope of this paper.

The run-time scheduler synthesis described here supports the execution of software-tasks through an interrupt
triggering mechanism where hardware communicates to a software scheduler which of the software-tasks are
ready to execute. The Clara tool, which is embedded within the Serra system, takes as input the worst
case execution time (WCET) for each task and then provides for the automated generation of priorities for the
software-tasks to be run on a preemptive �xed priority scheduler as well as WCET calculation for subsets of

hardware- and software-tasks under a hard real-time rate constraint. Thus, Serra provides the user with the
ability to evaluate the performance of di�erent partitions with an automatically generated run-time scheduler
(system). For example, the user can migrate a task from C to Verilog to speed up a critical path in the algorithm.

Figure 3 shows the tool
ow in which Serra is embedded. Hardware-tasks are speci�ed in Verilog that
can be synthesized by the Synopsys Behavioral CompilerTM [23] (labeled BC in Figure 3; DC labels the Design

CompilerTM). Software-tasks are written in C. Microprocessor cores, memories (DRAM, SRAM), FIFO models,
and other custom blocks are assumed as available inputs to the system.

The system-level tasks in Verilog and C, as well as constraints, are input to a tool that generates the interface
and to Serra. Constraints include relative timing constraints (minimum and maximum separation), resource
constraints, and a single rate constraint. The implementation of the synthesized system can vary from a system

on a chip to a board or set of interconnected components. The overall control/data
ow of the run-time scheduler
is synthesized into hardware, while the necessary code for calling tasks in software is generated as well. Further

aspects of an RTOS can be added in software by the user if desired, although Serra's WCET calculation
assumes that only the software which Serra generates is run on the microprocessor.

We wrote a new backend for cinderella[28] for MIPS assembly run on a MIPS R4K processor; we call the

new tool cinderella-M. Software-tasks are compiled and input to cinderella-M, which outputs a WCET
for each task. Similarly, from the hardware synthesis of the Synopsys Behavioral CompilerTM (BCTM)[23],

we obtain an exact execution time for each hardware-task, which we take as a WCET for the hardware-task.
The WCET value for each task is required in order to analyze whether or not we will always meet our rate

constraint.

4

behavioral
 Verilog C constraints

 Interface
Generation

User options
(protocols,
 fifos, RAM
 model, core)

behavioral
 Verilog

BC

BC

RAM
L1

V1 Vn

Ι RTS.c

*.c

 Serra
Run−Time
Scheduler
Synthesis

RTS.v
...

 RTL
 Verilog

DC

 System Specification

User options
(microprocessor
 core, RAM size)

wcet

wcet cinderella−M

CPU
Core1

Figure 3: Tool Flow and Target Architecture

This paper focuses on the synthesis and analysis of a custom run-time scheduler.

3 Target Architecture and Kernel

Our target architecture consists of a CPU core with multiple hardware modules, each implementing a particular
hardware-task. The CPU has a two-level memory hierarchy consisting of instruction and data caches with a
large RAM. Since we target embedded systems, we assume that the RAM is large enough to hold all the program

code needed.

3.1 Task Execution

We associate a start and a done event with each task in order to allow the scheduler to control the task. In
hardware the two events are simply signals on an input port and an output port, respectively. For software, we

have a start vector and a done vector which encapsulate the start and done events for each software-task.
Note that some tasks are called multiple times by di�erent tasks, such as matrix vector multiply in our

robot example, as can be seen in Figure 2. Some real-time constraints in hardware can be satis�ed by high-level
synthesis. However, constraints at the task level must be handled by the run-time system. How can the run-
time system dynamically allocate tasks while at the same time predictably satisfying exact timing constraints

between tasks?
The solution to predictability comes from a hardware solution with cycle based semantics. Thus, constraints

between events in exact units of cycles can be predictably met. We solve this scheduling problem using a
hardware cycle based FSM implementation of the part of the scheduler which chooses which task(s) to execute

next.

5

3.2 Run-Time Scheduler Implementation

We split the run-time scheduler into hardware and software based on an analysis of the constraints. We

hypothesize that exact relative timing constraints between tasks cannot be satis�ed by software. Thus, we
have the problem of choosing between the predictability of satisfying real-time constraints in hardware and the

desirability of having some features of an RTOS. We try to accommodate both choices by putting in hardware a
FSM corresponding to the task control
ow of the system, while putting in software a reactive executive which
calls the appropriate software-tasks when signaled by the hardware FSM.

Therefore we split the run-time scheduler into two parts:

� An executive manager in hardware with cycle-based semantics that can satisfy hard real-time constraints.

� A preemptive static priority scheduler that executes di�erent threads based on eligible software-tasks as

indicated by the start vector.

CPU
core1

done
start

done
start

RTS.v

CPU Interface

memory controller

done
start

done
start

RAM

64

int

V1 Vn...

L1

Figure 4: Target Architecture

Figure 4 shows the target architecture of our system. At the top we have a CPU core with a level 1 cache and
copies of the start and done vectors in on-chip registers. The bottom shows n hardware tasks V 1 through V n.

The executive manager hardware FSM is labeled RTS:v and generates all the start events as well as receives all
the done events. This FSM is synthesized to implement the overall system control and can predictably meet the
relative timing constraints, if satis�able, speci�ed in exact numbers of cycles between the start times of tasks.

3.3 Control of Software

The hardware run-time scheduler updates the start vector in software as follows. First, it updates its local
register containing the start vector. Then it triggers an interrupt on the CPU. The CPU interrupt service
routine (ISR) reads the register using memory-mapped I/O and places it into the software copy of the start

vector. Figure 4 shows both the start and done vectors in registers in RTS:v and their copies in on-chip registers
in CPUcore1.

The start vector may specify that several software tasks are ready to be executed. Thus, we generate a
preemptive static priority scheduler which executes the highest priority software-task among the tasks indicated
by the hardware FSM as ready to execute. The priority-based scheduler is always called by the ISR after

fetching the new start vector into memory, and whenever a software-task terminates.

6

When a software-task is �nished executing, it updates the done vector by writing the new value of done out

with memory mapped I/O. Thus, the done vector in the run-time scheduler in hardware is updated. Notice
that in the above two cases, a dedicated port could be used instead of memory-mapped I/O, depending on the
CPU.

3.4 Software Generation

For the software that runs on the microprocessor core (CPU), the individual software-tasks are compiled and

linked using standard C compilers and linkers. The software tasks are compiled and linked into assembly, with
data and program memory statically allocated. Memory-mapped I/O is called with C pointers set explicitly to

the appropriate addresses. We thus have a table of software-tasks and their entry points as seen in Table 1.

Entry Value

0 Pointer to sw-task 0

1 Pointer to sw-task 1

. . . .

n Pointer to sw-task n

Table 1: Entry Table for Software-Tasks

Therefore, given a particular value of the start vector, the appropriate software-task(s) can be executed.
The typical sequence of events in software is as follows:

� A hardware interrupt trigger the execution of the ISR.

� The ISR updates the start vector and, if a higher priority task has become ready, calls save context.

� A priority scheduler updates the task data structure and executes the highest priority task now ready. If

needed, the priority scheduler calls restore context.

� When a software-task is �nished, it writes out the new value of the done vector.

An advantage of this approach is that it can support standard RTOS scheduling algorithms (round-robin, rate-

monotonic, etc.), although we only consider a static priority scheme here. Multiprocessing is helpful when a
low-priority, long duration software-task is ready to execute at the same time as a high priority, short duration

software-task, but a price is paid when switching context. A disadvantage of multiprocessing is the slower
response time due to added overhead for implementing the RTOS scheduling algorithm, polling executive, and
associated context switches.

Another possible option which has lower overhead is to have the ISR directly invoke each software-task,
executing each task in kernel mode, as discussed in [30]. Such a scheme, however, does not allow a lower priority

task to execute while an unexecuted higher priority task is not yet ready. Thus, in this paper we only consider
a priority driven scheme.

3.5 Priority Scheduler Template for Software

A task can be in one of two states: running=suspended or ready=terminated. In our simpli�ed real-time

operating system, once a software-task has completed (terminated), it is ready to run again, so we overlap the
traditionally distinct ready and terminated states into one. The running=suspended state, combined with the
information in the start and done vectors, tells us whether or not restore context needs to be called before

invoking the highest priority task. In particular, if a higher priority task just �nished execution and the next
highest priority software task ready to execute is in the running=suspended state, then we know that it must

have been executing earlier at some point. Thus, we execute a restore context for that process. Otherwise,
we simply jump to the starting PC for the task.

7

Note that the interrupt service routine (ISR) is responsible for calling save context if needed. The register

�le that contains the process state information is saved only when the new start vector indicates that a higher
priority task is now ready to execute (i.e. we eliminate context switching when one task ends and a new task
begins, in which case there is no need to save/restore the register �le).

In operating systems terms, the run-time scheduler software portion implements priority-based job scheduling
(multiprogramming). Strictly speaking, this is not multitasking since there is no time-shared access to CPU

compute cycles.
Clearly, for this implementation to work, we need a priority for each software-task. We obtain the priorities

from the real time analysis, which will be explained in Section 5. We now turn to modeling issues.

4 System Modeling

Wait
Next
Tick
(wnt)

 Get
Position1
 (gp1)

 Get
Velocity1
 (gv1)

 Get
Position2
 (gp2)

 Get
Velocity2
 (gv2)

 Handle
Message
 (hm)

 Set
Torque2
 (st2)

 Set
Torque1
 (st1)

Jhold
 Law
 (jh)

Note: wnt, gp1, gv1, gp2, gv2,
jh,oh,st1,st2, and hm are the
events associated with each task.

start

Which two laws to execute
concurrently in the next
iteration are selected by

Epsilon

Ohold1
 Law
 (oh)

Figure 5: Robotics Example: Main Task

The input speci�cation is a collection of tasks written in Verilog or C, with one of the tasks designated as

the main task. The main task begins execution and calls the other tasks. The main task speci�es the overall
sequence of tasks in the application (an example of a main task can be seen in Figure 5). From each task we
extract a Control/Data-Flow Graph (CDFG) of the tasks it invokes, where each node in the CDFG corresponds

to a call to another task. If a task does not call any other task, then it has no such CDFG. We call this kind of
task a leaf task. A task which is not the main task nor a leaf task is an intermediate task. An intermediate task

must trace back its invocation to the main task, and the intermediate task must itself invoke at least one leaf
task. We assume that an intermediate task has all computation speci�ed in leaf tasks. If an intermediate task

does contain some computations, a new leaf task can be generated containing these computations. This allows
us to
atten the hierarchical description and generate a CDFG of the system where all nodes are leaf tasks. We
assume that we have a rate constraint speci�ed for the CDFG of the system. In other words, we assume that

the main task is invoked at a �xed rate.

Example 2 Figure 5 shows the overall
ow of execution of the robot controller in the form of a CDFG of the main task for

the system. The original speci�cation of the main task was in Verilog. The other tasks are speci�ed in C and Verilog.

Note that the CDFG of Figure 5 must complete once every millisecond. Thus, we have a rate constraint on the graph.

An example a
attened CDFG where all the nodes are leaf tasks can be seen in Figure 6. The
attened CDFG executes

an appropriate subset of the control algorithms of Figure 2 to output torques for two PUMA robot arms. In this case, since

there is no branching, the CDFG is equivalent to a DAG with relative timing constraints. 2

8

cg

fk

cjd

Jhold Law

oh0

oh1

2 2
Set Torquexf1 xb1 xf2 xb2−8 −8

wnt

gp1 gv1 gv2

hm

gp2

mvm1

mvm2

mvm4

mvm3

epsilon
Ohold1 Law

Figure 6: Flattened CDFG of Robot Arm Controller

Serra leverages previous research on modeling hardware using control-
ow expressions (CFEs) [10, 11]. In
Serra, CFEs represent an intermediate model of the run-time system that captures the global control-
ow
information in the system.

CFEs represent the serial/parallel
ow of computation, branching, iteration, synchronization and exceptions.
CFEs can specify control
ow that satis�es our relative timing constraints[24] in hardware while also controlling

dynamically the
ow of execution. CFEs have a deterministic �nite-state machine (FSM) semantics, and so can
be compiled into speci�cation FSMs representing the possible control-
ow implementations.

We support the speci�cation of tasks that cannot execute concurrently through the use of NEV ER sets

[10]. For example, NEV ER = fa; b; cg indicates that tasks a, b, and c can never be active at that same time. In
general, NEV ER sets can model mutual exclusion; here, we use NEV ER sets to model resource constraints.

We make use of this feature to specify resource constraints such as (i) multiple calls to the same piece of physical
hardware (which implements a hardware-task), or (ii) software-tasks executed on the same microprocessor. In
this paper, we consider any number of NEV ER sets. For a target architecture of one CPU core, it makes sense

to have a single NEV ER set of software-tasks, which we use to serialize the software-tasks executed on the
same CPU, and multiple NEV ER sets of hardware-tasks. This is the case we focus on in this paper.

In a similar vein, tasks that must begin execution at the same time are speci�ed through the use of ALWAY S
sets; e.g. ALWAY S = fa; b; cg indicates that tasks a, b, and c must each begin execution at the same time.

Note that this is the same as having bilateral relative timing constraints of zero weight, which our run-time
scheduler also supports. Thus, we do not consider ALWAY S sets explicitly in the formulation of our problem.

5 Real Time Analysis

We aim at predictably satisfying real-time constraints in the form of control/data-
ow (precedence) constraints,

resource constraints, and a rate constraint. We assume that we have as input a CDFG representing the
ow of
tasks in the application, a rate constraint on the graph, and NEV ER sets specifying a resource constraint on
software-tasks and resource constraint(s) on hardware-tasks. In this section, we �rst show a formulation which

does not include NEV ER sets of hardware-tasks (hardware resource constraints) for the sake of simplicity of
explanation. We expand the formulation to include multiple NEV ER sets of hardware-tasks in Section 5.2.

To predictably satisfy the rate constraint, we need a worst case execution time (WCET) for each task and a
WCET for the control/data-
ow of the set of tasks under the rate constraint. We obtain the WCET times for

the individual tasks from cinderella-M and BCTM [23]. We need some assumptions to compute the WCET

9

for the set of tasks.

Assumption 5.1 We have a Directed Acyclic Graph (DAG) representing a set of tasks,a WCET for each task,
and a NEV ER set specifying tasks that must be executed in a mutually exclusive manner. A rate constraint is
speci�ed for the execution of the whole graph.

Example 3 Figure 6 shows the DAG resulting from the parallel execution of Jhold Law and Ohold1 Law. While the full

CDFG can select more combinations, e.g. Ohold2 Law and Jhold Law, we consider here only the case where Jhold Law and

Ohold1 Law are selected to execute in parallel. In other words, the CDFG has been e�ectively reduced to a DAG. Note that the

system is still dynamic since the start and done times of tasks in the DAG are not determined ahead of time but are handled

at run-time. Also, the DAG may contain relative timing constraints. 2

Note that reducing the CDFG to a DAG limits the amount of control-
ow information in the graph to relative
timing constraints among tasks. In particular, a control choice equivalent to an if statement is not modeled,

nor is branching. Also note that for now we consider only a single NEV ER set of software-tasks executed on
the same CPU. We assume that we have the resulting DAG in graph form G(V;A), where V is the set of vertices

and A is the set of directed edges (\Arrows").

Assumption 5.2 Software is executed by a simple priority scheduler consisting of four code segments: an
interrupt service routine(ISR), a priority scheduler, a save context routine and a restore context

routine.

Note that the priority scheduler is compiled for each embedded application; the other three routines are
written in assembly and do not require any recompilation.

Assumption 5.3 Each task, once started, runs to completion.

Together with the previous assumption and the fact that the priority scheduler code only uses regis-
ters reserved for the operating system, we �nd that the only overhead for software-tasks are the ISR and
priority scheduler calls. We will relax the assumption of running to completion later when calculating

WCET involving software-tasks which can be partially executed before being interrupted.

Assumption 5.4 Hardware-software communication time is included in the WCET of each task and/or is
included as a distinct task.

We have several communication primitives, such as shared memory and FIFOs, with interface generation along
the lines of [9, 36].

Assumption 5.5 Interrupts that switch context come only from the hardware run-time scheduler as described
in Section 3.3.

Example 4 As an example, consider Figure 7. This represents a subset of the tasks in our robot control algorithm.

The WCET times for the individual tasks have already been calculated by cinderella-M and BC
TM

. Three tasks are

speci�ed in Verilog: mvm, fk, and cg, corresponding to matrix vector multiply, forward kinematics, and calc gravity,

respectively, in Figure 2. (Task mvm has four instantiations in mvm1-4.) Similarly, three tasks are speci�ed in C: oh0, oh1,

and cjd, where cjd corresponds to calc joint dynamics in Figure 2 and both oh0 and oh1 are coarser-grained groupings

of tasks called by Ohold Law in Figure 2. Since our target architecture for this example contains only one microprocessor, all

three software-tasks are put into a single NEV ER set which states that their execution times cannot overlap at all. Thus,

the tasks must be serialized.

Consider the NEV ER set shaded in Figure 7. A �rst-come-�rst-serve scheduling algorithm would schedule oh0 �rst, then

oh1 (since mvm is still executing when oh0 �nishes), and cjd last. Without considering the small overhead of the priority

scheduler, this results in a WCET of 46,033 cycles for the graph. However, if oh1 were executed after cjd, the WCET would

be 39,012 for the graph. 2

10

cg

fk

cjd

src

sink

Jhold Law

oh0

oh1

NEVER = {oh0,oh1,cjd}

mvm1

mvm2

mvm3

mvm4

task
−−−−
cg
oh0
oh1
fk
cjd
mvm1
mvm2
mvm3
mvm4
src
sink

wcet
(cycles)
−−−−−
4,000
2,221
17,399
4,500
13,213
4,400
4,400
4,400
4,400
0
0

bcet
(cycles)
−−−−−
4,000
1,598
12,341
4,500
9,989
4,400
4,400
4,400
4,400
0
0

Ohold1 Law

Figure 7: DAG and WCET

Example 4 shows a di�cult problem in that a NEV ER set of software-tasks may cross parallel paths. We

cannot use one execution of a longest path algorithm to solve this problem, because the execution start time of
each task in a NEV ER set depends upon the scheduling of the other tasks in the NEV ER set. In fact, �nding

the serial order of tasks in the NEV ER set which minimizes WCET can be shown to be NP-Hard using the
Sequencing with Release Times and Deadlines problem [17].

In the context of our system design, solving this problem allows us to proceed with our real-time analysis.

For example, once we have a WCET for the CDFG of Figure 5, then we can say if the robot controller �nishes
execution within one millisecond.

5.1 Constructive Heuristic Scheduling

We want to �nd a schedule for the tasks, with a NEV ER set containing all the software-tasks, where the
other tasks are all hardware-tasks. We �nd an ordering of the software-tasks using a problem formulation

which is reminiscent of dynamic programming[21]. The formulation enables us to construct in polynomial time
a schedule of the tasks which minimizes WCET (the heuristic may �nd a local minimum). Our constructive

heuristic scheduling algorithm allows us to take into account precedence constraints, a rate constraint, and a
resource constraint in the form of a NEV ER set of software-tasks. In Section 5.2, we will extend constructive

heuristic scheduling to include multiple resource constraints in the form of NEV ER sets of hardware-tasks.

5.1.1 Constructive Heuristic Scheduling Formulation

We take as input the DAG G(V;A) annotated with WCETs (one per task), a NEV ER set specifying the

mutually exclusive software-tasks, WCETisr which is a WCET for the ISR, and WCETprsched which is a
WCET for the priority scheduler code.

We divide the problem into stages according to the number of tasks in the NEV ER set. We �rst �nd a

solution for the last stage, then the second-to-last stage, etc., up to the �rst stage (we proceed in reverse order
from the stage number). We use the following de�nitions:

De�nition 5.1 Let there be n stages, where in each stage we decide which among n tasks to schedule.

The number of stages n is set equal to the number of tasks in the NEV ER set plus two (for the source and the

sink).

11

De�nition 5.2 Let t denote a task, and let ti denote a task executed in stage i.

De�nition 5.3 Let the multivalued decision variables xik, i 2 (1; 2; : : : ; n� 1) and k 2 Z+, denote the ordered
set of tasks from the NEV ER set executed in the subsequent stages, i.e. after stage i.

Note that xik represents an ordered set of tasks.

De�nition 5.4 Let Xi, i 2 (1; 2; : : : ; n � 1), denote the multiset of decision variables fxikg.

Example 5 Consider Figure 7. Since jNEV ERj = 3, there are 5 stages. In stage 3 we could �nd that X3 = fx31; x32; x33g =

f(oh0,sink),(oh1,sink),(cjd,sink)g. Each x3k is an ordered set, and X3 is a multiset. 2

De�nition 5.5 Let state si = (ti; xik) in stage i denote the current task ready to start execution and the
subsequent tasks from the NEV ER set executed in stages (i + 1; i + 2; : : : ; n � 1), where the sink is always
executed in stage n.

Note that given an ordering of software-tasks, the rest of the graph is scheduled with an As Soon As Possible

(ASAP) schedule that takes into account the dependencies induced by the ordering of the mutually exclusive
tasks.

Example 6 In Figure 7 the tasks under consideration are src, oh0, oh1, cjd, and sink. Since the sink is always executed

last, Xn�1 = X4 = f(sink)g. The possible tasks executed before the sink, and thus in stage 4, are t4 = oh1 and t4 = cjd.

Thus the possible states in stage 4 are s4 = (oh1,sink) and s4 = (cjd,sink). 2

We denote the WCET for task t by WCET (t).

 s
−−−−−−
oh1,sink
cjd,sink

NEVER = {oh0,oh1,cjd}
cg

fk

cjd

src

sink

oh0

oh1

4 −−−−−
21,799
26,413

4
GraphWCET(s)

mvm1

mvm2

mvm3

mvm4

Figure 8: GraphWCET Example

De�nition 5.6 Given a state si, let Gsi
� G be the directed acyclic graph Gsi

(Vsi ; Asi
) de�ned by the tasks in

state si and their successors.

Example 7 Consider Figure 8. In this example we are in stage i = 4. The leftmost shaded area covers Gs4 de�ned by

s4 = (oh1,sink). In this case Vs4 = foh1,mvm1,sinkg. 2

12

De�nition 5.7 Given a state si, let si be called valid if Gsi
does not contain any task which is in the NEV ER

set but does not appear in si.

Example 8 Consider Figure 8 again. The two valid states in stage 4 are s4 = (oh1,sink) and s4 = (cjd,sink). State s4

= (oh0,sink), however, is not a valid state because Gs4 contains oh1, which is in the NEV ER set but not in s4. 2

De�nition 5.8 Given a valid state si, let GraphWCET (si) be the worst case execution time (WCET) as
determined by an As Soon As Possible (ASAP) schedule for Gsi

, where any tasks in Gsi
which are in the

NEV ER set are executed in the order in which they appear in si. (If si is not valid, then GraphWCET (si) is
unde�ned.)

Example 9 Continuing with Figure 8, consider the leftmost shaded area again. For thisGs4 , we �nd that GraphWCET (s4) =

WCET (oh1) +WCET (mvm1) = 21; 799. 2

In other words, GraphWCET (si) is the overall WCET for stages (i; i+ 1; : : : ; n), given that the �rst task ti in

si is executed in stage i, and the rest of the tasks xik in si are executed in stages i + 1; i + 2; : : : ; n according
to the order in which the tasks appear in xik.

De�nition 5.9 Let fi(si), i 2 (1; 2; : : : ; n�1), denote a value equal to GraphWCET (si) if both si is valid and
the order of tasks in si does not violate any precedence constraints; otherwise let fi(si) =1. We de�ne fn(sn)
to be zero since there is no task to execute after the last stage, and the last task executed is always the sink (so
that it is always the case that sn = (sink)), whose execution takes zero cycles.

Example 10 A possible state for Figure 8 is s4 = (t4; x41) = (oh0,sink). However, this state is not valid, and so

for s4 = (oh0,sink), f4(s4) = 1. The other two possibilities for s4 are shown in Figure 8, and for those two we have

f4(s4) = GraphWCET (s4). 2

Recall that tasks not in the NEV ER set are all hardware-tasks and are scheduled ASAP.

De�nition 5.10 Let fi
�(si), i 2 (1; 2; : : : ; n � 1), be the minimum �nite value of fi(si) = fi(ti; xik) over all

possible xik for a given ti.

De�nition 5.11 Given task ti (the current task executing), let xik� denote the value of xik that yields fi
�(si) =

fi
�(ti; xik).

Note that if there is no xik such that fi(si) = fi(ti; xik) is �nite, then we have no fi
�(si) nor xik� de�ned for

task sequences beginning with task ti in this stage.
Thus, when computing fi

�(si), we �nd the following holds, if there exists at least one state xik for which
fi(ti; xik) is �nite:

fi
�(si) = min

xik

fi(ti; xik) = fi(ti; xik�); i 2 (1; 2; : : : ; n � 1)

De�nition 5.12 Given a valid state si = (ti; xik), let ts denote a successor of task ti, where Gts
� G is

the graph de�ned by ts and the successors of ts. Then, we de�ne GraphWCETsucc(ti; xik) to be the largest
GraphWCET (ts; xik) of any successor ts of task ti.

In calculating GraphWCETsucc(ti; xik), we schedule the subgraph induced by the successors of task ti using
an ASAP schedule. If we �nd a successor ts of ti that is in the NEV ER set, then we use GraphWCET (ts),
which, since the state is valid, was already calculated in a previous stage that scheduled the tasks in xik.

Example 11 Consider Figure 9 where we are in stage 3; the leftmost shaded area shows Gs3 for s3 = (oh0, oh1,sink).

So we have t3 = oh0 and x32 = (oh1,sink). One successor of task t3 is oh1, which is a member of the NEV ER set. Thus

we use GraphWCET (oh1; x32) = 21; 799 as calculated in the previous stage. The other successor of task t3 is fk, for which

we �nd that the subgraph consisting of tasks ffk; mvm1; sinkg yields GraphWCET (fk; sink) = 8; 900 (recall that a state

si = (t; xik) consists of a task t and decision variable xik, where the tasks in xik must be in the NEV ER set, or be the src

or the sink, but the task t need not be in the NEV ER set). The �nal result is GraphWCETsucc(t3; x32) = 21; 799. 2

13

NEVER = {oh0,oh1,cjd}
cg

fk

cjd

src

sink

oh0

oh1

 s
−−−−−−−−−
oh0,oh1,sink
cjd,oh1,sink
oh1,cjd,sink

3 −−−−−
24,020
35,012
43,812

3GraphWCET(s)

mvm1

mvm2

mvm3

mvm4

Figure 9: Constructive Heuristic Scheduling Example Stage 3

De�nition 5.13 Given a state si = (ti; xik), we de�ne the following:

GraphWCETextra(si) =

8<
:

GraphWCETsucc(ti; xik)�GraphWCET (xik) if GraphWCETsucc(ti; xik)
> GraphWCET (xik)

0 otherwise

and GraphWCET (si) =WCET (ti) +GraphWCETextra(si) +GraphWCET (xik).

Example 12 Consider the leftmost shaded area in Figure 9 again; we have t3 = oh0, x32 = (oh1,sink) and s3 = (t3; x32).

We found previously that GraphWCET (x32) = 21; 799 and GraphWCETsucc(t3; x32) = 21; 799. From these values we �nd

that GraphWCETextra(s3) = 0 and thus GraphWCET (s3) =WCET (oh0) + 0 +GraphWCET (x32) = 24; 020. 2

This de�nition allows us to take into account the case where GraphWCETsucc(ti; xik), the WCET of the
subgraph covered by the successors of task ti, is not determined by GraphWCET (xik) (i.e. the path through

the software task(s) in xik) but instead is determined by a di�erent path through the subgraph. At this point
we have speci�ed all the de�nitions needed to calculate GraphWCET (s) for any state s.

5.1.2 Constructive Heuristic Scheduling Solution

The number of stages n we use is equal to the number of tasks in the NEV ER set (which we call SWNEV ER

since it is composed entirely of software-tasks) plus two (for the source and the sink). We use a bottom-up
approach and set the last stage to be the sink and the �rst stage to be the source (we always have a source and
a sink according to Assumption 5.1).

In each stage, we compute the best sequence of tasks given that we start with a particular task. That is, in
stage i, for each possible �rst task ti 2 SWNEV ER, we �nd the sequence of tasks starting with ti in stage i

and xik� in stages (i; i + 1; : : : ; n) which yields the smallest GraphWCET . Thus, since each distinct sequence
of tasks de�nes a unique decision variable for the next stage, at most jSWNEV ERj decision variables are

carried over from one stage to the next. Thus, for each ti 2 SWNEV ER, there are at most jSWNEV ERj
candidates for xik. This limits the total number of task sequences considered in each stage to a maximum
of jSWNEV ERj2, making the algorithm polynomial instead of exponential. Unfortunately, it also makes the

algorithm a heuristic instead of an exact solution method.

14

Since the sink is always executed last and takes no time to complete, we assume that this last stage has

already been scheduled when we start. Note that in the following we number the stages (1; 2; : : : ; n). The last
stage, scheduling the sink, is assumed to be already done. Thus, our approach starts with the second to last
stage, stage n� 1, and progressively works its way back to the �rst stage, stage 1. Finally, in the following we

use index i to refer to current stage.
The pseudo-code for the Constructive Heuristic Scheduling Algorithm is shown in Figures 10 and 11. The

algorithm of Figure 10 calculates the worst-case execution time for a given stage, whereas the algorithm of
Figure 11 actually implements the constructive heuristic scheduling algorithm and selects the order for the
tasks in SWNEV ER, which is a single NEV ER set of software tasks.

Calc WCET (G;SWNEV ER; i; n; fi+1
�;Xi)f

1 Xi�1 = ;;
2 initialize fi

�, fi;
3 for (j = 1; j < (n� 1); j + +)f

4 tj = jth task in SWNEV ER;

5 for (each task order xik 2 Xi) f
6 si = (tj , xik);

7 if (order not possible(G; tj; xik)) f /* if order not possible due to constraints in G */
8 fi(si) = 1;
9 g else f

10 calculate GraphWCETextra(si);
11 fi(si) = WCET (tj) + GraphWCETextra(si) + fi+1(xik);

/* note that by de�nition, fi+1(xik) = GraphWCET (xik) */
12 g

13 g /* fi(si) has now been calculated for all possible xik for this tj */

14 if (fi(si) �nite for some si = (tj , xik)) f /* if we did not �nd all fi(si) = 1 in this iteration */

15 xik� = xik such that fi(tj ; xik) is minimized;
16 (fi

�(si) = fi(tj ; xik�);

17 Xi�1 = Xi�1 [f(tj; xik�)g;
18 g

19 g

20 return (fi
�;Xi�1);

g

Figure 10: Calculate WCET Algorithm

Solve order(G;SWNEVER;WCETisr;WCETprsched) f
1 n = jSWNEV ERj + 2; /* number of stages */

2 increase WCET for each task in SWNEV ER by WCETisr +WCETprsched;
3 fn

�(sn) = fn(sink) = 0; Xn�1 = f(sink)g; /* initial values for stage n-1 */

4 for (i = n � 1; i > 1; i ��)f /* go through the stages in reverse order */
5 (fi

�;Xi�1) = Calc WCET (G;SWNEV ER; i; n; fi+1
�;Xi); /* record WCET and state */

6 g /* when this loop ends we have calculated f2
� and X1 */

7 (f1
�;X0) = Calc WCET (G; f(src)g; 1; n; f2

�;X1); /* record state x01� with minimum WCET from src */
8 x01� = the �rst (and only) set in X0; /* X0 has only one set since the we passed in f(src)g to CalcWCET */

9 GWCET = f1
�(x01�); /* annotate G with minimal overall WCET found */

10 Gtask order list = x01�; /* record the task order found */
g

Figure 11: Constructive Heuristic Scheduling Algorithm

The algorithm of Figure 11 actually implements the core of the constructive heuristic scheduling algorithm.

15

For stage n, no calculations are necessary since the sink always takes zero time to execute.

Scheduling starts with stage n�1, for which each task in SWNEV ER either can be scheduled then or cannot
be scheduled then. For example, if a software-task ti has a precedence constraint where another software-task
must execute after ti, then clearly ti cannot be scheduled in stage n � 1 since no software-task can ever be

scheduled after stage n � 1, { the sink is always scheduled last (in stage n). Each software-task which can be
scheduled to execute in stage n� 1 without violating any constraints is placed in a one element set and added

to Xn�2 for the next stage.
Then, for stage n � 2, we calculate a jSWNEV ERj � jXn�2j table where we place in each table entry the

GraphWCET for each state determined by a software-task eligible to execute in this stage (n� 2) followed by

a software-task that can be executed in stage n � 1 (if the two software-tasks selected cannot execute in the
chosen order due to precedence constraints, the table entry records a GraphWCET of 1). For each task in

SWNEV ER, we record a decision variable (an ordered set, see De�nition 5.3) indicating the sequence starting
with that task which has the minimal GraphWCET . The decision variables are accumulated in Xn�3 for the

next stage n � 3.
Next, for stage n � 3, we again calculate a table of size jSWNEV ERj � jXn�3j where we place in each

entry the GraphWCET corresponding to an ordered set of three software-tasks. Each ordered set is composed

of a task from SWNEV ER followed by two software-tasks from an ordered set in Xn�3. Since Xn�3 can
contain at most jSWNEV ERj sets, we calculate the GraphWCET for up to jSWNEV ERj2 combinations of

three sw-tasks. For each task tn�3 in SWNEV ER, we select the decision variable x(n�3)k� which minimizes
GraphWCET (tn�3; x(n�3)k�) and add ordered set (tn�3; x(n�3)k�) to multiset Xn�4 for the next stage n � 4.

Continuing in this way for stages (n � 4; n � 5; : : : ; 3; 2), we calculate the GraphWCET for each state

composed of a task eligible to execute in that stage followed by a particular order of software-tasks in the
previous stage, selecting at most jSWNEV ERj task orders to pass on to the next stage. Note that as we

decrease the stage number by one, we increase the number of tasks in each ordered set xik 2 Xi by one.
Thus, when we reach stage 1, we consider up to jSWNEV ERj task orderings of all tasks in SWNEV ER,

where the �rst task executed is the src. From these possibilities we choose the best and �nd an order of execution
for the tasks in the SWNEV ER set yielding the smallest GraphWCET among the orders considered. Note
that the �nal list from which the solution is chosen is composed of task orderings chosen based on the optimality

of suborderings along the way, i.e. by selecting the xik that minimize the overall WCET for the graph (the
GraphWCET). Since choosing local minima may accidentally kick out a subordering which later turns out to

be necessary for the global minimum, this formulation is a heuristic. However, it performs in polynomial time.
We next show the application of the algorithm to our example.
In order to begin with the last stage (i.e. stage n = 5), we schedule the sink, yielding f5

�(sink) = 0.

For stage n � 1 = 4, the WCET is determined entirely by the current state (whichever task is chosen to
execute). Therefore, our table of calculations need only include s4, f4(s4) and X4.

X4 f4(s4)
t4 sink X3

oh0 1

oh1 21,799 (oh1,sink)

cjd 26,413 (cjd,sink)

Table 2: Constructive Heuristic Scheduling Example Stage n � 1 = 4

Example 13 Consider Figure 7. We have n = 5 stages. For stage 5 we found that f5
�(sink) = 0. Table 2 shows the

calculations for stage 4. From this we achieve one optimization for the next stage already: oh0 cannot be scheduled in this

stage due to control/data-
ow (precedence) constraints. Thus, the multiset X3 calculated for the next iteration only has two

members.

Figure 8 showed the two sets of tasks scheduled and their WCET paths in this pass of the algorithm. 2

For stages n� 2 through 2, we use the fi+1 and Xi values calculated in the previous iteration. Note that for

each possible ordered set of tasks, in the worst case n�(jV j+ jAj) operations have to be performed in calculating

16

GraphWCET (si), where V denotes the vertices and A denotes the directed edges in the DAG of the task
ow.

X3 f3(s3)

t3 (oh1,sink) (cjd,sink) x3k� f3
�(t3; x3k�) X2

oh0 24,020 1 (oh1,sink) 24,020 (oh0,oh1,sink)

oh1 1 43,812 (cjd,sink) 43,812 (oh1,cjd,sink)
cjd 35,012 1 (oh1,sink) 35,012 (cjd,oh1,sink)

Table 3: Constructive Heuristic Scheduling Example Stage 3

Example 14 Continuing our attempt to schedule Figure 7, we pass now to stage 3. Table 3 shows the calculations for this

stage. The �rst �nite-valued entry contains the GraphWCET if oh0 is scheduled in stage 3 and oh1 in stage 4 (with the sink

in stage 5). Note that it is not possible to schedule oh0 in stage 3 and cjd in stage 4 due to control/data-
ow constraints.

Note also that there is no column for x3k = (oh0; sink) since it was not possible to schedule oh0 in stage 4.
To calculate the GraphWCET values for s3, given that we execute task t3 in this stage (3) and the �rst task in x3k in

the next stage (4), requires scheduling the subgraph covered by task t3, the tasks in x3k, and all of their successors. We use

an ASAP schedule.

Figure 9 showed the states scheduled in this stage and and their WCET paths in this pass of the algorithm. 2

X2 f2(s2)

t2 (oh0,oh1,sink) (oh1,cjd,sink) (cjd,oh1,sink) x2k� f2
�(t2; x2k�) X1

oh0 1 46,033 37,233 (cjd,oh1,sink) 37,233 (oh0,cjd,oh1,sink)

oh1 1 1 1

cjd 37,233 1 1 (oh0,oh1,sink) 37,233 (cjd,oh0,oh1,sink)

Table 4: Constructive Heuristic Scheduling Example Stage 2

Example 15 Next consider stage 2 of the attempt to schedule Figure 7 using the constructive heuristic scheduling algorithm.

Table 4 shows the calculations for this stage. For the states beginning with task oh0, the minimum value of f2 is selected

by x2k� yielding one value for f2
�

. Note that x2k� is a set that takes on two di�erent values, namely (cjd,oh1,sink) and

(oh0,oh1,sink), in the course of the calculation. On the other hand, X1 is a multiset that contains all of the sets in its

column, so X1 = f(oh0; cjd; oh1; sink); (cjd; oh0; oh1; sink)g. 2

Note that the states eliminated in calculating fi
�(si) leave us carrying at most jSWNEV ERj ordered sets

of tasks to the next stage calculation. This means at most jSWNEV ERj2 di�erent possible task orderings
are considered in each stage, just as we noted earlier. Unfortunately one of the states eliminated in calculating

fi
�(si), while suboptimal locally, may turn out to be the global optima. The fact that this algorithm is a

heuristic can be veri�ed by applying it to the example of Figure 12.

X1 f1(s1)

t1 (oh0,cjd,oh1,sink) (cjd,oh0,oh1,sink) x11� f1
�(t1; x11�) X0

src 39,012 41,233 (oh0,cjd,oh1,sink) 39,012 (src,oh0,cjd,oh1,sink)

Table 5: Constructive Heuristic Scheduling Example Stage 1

Example 16 Now for the last set of computations, stage 1. There is only one starting state, the source, so the table has

only one row. Table 5 shows the calculations for this stage. The minimum WCET for the graph is found in choosing x11�.

Note that the algorithm �nally takes into account the WCET for task cg, making the option of selecting cjd to execute before

oh1 less favorable. We end up with X0 = x01�, and so the order found is x01� = (src,oh0,cjd,oh1,sink) with a WCET of

39,012. Thus we give oh0 the highest priority, cjd the second-highest, and oh1 the lowest priority. Note that we use X0 and

x01� only to record the �nal order found (there is no stage 0). 2

17

Thus we have an order (given our assumptions) of execution of tasks in the NEV ER set which minimizes

WCET from among the task orders considered. We use this order to statically set the priorities for the software-
tasks.

src

sink

NEVER = {b,c,d}

task
−−−−
 a
 b
 c
 d
 e
 f

wcet
(cycles)
−−−−−
5,000
3,000
20,000
15,000
5,000
11,000

 b

 c d

 a

 e

 f

Figure 12: Sample DAG With Optimal Schedule Not Found By Heuristic: The constructive heuristic scheduling

algorithm �nds order (d,b,c) which yields a WCET of 43,000; however, the optimal order is (b,d,c), which yields
a WCET of 40,000.

5.2 Multiple NEV ER Sets of Hardware-Tasks

4

NEVER1 = {oh0,oh1,cjd}
NEVER2 = {mvm1, mvm2, mvm3, mvm4}cg

fk

cjd

src

sink

oh0

oh1

mvm1

mvm2

mvm3

mvm4

cg

fk

cjd

src

sink

oh0

oh1

mvm1

mvm2

mvm3

mvm4

 s
−−−
oh0
oh1
cjd
mvm1
mvm2
mvm3
mvm4

f *(s)
−−−−−
24,020
43,812
35,012
 −
 −
 −
 −

cg

fk

cjd

src

sink

oh0

oh1

mvm1

mvm2

mvm3

mvm4

Figure 13: Multiple NEV ER Set Example

Up till now we have formulated our scheduling problem under the assumption that we have unlimited hardware
and a single processor. Now suppose we do have limited hardware resulting in hardware-tasks implemented
on the same hardware resource. We represent each such resource constraint with a NEV ER set of mutually

exclusive hardware-tasks which cannot overlap execution.

18

We can include multiple NEV ER sets of hardware-tasks by extending the constructive heuristic scheduling

algorithm in a straightforward fashion. We simply set the number of stages n equal to the total number of
tasks in all NEV ER sets, plus two for the src and sink. Let the number of distinct NEV ER sets be d, where
the �rst NEV ER set contains all software-tasks in the application, while subsequent NEV ER sets contain

hardware-tasks which utilize the same hardware resource to accomplish their computation.

Example 17 We consider a modi�ed version of Figure 7 where the four tasks mvm1-4 are all executed on the same hardware

module mvm. Figure 13 shows the six of the seven tasks in the two NEV ER sets as they are scheduled in stage 4 of the

constructive heuristic scheduling algorithm. We have n = 9 stages, so f9
�(s), f8

�(s), f7
�(s), f6

�(s) and f5
�(s) have already

been calculated. The shading in Figure 13 identi�es the tasks in the sameNEV ER set scheduled at this step of the algorithm;

the thick arrows indicate the relative ordering among all of the tasks. The table for this stage is not shown here but would

look similar to Table 4. except that it would have seven by seven entries, one row/column per task in a NEV ER set.

Note that at this stage we have already scheduled 5 tasks and are considering which task to schedule just before those 5.

Due to precedence constraints in the DAG, none of mvm1-4 can be scheduled at this stage, and therefore the entries are empty.

(For example there is no way to schedule mvm1 in this stage and thus have 5 tasks scheduled after mvm1 completes.) 2

The constructive heuristic scheduling algorithm has already been shown in Figures 10 and 11. The only di�er-

ence in calling the algorithm is that instead of passing in SWNEV ER, we call it with a multisetNEV ERSETS
which contains the �rst NEV ER set equal to SWNEV ER, while the rest of the NEV ER sets all contain only

hardware-tasks. The major di�erence from the single NEV ER set algorithm shown in Figures 10 and 11 occurs
in scheduling the DAG at each step in the algorithm. Instead of a single ASAP schedule for the entire graph,

we have to perform an ASAP scheduling of the graph for each distinct never set. Thus, in the worst case,
(jV j + jAj) � d operations have to be performed in calculating GraphWCETextra(si) of De�nition 5.13, where
d denotes the number of NEV ER sets contained in the multiset NEV ERSETS.

5.2.1 Complexity Analysis

First note that in order to calculate fi(si) = fi(ti; xik), we have to ASAP schedule the DAG Gsi
(Vsi ; Asi

),

where Vsi denotes the vertices and Asi
denotes the directed edges (arrows) in the DAG of the task
ow of

si. Note that Gsi
(Vsi ; Asi

) has already scheduled all resource-constrained tasks other than ti in the previous

stage. For each task in NEV ERi 2 NEV ERSETS, an upper bound on the number of constant operations
that have to be performed for the ASAP schedule is ((jVsi j + jAsi

j) � d), where d is necessary since each task

may have to be visited d times to account for multiple fanins. Since in each stage ti ranges over the tasks
in some NEV ER set, and recalling that n � 2 =

P
NEV ERi2NEV ERSETS

jNEV ERij, we �nd that ti can
take on any of n � 2 values. Now, since for each possible value of ti we select at most one value of xik�,

Xi�1 has at most n � 2 members in each iteration. Thus, since in each iteration we calculate fi for every
possible state (ti,xik), in the worst case (n � 2)2 calculations of fi are needed each iteration. Together with

our earlier upper bound of (jVsi j + jAsi
j) � d for calculating fi, we end up with an asymptotic upper bound of

O((n � 2)2 � (jVsi j + jAsi
j) � d) = O((n2) � (jV j + jAj) � d) calculations for one stage (i.e. for Calc WCET of

Figure 10).

For Solve order shown in Figure 11, none of the lines take time greater thanO(n2�(jV j+jAj)�d). Thus, since
we call Calc WCET at most n times, our constructive heuristic scheduling algorithm with multiple NEV ER

sets takes time O(n3 � (jV j+ jAj) � d). Assuming we can bound V , A, and d with a polynomial of n, we have a
polynomial-time algorithm.

5.3 Practical Considerations for the Calculation of WCET

In order to make a correct calculation of the WCET, we have to consider the time spent executing the ISR and

the priority scheduler. To be more speci�c, we will consider the case where the processor is a MIPS R4K.
To calculate the WCET of the entire graph, we use the following costs, obtained by analyzing our run-time
scheduler software code executed on a MIPS R4K model (with no cache analysis, i.e. assuming we always miss

in the instruction cache): interrupt overhead = 38 cycles and priority scheduler task selection = 98 cycles.
For the interrupt, we use pin Int(0) on the MIPS R4K model and do not save the register set before passing

control to the priority scheduler software. The priority scheduler template uses several registers reserved for the

19

kernel; it also uses two general purpose registers, which it saves before using and restores just before exiting.

Otherwise, with a general context switch, our interrupt overhead would be much larger. Also, since each task
runs to completion (Assumption 5.3), no context switches are needed between tasks (in the following sections,
we will show how to relax this assumption and still account for the worst case).

We use these costs to calculate theWCET of the entire graph. Note that in the actual implementation of the
constructive heuristic scheduling algorithm, the WCET for the ISR and the WCET for the priority scheduler

are added to the WCET for each software-task when calculating the task priorities.
We use the priority scheduler with the priorities found via constructive heuristic scheduling. Note that we

assume that precedence constraints needed to implement the chosen task order is enforced by the run-time

scheduler. In other words, no interrupts updating the start vector of start events for the software-tasks for a
particular software-task until all higher-priority software-tasks are �nished executing

Example 18 Consider Figure 7. We use the priorities found in Example 16. We �nd that the run-time scheduler causes

three interrupts. Since the hardware part of the run-time scheduler enforces the precedence constraint of cjd before oh1,

1,643 clock cycles go unused between the completion of oh0 and the start of cjd. After the third interrupt, oh1 executes

concurrently with mvm2, mvm3 and mvm4. After oh1 �nishes, then mvm1 executes.

A straightforward ASAP schedule is used. Several of the software- and hardware-tasks have loops, for each of which the

user provided upper bounds (the analysis of cinderella-M supports user speci�cation of loop bounds[28]). Notice how the

critical path runs through both hardware and software in di�erent execution paths. Table 6 shows the calculation. The overall

sw-task # cycles hw-task # cycles

int-ser-routine 38 cg 4,000
priority-sch-sw 98

oh0 2,221
int-ser-routine 38 fk 4,500

priority-sch-sw 98
cjd 13,213
int-ser-routine 38 mvm2 4,400

priority-sch-sw 98
oh1 17,399

" " mvm3 4,400
" " mvm4 4,400

mvm1 4,400

Table 6: WCET Calculation Example

WCET is 39,284 cycles. 2

Recall that we assume that the hardware part of our run-time scheduler is the only source of interrupts
for the CPU (Assumption 5.5). Now we know that we can generate the FSM such that hardware part of

the run-time scheduler only interrupts the software to indicate that the next highest priority task is ready to
execute once the previous task (in priority level) has completed. Thus, we can guarantee that each software

task runs to completion (Assumption 5.3). With these two assumptions, we �nd that no context switches
ever occur in our software (no calls to save context or restore context). Furthermore, only one call to
interrupt service routine(ISR) and one call to priority scheduler are needed per software task. Thus,

we �nd that the �nal output of our WCET calculation is an upper bound on the WCET of the graph, given
the priorities assigned to software-tasks in the same NEV ER set. The pseudo code for this WCET calculation

was shown in Figure 10.
So we now can analyze satis�ability of a rate constraint in a dynamically changing, concurrent execution of

hardware-tasks and software-tasks, given our run-time scheduler implementation.

20

6 Context Switch Cost and Out-of-order Execution

In the previous section, we found a solution that minimizes WCET when software-tasks are assigned priorities

and not executed until all higher priority software-tasks have completed. However, in some cases there may
be unused CPU cycles between two software-tasks with consecutive priorities, e.g. if a hardware-task needs to

�nish to satisfy precedence constraints (captured in the DAG). Thus, we may want to relax Assumption 5.3
and allow lower priority software-tasks to execute during otherwise unused CPU cycles, even when some higher
priority tasks have not yet executed. We call this situation out-of-order execution because we abandon the exact

sequencing of software-tasks according to their priority as was done in the previous section.
However, now our WCET calculation must account for software-tasks which are partially executed and then

interrupted. In our analysis the WCET of a context switch is for either saving the register set { save context

{ or for restoring a previous register set { restore context. Since context switching is a major cost to consider

when trying to optimize for real time1, we feel that the savings is worth the e�ort spent separating the two
kinds of contexts switches.

Note that when a particular software-task completes its execution, there are no registers to save when

transferring the processor to another software-task. Similarly, when a particular invocation of a software-task
�rst begins execution, there is no register state to load. Eliminating context switches in these cases does not

mean that there cannot be other processes switched out; it just means that saving or restoring the register set
may not be necessary at that particular instant.

Interrupts are disabled during context switches. The priority scheduler is restarted if an interrupt is received

during its execution. Note that due to the construction of the hardware part of the run-time scheduler, at most
one interrupt will occur per software-task.

6.1 Upper bound on extra calls to the Priority Scheduler and Context Switch

Suppose we have m software-tasks whose order, assuming each runs to completion, has been found by the

constructive heuristic scheduling algorithm described in Section 5. Then, suppose we allow l of the software-
tasks to execute out-of-order; that is, for any of the l software-tasks, if it is ready to start before software-tasks

higher in priority are ready, we allow it to execute until one of the higher priority tasks is ready to execute.
(Clearly, l < m since the highest priority task cannot execute \out-of-order.") Since at most one interrupt will
occur per software-task for each execution of the application (as captured in the DAG), the ISR overhead is

�xed based on the number of software-tasks. With interleaved execution of software-tasks, however, the number
of calls to the scheduler is not �xed. What is the overhead, in terms of extra executions of the priority scheduler

and context switch code, incurred by allowing these l tasks to execute early (out-of-order)?
In order to begin our analysis, we de�ne the following:

De�nition 6.1 Let � assign a priority to each software-task that minimizes WCET if each task runs to
completion: if �(sa) > �(sb) then the sa has a higher priority than sb.

Presumably we found � using the constructive heuristic scheduling algorithm of the previous section.

De�nition 6.2 A software-task executes early when the run-time scheduler sets its start event before all higher
priority tasks have completed execution.

Clearly, a software-task that executes early can possibly execute out-of-order.

De�nition 6.3 Let I = fi1; i2; : : : ; ilg = the set of l software-tasks allowed to execute early and possibly execute
out-of-order.

Each task i 2 I can have part or all of it computation performed before the software-task immediately preceding
it in priority has even begun to execute at all.

1For example, the major result of [22] was a 66% reduction in context switch cost.

21

cg

fk

cjd

src

sink

Jhold Law

oh0

oh1

NEVER = {oh0,oh1,cjd}

mvm1

mvm2

mvm3

mvm4

task
−−−−
cg
oh0
oh1
fk
cjd
mvm1
mvm2
mvm3
mvm4
src
sink

Ohold1 Law

T T TT(oh0) > T(cjd) > T(oh1)

WCET
(cycles)
−−−−−
4,000
2,221
17,399
4,500
13,213
4,400
4,400
4,400
4,400
0
0

BCET
(cycles)
−−−−−
4,000
1,598
12,341
4,500
9,989
4,400
4,400
4,400
4,400
0
0

Figure 14: DAG, WCET and � Example

De�nition 6.4 Suppose we have two tasks i and j with �(j) > �(i) but under some conditions it is possible
that the run-time scheduler will assert the start event for i before the start event for j. Then we say that
software-task i can jump software-task j.

Clearly, for it to be possible for i to jump j, then there cannot be any precedence constraint between i and j.

De�nition 6.5 Given a set I of software-tasks that can execute early, let J = fj1; j2; : : : ; jqg = the set of q
software-tasks that can be jumped by some i 2 I.

Example 19 Consider the DAG shown in Figure 14 where the NEV ER set speci�es software-tasks which must execute

on the same CPU. The order of tasks in the NEV ER set which minimizes WCET for the graph is (oh0,cjd,oh1) { thus

�(oh0) > �(cjd) > �(oh1) { and is shown by the two darker arrows in Figure 14. Thus, the static priority scheduler in

software has the highest priority assigned to oh0, the next highest priority to cjd and the lowest priority to oh1. Notice that

after oh0 �nishes, there are 8,779 cycles of delay before cjd can start, due to cg. If the run-time scheduler were to set the

start event for oh1 right after oh0 �nishes, then oh1 would execute early and cjd would be jumped. In this case we would

have I = fi1g = foh1g and J = fj1g = fcjdg. 2

In general, a task can be in both I and J . Note that in Figure 15, Figure 16, Example 20 and the subsequent
proofs, the abbreviation p stands for a call to the priority scheduler code, sc to the save context code and

rc to the restore context code.

Example 20 Figure 15 shows a graphical representation of the execution of the DAG of Figure 14 where oh1 executes early

(i.e. out-of-order) with respect to its assigned priority (the thick arrows indicate the out-of-order execution
ow). The two

small columns show which extra calls to the priority scheduler code (p), save context code (sc) and restore context

code (rc) occur. An extra call to p �rst occurs to schedule i1 = oh1 right after oh0 �nishes. There is no need to call any

context switch code since one software-task is completely �nished, namely oh0, and the other software-task, oh1, starts up

from the beginning of its code. Next, j1 = cjd becomes ready, necessitating a call to sc to store the register state for oh1.

Finally, cjd �nishes and a call to rc is needed to continue execution of oh1 from its state when it was interrupted. Thus, after

the source, i1 causes an extra call to p, j1 causes an extra call to sc, i1 causes an extra call to rc and �nally the sink is

reached. Thus, the columns show the extra overhead incurred in extra calls to p, sc and rc that would not have been incurred

were the tasks executed strictly in order of their assigned priorities. 2

22

cg

fk

cjd

src

oh0

oh1

oh1

p
sc
rc

src
i1
j1
i1
snk

sink

mvm1

mvm2

mvm3

mvm4

Figure 15: DAG With Out-of-order Execution Example

Example 21 Let's consider the three examples of Figure 16. In (A), I = fi1g and jIj = 1; in (B), (C), (D) and (E),

I = fi1; i2; i3g and jIj = 3. Notice that in all �ve examples the number of software-tasks that get \jumped" is jJ j = 10.
Both (B) and (C) have some tasks in both I and J ; for example, in (B) i1 and i2 can be jumped by i3, and so both i1 2 J

and i2 2 J .

In (A), i1 is allowed to execute after the source. So, in every space between two software-tasks, i1 tries to execute, causing

an extra call to p and to rc before actually running any instructions of i1 itself. Then, when a task in J is ready to execute,

a call to sc has to be made since i1 is not �nished yet. Notice that no rc calls are needed for any of the tasks in J since each

j 2 J runs to completion. 2

Next we propose two theorems about the number of additional calls to p, rc and sc if we allow software-tasks

in a set I to execute while no higher priority tasks are ready (even though some higher priority task has yet to
start execution). For the sake of simplicity, note that in the following, given two sets A and B, we use A � B

to denote the elements of A not in B.

Theorem 6.1 Consider o hardware-tasks and m software-tasks fs1; s2; : : : ; smg with priority � which execute
on a single processor.

Let I = fi1g be a single software-task allowed to execute early. Furthermore, let the software-tasks that i1
can possibly jump be J = fj1; j2; : : : ; jqg, where �(j1) > �(j2) > : : : > �(jq) and q < m.

Claim: the number of additional calls to the priority scheduler(p), save context(sc) and restore context(rc)

code due to allowing the software-task i1 to execute early has an upper bound of

jJ j � (p+ sc+ rc): (I)

Proof. In the worst case i1 executes before j1, causing an extra call to p, but does not �nish execution.
Next j1 becomes ready to execute, causing a call to p and sc. Since the call to p would have happened
anyway, only the sc call is additional. After j1 �nishes, in the worst case there is exactly enough time for
only a single extra call to the p and to rc for i1 before j2 is ready to execute. So, both of these calls occur.
Next j2 is scheduled to execute, but needs an extra call to sc to store i1's register set (since i1 did not �nish).
In the worst case, the calls continue in this way until jq, after which i1 immediately executes, since it is the
next priority task. At this step, only an extra rc call is needed for i1. The total number of extra calls is one
p for i1 just before j1, one sc just before executing j1, then p + rc + sc for j2 through jq, and �nally one

23

p
sc
p,rc
sc
p,rc
sc
p,rc

sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc

rc

p
sc
p
sc
p
sc
p,rc

sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc

rc

rc

rc

p
sc
p,rc
sc
p,rc
sc

rc
p
sc
p,rc
sc

rc
p
sc
p,rc
sc
p,rc
sc

rc

J

p
sc
p
sc
p
sc
p,rc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc

rc

rc

(A) (B) (C) (D) (E)

p
p,sc
p,sc
sc
p,rc
sc
p,rc
sc
p,rc

sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc

rc

rc

rc

jum
pe

d
no

de
s (

in
se

t
)

src
i1
j1
i1
j2
i1
j3
i1

j4
i1
j5
i1
j6
i1
j7
i1
j8
i1
j9
i1
j10

i1
snk

src
i3
j1
i2
j2
i1
j3
i1

j4
i1
j5
i1
j6
i1
j7
i1
j8

i1

i2

i3
snk

src
i3
j1
i2
j2
i1
j3
i1
i2
j4
i2
j5
i2
j6
i2
j7
i2
j8

i2

i3
snk

src
i1
j1
i1
j2
i1
j3

i1
i2
j5
i2
j6

i2
i3
j8
i3
j9
i3
j10

i3
snk

src
i3
i2
i1
j1
i1
j2
i1
j3
i1

j4
i1
j5
i1
j6
i1
j7
i1
j8

i1

i2

i3
snk

Figure 16: Extra Priority Scheduler and Context Switch Time Examples

rc for the �nal execution of i1: p + sc + (q � 1) � (p+ rc+ sc) + rc

This is exactly equal to q � (p+ rc+ sc) = jJ j � (p+ rc+ sc). QED.

Example 22 An example of the worst case scenario is shown in (A) of Figure 16, which shows the case for q = 10. The

total number of extra calls is 10 � (p+ rc+ sc). 2

Theorem 6.2 Consider o hardware-tasks and m software-tasks fs1; s2; : : : ; smg with priority � which execute
on a single processor.

Let I = fi1; i2; : : : ; ilg, where �(i1) > �(i2) > : : : > �(il), be software-tasks, l < n, such that all of them
are allowed to execute early. Furthermore, let the di�erent software-tasks that some i 2 I can possibly jump be
J = fj1; j2; : : : ; jqg, where �(j1) > �(j2) > : : : > �(jq):

Claim: the number of additional calls to the priority scheduler(p), save context(sc) and restore context(rc)
code due to allowing the software-tasks of I to execute early has an upper bound of

(j(J � (J \ I)) [Ij � 1) � (p+ sc+ rc): (II)

Proof. We give a proof by induction.

Base step: I1 = fi1g and J1 = fj1; j2; : : : ; jq1g, where J1 is the set of tasks that i1 can possibly jump.

Clearly, I1 � I and J1 � J . By Theorem 6.1, an upper bound on the number of calls to p, sc
and rc is
jJ1j � (p+ sc+ rc).
By de�nition of J1 and I1, J1 \ I1 = ;, and so the upper bound is
jJ1 � (J1 \ I1)j � (p+ sc+ rc) which, since jIj = 1, is equal to
(j(J1 � (J1 \ I1)) [I1j � 1) � (p+ sc+ rc).
QED for base step.

Step k: Ik = fi1; i2; : : : ; ikg and Jk = fj1; j2; : : : ; jqkg, where Jk are the tasks that some i 2 Ik can possibly
jump.

24

Assume true that the following upper bound holds:
(j(Jk � (Jk \ Ik)) [Ikj � 1) � (p+ sc+ rc).
(Note that by de�nition of J , Jk � J .)

Step k + 1: Ik+1 = fi1; i2; : : : ; ik+1g and Jk+1 = fj1; j2; : : : ; jqk+1g, where Jk+1 are the tasks that some
i 2 Ik+1 can possibly jump. From the given, we know that �(ik) > �(ik+1). We have several cases.

Case (i): i1; : : : ; ik �ll all available spaces between tasks in J , so that ik+1 is unable to execute
out-of-order. By hypothesis (Step k), the upper bound on the number of additional calls to p,
rc and sc due to Jk and Ik = fi1; : : : ; ikg is (j(Jk � (Jk \ Ik)) [Ikj � 1) � (p + rc + sc) (1).
If Jk+1 = Jk, i.e. there are no additional jumpable tasks included in Jk+1 due to ik+1, then
(j(Jk+1 � (Jk+1 \ Ik+1)) [Ik+1j � 1) increases by 1 while no additional calls are incurred since
ik+1 just executes right away, after all the previous tasks in Jk+1 and Ik+1 have completed. So
the upper bound of (j(Jk+1 � (Jk+1 \ Ik+1)) [Ik+1j � 1) � (p+ sc+ rc) holds.

So let's assume that there are additional jumpable tasks. Let these additional jumpable tasks
included due to ik+1 and not already in Jk [Ik be fjr; jr+1; : : : ; jqk+1g (we don't consider the
jumpable tasks that are also in I because for this case we assume ik has �nished execution).

Just considering tasks fjr; jr+1; : : : ; jqk+1g and ik+1, we have an instance of Theorem 6.1. So the
upper bound is jfjr; jr+1; : : : ; jqk+1gj � (p+ sc+ rc). If we add this to the previous upper bound
(1) for fj1; j2; : : : ; jr�1g and Ik, we have
(j(Jk � (Jk \ Ik)) [Ikj � 1) � (p+ rc+ sc) + jfjr; jr+1; : : : ; jqk+1gj � (p+ sc+ rc) (2).
Now, since fjr; jr+1; : : : ; jqk+1g are not in Jk [Ik, and since ik+1 cannot be in Jk+1, we �nd that
(Jk � (Jk \ Ik)) [Ik [fjr; jr+1; : : : ; jqk+1g

= (Jk+1 � (Jk+1 \ Ik+1)) [Ik

Thus, from (1), we �nd an upper bound of
(j(Jk+1 � (Jk+1 \ Ik+1)) [Ikj � 1) � (p+ sc+ rc)
which is clearly less than
(j(Jk+1 � (Jk+1 \ Ik+1)) [Ik+1j � 1) � (p+ sc+ rc)
QED for case (i).

Case (ii): ik+1 was able to execute early, e.g. right after the source but before j1, because none
of i1; : : : ; ik were ready to execute or still had execution time left at that time (see Figure 16,
(E), for an example). This causes an extra p. However, in the worst case, just as ik+1 is about
to be dispatched, an interrupt arrives saying that ik is ready to execute (we do not consider the
time due to interrupts here). So, an extra p and sc are incurred. Similarly, ik�1 becomes ready,
incurring yet another p and sc. This continues for all i 2 Ik+1 in increasing level of priority until
we reach i1. Thus, so far extra calls have occurred in the amount of p+ (jIk+1j � 1) � (p+ sc)
(3).
(Note that we do not stipulate that all of these interrupts occur before j1, but only state that in
the worst case they arrive in this reverse order and each have enough of a delay before the next
interrupt so that additional p + (jIk+1j � 1) � (p+ sc) calls are still made.)

Consider each j 2 (Jk+1 � (Jk+1 \ Ik+1)). From here on out, in the worst case each j 2 (Jk+1 �
(Jk+1 \ Ik+1)) will incur an extra call to sc because j interrupts an executing process. Thus,
jJk+1 � (Jk+1 \ Ik+1)j � sc extra calls will occur (4).

Since all tasks in Ik+1 have become ready to execute, the only way for a task in Ik+1 to begin
execution is if all higher priority i 2 Ik+1 have already �nished. In the worst case, i1 will not
�nish executing until after the last jqk+1 (for the situation where i1 �nishes before jqk+1 , see the
next case), so that all of the previous calls to p for i1 will have been extra, and only this call
to p now that jqk+1 is done will not be an extra call { but the call to rc will be additional (see
Figure 16, (E), for an example with jIj = 3). Therefore, (jJk+1�(Jk+1\Ik+1)j�1)�(p+rc)+rc

extra calls will be made for i1 (5).

Similarly, for the rest of Ik+1, jIk+1j � 1 extra calls to rc will occur (the remaining jIk+1j � 1
calls to p were necessary in the normal course of events and so are not counted as extra). Thus,
a total of (jIk+1j � 1) � rc extra calls will be needed in the worst case (6).

Combining (4), (5), (3), and (6) (in this order), we �nd that in the worst case the number of
extra calls needed is
jJk+1 � (Jk+1 \ Ik+1)j � sc+ (jJk+1 � (Jk+1 \ Ik+1)j � 1) � (p+ rc) + rc+ p+ (jIk+1j � 1) � (p+

25

sc) + jIk+1j � rc

= (jJk+1 � (Jk+1 \ Ik+1)j � 1) � (p+ sc+ rc) + sc+ rc+ p+ (jIk+1j � 1) � (p+ sc+ rc)
= (j(Jk+1 � (Jk+1 \ I+1k)) [Ik+1j � 1) � (p+ sc+ rc).
QED for case (ii).

Case (iii): Suppose in the previous case i1 does in fact �nish execution before jqk+1 (e.g. consider
the case in Figure 16, (C), where i2 executes after j3 and i1). In this case an additional call to
p and and to rc are needed for i2 in the worst case (because i2 had executed before and needs
its context back). However, later on, i1 will not need to be executed, because it has already
�nished. This saves calls to p and rc later: thus, the total amount of calls to p, rc and sc remain
unchanged. This can be extended: if any ip; p � k+ 1, �nishes early, then ip will not need to be
executed later, leaving the total amount of calls to p, rc and sc unchanged. This is true even if
multiple ip's �nish in the same space (i.e. between the same two tasks of set J). Thus the upper
bound found in the previous case still holds: (j(Jk+1� (Jk+1 \ Ik+1))[Ik+1j � 1) � (p+ sc+ rc).
QED for case (iii).

Now, since I was chosen arbitrarily, and since J is uniquely determined by I and �, the above induction
holds for any I, � and corresponding J . QED.

The main point of this section has been accomplished: to analyze the worst-case overhead incurred in
allowing software-tasks to execute out-of-order. Our major result is Equation II, which gives us a formula which

quanti�es the number of extra calls to the priority scheduler, save context and restore context code,
where we assume that each software-task necessitates one call to the interrupt service routine(ISR) and

priority scheduler.

6.2 Instruction Cache Analysis

We want to quantify all of the overhead associated with allowing software-tasks to execute out-of-order. The
previous section dealt with the overhead in terms of extra calls to the priority scheduler and context switch
code. What about the instruction cache?

To calculate the WCET of a software-task, we use cinderella-M. However, cinderella-M's instruction
cache analysis assumes that no interrupts occur [27]. In our case, the presence of interrupts means that a

software-task's instructions can possibly be kicked out of the instruction cache if it is suspended to allow
execution of a newly ready, higher priority software-task. Thus, we use the following heuristic to augment
cinderella-M's analysis.

cinderella-M calculates the binary code size of each software-task. From this, we calculate the maximum
number of instruction cache lines neeeded and the cost of reloading the entire intruction cache with the task's

instructions. Note that cinderella-M's analysis[28] already includes the worst-case e�ects for the situation
where the binary code size is greater than the instruction cache size, so the maximum number of instruction

cache lines we have to consider is bounded by the size of the instruction cache.
Ideally cinderella-M would return a worst case instruction cache penalty due to the instruction cache being

emptied of a task's instructions. However, we simply read the binary code size using the View!Function Statistics

command of cinderella-M. Then we use the following formula, where binarycodesize and icachelinesize are
in bytes:

WCET reload icache = (d
binarycodesize� 1

icachelinesize
e+ 1) � (time to load a single icache line) (III)

Note the the binarycodesize � 1 and +1 in the formula are necessary to account for the case where the �rst
instruction byte maps to the last byte of an instruction cache line. The only exception to this formula is

when it gives a result greater than the time to load the entire instruction cache, in which case we take
WCET reload icache to be the lower value, i.e. the time to load the entire instruction cache.

Thus, for each possible interruption by a higher priority task that a task can experience, we have to add the
cost of reloading all the instruction cache lines for that task to the overall WCET for the entire graph. In the
worst case, this additional cost will be incurred for every possible call to rc. Thus, for each possible call to rc,

we add the worst case instruction cache re�ll time, as well as the WCET for the restore context code.

26

Example 23 Software-task oh1, when compiled, has a binary code size of 3584 bytes. The View!Function Statistics

command of cinderella-M is one way to count the binary code size, and this is the method we use. The MIPS R4K we

use has icache line size of 16, while the time to load a single instruction cache line is 18 cycles. Thus, for oh1, we �nd the

following using Equation III:

WCET reload icache = (d
3584� 1

16
e+ 1) � (18) = 4050

2

6.2.1 Practical Considerations in Instruction Cache Analysis

As in Section 5.3, we consider the case where the processor is a MIPS R4K. Note that the MIPS R4K does not

have a scratchpad section in its primary caches (instruction and data are separate), nor is it con�gurable to allow
one. The cache controller is all in hardware. Thus, in order to calculate theWCET of the four operating systems

routines we use (ISR, priority scheduler, save context, and restore context), we always assume that they
miss in the instruction cache; this assumption was implicit when we calculated these values in Section 5.3.

This estimate is obviously undesirable because the routines are called often and most likely will often be

resident in the cache (e.g. none of the three software-tasks considered in our robotics example take up the full
instruction cache size of 8K). We could eliminate the instruction cache misses for these four routines in general

by either (i) �nding with other analysis an upper bound on the number of times the routines can be kicked
out of the instruction cache, or (ii) placing the four routines into a scratchpad section of the instruction cache

(i.e. a scratchpad section is one that is never kicked out by the caching system in order to make room for new
instructions due to a cache miss). Unfortunately, (ii) is not available for the speci�c CPU we consider.

6.3 Total Upper Bound on WCET

In this section we combine the results of the previous two sections in order to come up with a total upper bound
formula for the case of tasks with priority � running on a CPU where the set I of tasks may execute early and
the set J of tasks may be jumped.

LetWCETprsched be the WCET of the priority scheduler code,WCETsavecntxt be theWCET of the
save context code and WCETrestorecntxt be the WCET of the restore context code. Furthermore, let

WCET reload icachei be the maximum additional WCET due to extra instruction cache misses in task i 2 I,
and let WCET reload icache be the maximum additional WCET due to extra instruction cache misses for any

i 2 I.
Now, for each possible interruption by a higher priority task that a task can experience, we have to add the

cost of reloading all the instruction cache lines for that task to the overall WCET for the CPU. In the worst

case, this additional cost will be incurred for every possible call to rc. Thus, for each possible call to rc, we add
the worst case instruction cache re�ll time, as well as the WCET for the restore context code.

Thus, by Theorem 6.1 and its corresponding Equation I, for a given G and I with one element fi1g and the
associated J , an upper bound on the increase in overall WCET for G is given by the following:

jJ j � (WCETprsched+WCETsavecntxt+WCETrestorecntxt+WCET reload icache) (IV)

Similarly, by Theorem 6.2 and Equation II, for a given G and I with associated J , an upper bound on the

increase in WCET for G is given by the following:

(j(J�(J\I))[Ij�1)�(WCETprsched+WCETsavecntxt+WCETrestorecntxt+WCET reload icache) (V)

This completes our calculation of the total upper bound on WCET for the CPU with instruction cache analysis
included.

6.4 Constructive Heuristic Scheduling with Out-of-order Execution

In this section we present a heuristic algorithm that can improve the solution of the constructive heuristic
scheduling algorithm where we do not have Assumption 5.3 and thus software-tasks are not all necessarily

atomic.

27

Execute out of order(G;�;NEV ERSETS;WCETprsched;WCETsavecntxt;WCETrestorecntxt) f

1 SWNEV ER = 1st set in NEV ERSETS; m = jSWNEV ERj; /* Get set and number of software-tasks */
2
 = (src; p1; p2; : : : ; pm) where pi 2 SWEV ER; 1 � i � m; and �(p1) > �(p2) > : : : > �(pm);

/*
 stores the source followed by the software-tasks in priority order */
3 p0 = src; /* now we have
 = (p0; p1; p2; : : : ; pm) */
4 W = WCETprsched+WCETsavecntxt+WCETrestorecntxt;

5 I = ;; J = ;; 	 = ;; /* 	 keeps track of new precedence constraints */
6 i = 1; WCET reload icache = 0; /* i keeps count of the number of tasks in set I plus one */

/* in the following for loop, we consider allowing software-tasks (pm; pm�1; : : : ; p2) to execute early */
7 for (l = m; l � 2; l ��) f
8 k2 = pl�1;

9 if (k2 2 J) v = 0; else v = 1; /* v keeps count of the number of tasks skipped by pl and not already 2 J */
10 new prec task = k2;

11 for (k1 = pl�2 to k1 = p0) f
12 if (9 a precedence constraint fk2! plg) continue; /* exit inner for(k1=. . .) loop */

13 if (get space(k1; k2) � (i + v + num tasks skipped(
) - 1)*(W + WCET reload icachei)) f
14 new prec task = k1;
15 after prec task = k2;

16 if (WCET reload icachei > WCET reload icache) WCET reload icache = WCET reload icachei;
17 g

18 k2 = k1;
19 if (k2 : 2 J) v ++;
20 g

21 if (new prec task) f
22 	 = 	 [fnew prec task ! plg; /* add new precedence constraint fnew prec task ! plg to 	 */

23 update I, J ;
24 reduce get space(new prec task; after prec task)

25 by (i + num tasks skipped(
))*(W + WCET reload icachei);
26 i++;
27 g else 	 = 	 [fpl�1 ! plg; /* add new precedence constraint to 	 */

28 g

29 return(, WCET reload icache);

g

Figure 17: Execute Out-of-order Algorithm

We �rst compute the priorities by the algorithm of Section 5 for multiple NEV ER sets. Thus, we have an
order of software- and hardware-tasks contained in NEV ERSETS and the correspondingWCET for the DAG
representing the application. Our goal is to increase CPU utilization by starting execution of a low priority

software-task that is ready when no higher priority software-task is yet ready. However, if not done carefully,
we could end up increasing overall WCET, although in general relaxing Assumption 5.3 will allow us to reduce

WCET for the graph, thus improving our solution. We use the bounds proven in the previous section to guide
our decision and guarantee that any out-of-order execution allowed will not worsen the WCET.

The basic insight that we gain from the previous section is the following. Suppose we consider a software-

task pi lower in priority (and thus later in execution if all software-tasks execute strictly in priority order) than
two consecutive priority software-tasks k1 and k2 which leave the CPU unused for a certain number of cycles

between the completion of k1 and the beginning of k2. Let's de�ne a function get space(k1; k2) that returns a
number equal to the amount of unused CPU cycles. Should we allow pi to execute after k1 �nishes (assuming

there are no control/data-
ow constraints preventing pi from doing so)? To answer this question, we use the
bound found in Equation V of the previous section: if the amount of space (unused cycles) is greater than or
equal to Equation V, then yes, otherwise no. That is the insight behind the heuristic Execute Out-of-order

28

procedure of Figure 17.

We describe now the heuristic algorithm of Figure 17 that improves the execution time of a schedule by
allowing out-of-order execution. From �, which was computed by the algorithm described in Section 5.2, we
obtain the software-task order (p1; p2; : : : ; pm), where there are m software-tasks. Then we consider allowing

a software-task pl to execute early one at a time in reverse order of the software-tasks from this set (except
for the �rst software-task, for which it does not make sense to execute early). Thus, given a software-task

pl 2 (p2; p3; : : : ; pm), and starting with the software-task scheduled last (i.e. pm), we consider allowing pl to
execute early. For each such software-task pl we check if pl can execute in some unused space between two
consecutive and higher priority software-tasks k1 and k2, assuming no precedence constraints are violated. If pl
can execute in the space, then we check if the space is big enough to account for the worst-case extra execution
time that will be incurred according to Equation V. Note that we calculate Equation V in Figure 17 by using

num tasks skipped(
), a function which returns the number of tasks currently in (J�(J\I)) (i.e. not including
the tasks currently under consideration, unless they were already placed in I or J in a previous iteration). Now,

if the space of unused CPU time is big enough, then we greedily schedule pl in that space and appropriately
reduce the available space to re
ect the new schedule. As we go along, we keep track of I and J as we add tasks
to each set. Continuing in this way, we consider all possible software-tasks one by one for early execution.

When this heuristic completes, we have a �nal set of precedence constraints for the software-tasks that allows
out-of-order execution without increasing the WCET of the application.

cg

fk

cjd

src

sink

Jhold Law

oh0

oh1

Ohold1 Law

mvm1

mvm2

task
−−−−
cg
oh0
oh1
fk
cjd
mvm1
mvm2
src
sink

task
wcet
(cycles)
−−−−−
11,000
2,221
17,399
4,500
13,213
5,000
5,000
0
0

task
bcet
(cycles)
−−−−−
11,000
1,598
12,341
4,500
9,989
5,000
5,000
0
0

T T TT(oh0) > T(cjd) > T(oh1)

icache refill
wcet
(cycles)
−−−−−

612
4050

3258

SWNEVER = {oh0,oh1,cjd}

Figure 18: Example With WCET Calculation of Instruction Cache Re�ll Time

Example 24 [Sample Application of Execute Out-of-order algorithm] Consider Figure 18, which shows the BCET

and WCET for each task, the icache re�ll WCET for the software-tasks (SWNEV ER), and the priorities found for the

tasks: �(oh0) > �(cjd) > �(oh1).
We begin by considering oh1 for out-of-order execution. We �nd that the space between the end of oh0 and the beginning

of cjd is 11,000 - (2,221 + WCETisr +WCETprsched) = 8,643 cycles (using the costs of Section 5.3, from which we

also �nd that W = 422). At this point in the algorithm of Figure 17, we �nd that (i+m+ num tasks skipped(�)� 1) =
1 + 1 + 0� 1 = 1, and that WCET reload icachei = 4,050, giving us a move cost of 1 � (422 + 4; 050) = 4; 472. Since

8; 643 � 4; 472, we set new prec task (of Figure 17) to oh0. We next �nd out that oh1 cannot execute before oh0 since

oh1 requires data generated by oh0. Thus, we add the precedence constraint foh0 ! oh1g which means that we do not add

precedence constraint fcjd! oh1g. Therefore, the run-time scheduler will set the start event of oh1 as soon as oh0 �nishes

execution instead of waiting for cjd to �nish.

We next consider cjd for out-of-order execution. We �nd that it does not make sense to try to have cjd execute before oh0

since oh0 starts right away. So we add the precedence constraint foh0 ! cjdg which means that cjdg will run to completion

(since it cannot start until the task immediately preceding it in priority executes). This completes the algorithm of Figure 17

for the example of Figure 18.

Note that the precedence constraint foh0 ! oh1g in this case is redundant because the precedence constraint is already

enforced by a control/data-
ow constraint (in general, of course, such redundancy will not always be the case).

29

The result is that the lower priority task oh1 executes in the idle CPU time between the end of oh0 and the beginning of

cjd. 2

6.4.1 Calculation of WCET With Out-of-order Execution

In order to make a correct calculation of the WCET, we have to consider the time spent executing the ISR,

the priority scheduler, and context switches. As in Section 5.3, we will consider the speci�c case where the
processor is a MIPS R4K. We use the following costs, obtained by analyzing our run-time scheduler software
code executed on a MIPS R4K model (with no cache analysis, i.e. assuming we always miss in the instruction

and data caches): save context = 162 cycles, restore context = 162 cycles, interrupt overhead = 38 cycles, and
priority scheduler task selection = 98 cycles.

After execution of theExecute Out-of-order algorithm of Figure 17, we have a maximumvalue forWCET reload icache
(which could be zero if jIj = 0).

With these costs, we calculate the WCET of the entire graph, scheduling everything ASAP where each
software-task hasWCETisr+WCETprsched = 136 cycles added to itsWCET. At this point we have performed
exactly the same calculations as in Section 5.3. If jIj = 0, then this is our �nal answer.

If jIj 6= 0, then both I and J are nonempty, and we have to account for extra overhead. We use the bound
found using Theorem 6.2 in Section 6.3, namely Equation V, reprinted here for convenience:

(j(J � (J \ I))[Ij � 1)� (WCETprsched+WCETsavecntxt+WCETrestorecntxt+WCET reload icache).
Adding this value to the WCET found from scheduling the graph gives us an upper bound on the WCET of
the graph. This is the value we return to the user.

sw-task # cycles hw-task # cycles

int-ser-routine 38 cg 11,000
priority-sch-sw 98

oh0 2,221
int-ser-routine 38

priority-sch-sw 98
oh1 8,507
int-ser-routine 38 fk 4,500

save context 162
priority-sch-sw 98

cjd 13,213
priority-sch-sw 98 mvm2 4,400
restore context 162

WCET reload icache 4,050
oh1 8,892 mvm3 4,400

\ \ mvm4 4,400
mvm1 4,400

Table 7: WCET Calculation Example

Example 25 [WCET calculation] Consider Figure 18. If we make each software-task run to completion, then with

the optimal order of (oh0, cjd, oh1) we calculate that the WCET for the graph is 46,284 cycles. However, we found in

Example 24 that we should allow oh1 to execute after oh0, even though oh1 has a lower priority than software-task cjd. This

allows previously unused CPU cycles to be �lled.

We have J = fcjdg, I = foh1g and J \ I = ;. The heuristic of Figure 17 gives us WCET reload icache = 4050. Using

our costs for WCETprsched;WCETsavecntxt;WCETrestorecntxt and WCET reload icache, we �nd that W = 422.

From Equation V, we �nd that

(j(J � (J \ I)) [Ij � 1) � (WCETprsched+WCETsavecntxt+WCETrestorecntxt+WCET reload icache)

= 1 � (422 + 4050) = 4472.

Table 7 shows the ASAP graph schedule with the worst-case execution time added in. Notice that the maximum context

30

switch overhead and the maximum one additional call to the priority scheduler has been accounted for. The �nal WCET is

42,113 cycles, which is less than our initial solution of 46,284 cycles. 2

This �nal output is an upper bound on the WCET of the graph given the priorities assigned to software-
tasks and the precedence constraints added to the graph and therefore implemented in the hardware portion

of the run-time scheduler. In addition to helping to limit the increase in overall WCET due to software-tasks,
the added precedence constraints also guarantee mutually exclusive invocation of hardware-tasks in the same
NEV ER set.

Notice that with this result we do not know exactly when each software-task will begin and end. Software
schedulers are by their very nature dynamic, especially with a system like ours that contains caches. Thus, a

run-time system that statically schedules all software-tasks and their start/�nish times may require timers and
other additional components, making such an approach infeasible or impractical. Also, the total WCET found
for the system may be one that no single static schedule could achieve, because the possibilities for di�erent

interactions between tasks could not be so tightly arranged as with the dynamic approach here.
So we now can analyze satis�ability of a rate constraint in a dynamically changing, concurrent execution of

hardware-tasks and software-tasks with multiple resource constraints (expressed with NEV ER sets), given our
run-time scheduler implementation.

6.5 Task Splitting

One of the limitations of the Execute Out-of-order algorithm of the previous section is that the original priorities
assigned to software-tasks is kept. However, having abandoned Assumption 5.3, one might be tempted to go

back to the original formulation of the Constructive Heuristic Scheduling Algorithm of Section 5.1 used to assign
priorities. Can we improve upon the algorithm when software-tasks are allowed to execute out-of-order? Are

there optimal task priorities with out-of-order task execution which any algorithm will always miss because of
Assumption 5.3? It turns out that there are. Consider the following example:

src

sink

 a

 b

 c

 d

NEVER = {b,c}

task
−−−−
a
b
c
d
src
sink

T TT(b) > T(c)

WCET (cycles)
−−−−−
3,000
6,000
4,000
2,000
0
0

Figure 19: Constructive Heuristic Scheduling Example of Suboptimal Result

Example 26 Consider Figure 19. The constructive heuristic scheduling algorithm will compare the two possible orderings,

(b; c) and (c; b), and will �nd that the overall WCET is 12,000 cycles for the �rst case and 13,000 for the second. Thus,

software-task b will receive the highest priority. Even an exhaustive algorithm which enumerates all possibilities will �nd this

result.

Now we run the heuristic of Section 6.4 and �nd that we cannot improve on the solution since there is no space (unused

CPU cycles) before b, which begins execution right away. Thus c must wait until b �nishes to begin execution; overall WCET

for the graph is still 12,000 cycles.

Suppose c had a higher priority than b and that out-of-order execution were allowed. Then, ignoring the software scheduling,

interrupt and context switch overhead, b would execute for 3,000 cycles concurrently with a, then c would execute for 4,000

31

cycles, and �nally b would �nish in 3,000 cycles while d concurrently executes, resulting in an overall WCET of 10,000 cycles,

which is signi�cantly less than previously found. 2

src

sink

 a

 b

 c

 d

 b

task
−−−−
a
b
b
c
d
src
sink

1

2

1
2

NEVER = {b (split = 2) ,c}

T T

T T

TT(b1) > T(c) > T(b2)

T(c) > T(b)Result:

WCET (cycles)
−−−−−
3,000
3,000
3,000
4,000
2,000
0
0

Figure 20: Example of Scheduling with Task Splitting

To deal with this problem, we add the following heuristic: we allow the user to specify for a task s that

it can be split into n equal chunks. We then split s into n sequential tasks (s1; s2; : : : ; sn) each with 1
n
of the

WCET of s. Then we run the constructive heuristic scheduling algorithm as before, but from the �nal order we

set the priority of s to be the priority found for sn and discard the priorities found for (s1; s2; : : : ; sn�1).

Example 27 Consider Figure 20. This time the user speci�es that software-task b can be split into n = 2 chunks. The

modi�ed speci�cation of theNEV ER set,WCET for each task, and resultant graph can be seen in Figure 20. The constructive

heuristic scheduling algorithm �nds the ordering (b1; c; b2) (which is optimal), from which we extract the order only including

bn, resulting in (c; b2). Thus c receives a higher priority than b and we have �(c) > �(b).

Now we run the heuristic of Section 6.4 and �nd that b should be allowed to begin execution right after the source, and

then be suspended when c becomes ready. The hardware portion of the run-time scheduler is synthesized to implement this,

namely by interrupting the CPU right away to communicate a start vector indicating that b is ready to execute. Ignoring the

software scheduling, interrupt and context switch overhead, the overall WCET is now 10,000 cycles. 2

6.6 Critical Regions

An important programming methodology to support is the use of critical regions. A critical region is a section

of software code where critical resource(s) are used or common variable(s) are read/written. In fact, software
semaphores were originally created in order to allow the speci�cation of critical regions in software. Thus, if

our run-time scheduler can support the speci�cation of critical regions, then we can accomplish the same goal
without resorting to semaphores.

We support critical regions via noninterruptible software-tasks. The user can specify a set NONINT of

noninterruptible software-tasks. If a task is in NONINT then the task will not be considered for membership
in the set I of tasks allowed to execute out-of-order. In other words, all higher priority software-tasks must

�nish before the task is scheduled, so that any interrupts received during the task's execution cannot be from
a higher priority task, thereby ensuring that the noninterruptible software-task is never kicked out. In this
manner a set of critical regions, e.g. that access the same shared variables or other resource, can be de�ned.

The algorithms of Section 5 are modi�ed to take into account that these processes are noninterruptible by
simply retaining Assumption 5.3, namely that the task, once started, runs to completion. Note that one could

implement a semaphore S by specifying each access to S as a noninterruptible software-tasks.
Since the entire critical region must run to completion, releasing the resource or no longer accessing the

shared variable, the priority inversion problem does not arise in the �nal implementation. The problem of

32

src

sink

 a

 b

 c

 d

task
−−−−
a
b
c
d
src
sink

NEVER = {b,c}
NONINT = {b}

WCET (cycles)
−−−−−
1,000
6,000
4,000
2,000
0
0

Figure 21: Example Speci�cation of Noninterruptible Task

priority inversion refers to a situation where a lower priority process holds a resource when a higher priority

process interrupts which needs to use the held resource. In this case the higher priority process is prevented
from executing and has to release control to the lower priority process; thus, the lower priority process has, in
e�ect, made itself higher in priority { i.e., the priorities of the two processes have been inverted. By design, a

noninterruptible software-task cannot give rise to the priority inversion problem.
Note, however, that we assume that the critical region is located as a single task within a DAG. Thus, the

only looping on the critical region or semaphore allowed is that of each execution of the DAG; �ner level looping
on a critical region is not allowed (although loops without critical regions are allowed in individual C and Verilog
tasks, as long as an upper bound can be given on the number of times a loop will repeat in a given execution

of the task containing the loop).

Example 28 In Figure 21 task b is speci�ed as noninterruptible. Clara �nds that the order, if each task runs to completion,

is (c; b). Since b is noninterruptible, we do not consider executing part of b during the unused CPU time available while a is

executing. The precedence constraint fc! bg is generated. 2

7 Tool Flow

Figure 22 (repeated from Figure 3 for the reader's convenience) shows our tool
ow when applying our de-
sign tools to a system design. The hardware-tasks are written in Verilog and software-tasks are written in C.

Constraints include relative timing constraints, a single rate constraint, and resource constraints in the form of
NEV ER sets. Precedence constraints are implicit in the task speci�cation which takes the form of a Directed
Acyclic Graph. Serra focuses on run-time scheduler synthesis and worst-case execution time (WCET) anal-
ysis both to help optimize the scheduler synthesized and to satisfy a rate constraint. Satisfaction of relative
timing constraints (minimum and maximum separation) in hardware blocks is dealt with in hardware control

synthesized by a tool (Thalia2) not described in this paper [10, 11].
The system-level tasks, written Verilog and C, and the constraints are input to Serra and to a tool that

generates the interface. One of the tasks is speci�ed as the main task. cinderella-M takes input in C and

outputs a WCET for each software-task (note that bounds on loops must be provided by the user)[27, 28].
Similarly, from BC

TM we obtain a WCET for each hardware-task (loop bounds must be provided here in some

cases as well). Since we compare BCTM -generated WCETs with software WCETs, we convert all delays to the
number of microprocessor clock cycles (since the hardware clock speed is typically slower.) These values are

used to annotate the leaf tasks in the �nal DAG of the system speci�cation. Figure 7 showed a sample DAG
and a corresponding table with the WCET annotations.

33

behavioral
 Verilog C constraints

 Interface
Generation

User options
(protocols,
 fifos, RAM
 model, core)

behavioral
 Verilog

BC

BC

RAM
L1

V1 Vn

Ι RTS.c

*.c

 Serra
Run−Time
Scheduler
Synthesis

RTS.v
...

 RTL
 Verilog

DC

 System Specification

User options
(microprocessor
 core, RAM size)

wcet

wcet cinderella−M

CPU
Core1

Figure 22: Tool Flow and Target Architecture

7.1 Serra Run-Time Scheduler Analysis and Synthesis

The Serra design tool is shown in Figure 23. Serra �rst extracts the task control-
ow from the system

speci�cation. The user-speci�edmain task contains the overall sequence of tasks in the application. System-level
task control-
ow is expressed using control-
ow expressions (CFEs) which were described brie
y in Section 4.
Diego can extract a CFE description from a task written in Verilog; for example, given the main task in Verilog,

Diego can generate in CFE format the sequence of task invocations (calls) from the main task. Then, given
the output from feeding the tasks to BCTM or cinderella-M, the CFEs are annotated with a WCET for each

hardware or software task. A single rate constraint is speci�ed in the form of invoking the main task at a �xed
rate.

Serra synthesizes the control-unit of the scheduler by means of tool Thalia2 which takes as input a

CFE description and produces a logic-level description in synthesizable Verilog[10, 29]. The timing, resource
and precedence constraints speci�ed in the CFEs input to Thalia2 are translated into a �nite-state machine

implementation if the constraints are satis�able.
The constructive heuristic scheduling algorithm is implemented by Clara, which generates the static prior-

ities for the software- and hardware-tasks. Serra synthesizes the control-unit of the scheduler into a hardware
FSM which includes the additional precedence constraints found by Clara.

Clara can e�ectively handle multipleNEV ER sets, split tasks (Section 6.5), and noninterruptible software-
tasks (Section 6.6). Furthermore, Clara can generate precedence constraints among software-tasks in a single
NEV ER where lower priority software-tasks can execute during idle time when higher priority software tasks

are not yet ready. The analysis for this case is also implemented by Clara, and thus it calculates WCET for
the out-of-order execution using the results from Section 6.4.1.

To generate the run-time kernel's C code, Serra uses templates of the priority scheduler in C, the Interrupt

Service Routine (ISR) in MIPS assembly and context switch code in MIPS assembly. For the software that
runs on the microprocessor core (CPU), the individual software-tasks are compiled together with the priority

34

behavioral
 Verilog C

dataflow
analysis

cdfg

cfecfe
linker

relocatable
assembly code

sw tasks
assembly code

CC

Run−Time
Scheduler
assembly code

Run−Time
Scheduler
control FSM

 RTL
 Verilog

cfe

final cfe

 Clara
real time
analysis

 ISR
generation

Priority Scheduler
generation

priorities Thalia2

 Diego

precedences

Figure 23: Block diagram of Serra

scheduler, ISR, and context switch code using standard C compilers and linkers. Data and program memory

are statically allocated.
Serra also allows the user to override the priorities found by the heuristics of Clara. Even further,

Serra allows the user to override precedences added to the hardware portion of the run-time scheduler, so that

di�erent software-tasks can be allowed to execute early in a di�erent order than that found by the heuristic of
Section 6.4. Thus, possible optimizations can be added by the user. Serra can then calculate the newWCET for

the application with the new set of priorities and/or new set of precedences. Serra thus provides for interactive
performance evaluation of the run-time system, as well as synthesis for each particular implementation.

8 Example and Experimental Results

2 2
Set Torque

mvm1

xf1 xb1 xf2 xb2−8 −8

Ohold1 Law

Jhold Law

cjd

cg

oh0

oh1

mvm2

mvm4

mvm3
fk

Figure 24: Directed Acyclic Graphs of Ohold1 Law, Set Torque, and Jhold Law with Relative Timing Constraints

35

In this section, we present an example of how a design can be successfully synthesized using the system described

in the previous sections. We consider a robot controller design for manipulating two PUMA arms containing
concurrent \laws" that must calculate new torques every millisecond. We show how real-time constraints can
be satis�ed with a run-time system that also provides for dynamic allocation of resources.

For our example, we consider the robot control algorithm of Figures 5 and 6. We implement the tasks
required for executing Jhold Law and Set Torque in parallel with Ohold1 Law and Set Torque. The DAGs,

including the leaf tasks that implement Set Torque, are shown in Figure 24. Note that Xmit Frame1 (xf1) and
Xmit Bit1 (xb1) of Set Torque1 have a strict relative timing constraint of xb1 starting no less than 2 cycles
after xf1 and no more than 8 cycles after. The exact same constraint holds for Set Torque2. This constraint

could not always be satis�ed with control signals generated by a run-time scheduler in software (note our CPU
in Figure 22 has an L1 cache). We assume that the full system drives Xmit Bit from hardware modules other

than Xmit Frame and thus the two hardware tasks, although tightly coupled, must be kept separate.
We perform real-time analysis using the Clara tool which has been implemented in 15,000 lines of C. We

�rst use Constructive Heuristic Scheduling for multiple NEV ER sets and �nd the order of (oh0, cjd, oh1)
for the software-tasks. Even with task splitting applied to oh1, the order does not change. Thus, we set the
static priorities in the software scheduler such that �(oh0) > �(cjd) > �(oh1). Then we run the Execute
Out-of-order algorithm and �nd, just as we did in Example 24, that we should allow task oh1 to execute on
the CPU as soon as oh0 is �nished. Therefore we �nd the following precedence constraints: foh0 ! cjdg and

foh0! oh1g.
The Constructive Heuristic Scheduling algorithm found order (mvm2, mvm3, mvm4, mvm1) for NEV ER2 and

order (xf2, xb2, xf1, xb1) for NEV ER3. Excluding redundant precedence constraints already present in the

DAG, we �nd the following additional precedence constraints: fmvm4! mvm1g and fxb2! xf1g.
As in Example 25, we calculate a WCET for of 42,113 for Figure 24 with out-of-order execution. This

provides for the upper bound on execution speed for the tasks in Figure 24 under worst-case conditions.

wnt
gp1
gv1
gp2
gv2
oh0
cg
fk
oh1
cjd
mvm1
mvm2
mvm3
mvm4
xf1
xb1
xf2
xb2
hm

c0

c1
c2
c3
c4
c5
c6
c7
c8
c9

c10

 gp1_done

s q’
r q

s q’
r q

s q’
r q

s q’
r q

s q’
r qs q’

r q

s q’
r q

s q’
r q

s q’
r q

s q’
r q

s q’
r q

global_start
 hm_done
 wnt_done

oh1_done & mvm4_done

 oh0_done
 cg_done
 fk_done

 oh1_done
 cjd_done

mvm1_done
mvm2_done
mvm3_done

mvm4_done

mvm1_done
 hm_done

Figure 25: Final Hardware Portion of Run-Time Scheduler

Figure 25 shows the hardware portion of the run-time scheduler. Signals wnt, gp1,gv1,. . . , hm in Figure 25 are
the start events for the corresponding tasks in Figures 24 and 26. The signal global start kicks of execution
for the very �rst time; after that, the done signal of hm restarts the iteration. The right-hand box is the FSM

generated from the CFE for the system [10, 30]. Note that Figure 25 shows an optimization in the control logic
for mvm1. Since the best case execution time, or BCET, of oh1 is greater than the WCET of fk, we can set the

start signal of mvm1 based only on the done signals of oh1 and mvm4 (rather than a conjunction of the done
signals of fk, oh1 and mvm4). Similarly, due to the length of mvm1-4, we �nd that we do not need to add the

36

fxb2! xf1g precedence constraint. Finally, note that the designer knows that hm does not need to wait for the

transmission of the torque values to the robot arms; it can begin calculating right after mvm4 �nishes. These
optimizations were added in Serra manually by the user.

The software tasks are compiled and linked into assembly, with data and program memory statically allo-

cated, as well as memory-mapped I/O. Finally, the software portion of the run-time scheduler is generated in the
form of an Interrupt Service Routine that reads in a start vector which task needs to be executed in software,

a priority scheduler which selects which software-task to execute, and routines for saving and restoring context.
The system begins each iteration once a millisecond. After obtaining the positions and velocities of the two

robot arms, the run-time scheduler starts the execution of cg in hardware for Jhold Law and oh0 in software

for Ohold1 Law. It continues with interleaved hardware-software execution as shown in Table 7 and pictured
graphically in Figure 15. Finally, it tightly schedules accesses to Xmit Frame and Xmit Bit to set the torques

for the robot.
Notice that from the point of view of the run-time scheduler, xf1 and xf2 are only one cycle actions; we do

not wait for any done signal, but assume that if xb1 completes then xf1 has completed, and similarly that if
xb2 completes then xf2 has completed. This was a design decision made up front based on the Verilog code
for the tasks. On the other hand, notice that xf1, xb1, xf2, and xb2 are all in the same NEV ER set. This is

because the same hardware-tasks, Xmit Frame and Xmit Bit, are used to transmit the torque data, and we do
not want xf2 to begin while xb1 is still executing, nor xf1 to begin while xb2 is still executing. Thus we need to

pay attention to the done events of xb1 and xb2.

cg

fk

cjd

Jhold Law

oh0

oh1

2 2
Set Torquexf1 xb1 xf2 xb2−8 −8

wnt

gp1 gv1 gv2

hm

gp2

mvm1

mvm2

mvm4

mvm3

epsilon

NEVER1 = {oh0,oh1,cjd}
NEVER2 = {mvm1,mvm2,mvm3,mvm4}
NEVER3 = {xf1,xb1,xf2,xb2}

task
−−−−
cg
oh0
oh1
fk
cjd
mvm1
mvm2
mvm3
mvm4
xf1
xf2
xb1
xb2
src
sink

Ohold1 Law icache refill
WCET
(cycles)
−−−−−

612
4050

3258

task
WCET
(cycles)
−−−−−
11,000
2,221
17,399
4,500
13,213
4,400
4,400
4,400
4,400
1
1
322
322
0
0

task
BCET
(cycles)
−−−−−
11,000
1,598
12,341
4,500
9,989
4,400
4,400
4,400
4,400
1
1
322
322
0
0

Figure 26: DAG of Robot Arm Controller with Relative Timing Constraints

The complete,
attened DAG with relative timing constraints is shown in Figure 26 (reprinted from Figure 6

with additional information added). The epsilon task takes zero cycles and serves to synchronize the task
executions by making sure every task before it has completed before continuing. The scheduling of tasks shown

in Figure 26 but not in Figure 7 { wnt, gp1, gv1, gp2, gv2, xf1, xb1, xf2, xb2, hm { together take 57,200 cycles
in the worst case. Since our MIPS R4K core runs at 100 MHz, the rate constraint allows us to use 100,000

cycles. Thus, we have 42,800 cycles left for the remaining tasks { oh0, oh1, fk, cg, cjd and mvm1-4. The
WCET of 42,113 we found �ts our rate constraint (note that without out-of-order execution, we would have

37

had a WCET of 46,284, which would violate the constraint). Thus, our schedule guarantees that we meet our

hard real-time rate constraint.

Software-Task Lines Lines Task Task Icache re�ll
C Assem. BCET WCET WCET

oh0 90 237 1,598 2,221 612

oh1 693 3,263 12,341 17,399 4,050

cjd 286 1,177 9,989 13,213 3,258

int-ser-routine N/A 26 11 38 N/A

context-switch N/A 42 34 162 N/A

priority-sch-sw 107 141 26 98 N/A

Table 8: Code space, BCET and WCET for sw-tasks.

Hardware-Task Lines Area BCET WCET
Verilog

cg 2897 59,587 11,000 11,000

fk 2362 42,168 4,500 4,500

mvm 629 33,645 4,400 4,400

xmit-frame 108 987 322 322

xmit-bit 66 199 322 322

run-time-sch-hw 484 413 N/A 99,701

Table 9: Results for the synthesis of hw-tasks.

Table 8 presents the results for the compilation of the software and best- and worst-case execution time
estimation with cinderella-M. Unfortunately, cinderella-M does not perform any data-cache analysis, so

all data references are assumed to miss, incurring the cost of loading in a data cache line.
In Table 9, we see the results for the synthesis of the hardware tasks of Figure 7 using the Behavioral

CompilerTM , except for the run-time scheduler hardware part which was synthesized with the Design CompilerTM .

The third column in Table 9 shows the number of gate equivalents the hardware required using the LSI 10K
Logic library. We clock the hardware at 10 MHz. Using a MIPS R4K model in Verilog, we simulated the Robot

Arm Controller, with its synthesized run-time scheduler, in Verilog using Chronologic's VCSTM .

9 Conclusions

The Serra Run-Time Scheduler Synthesis and Analysis Tool helps designers perform system-level design with
hardware and software at a coarse level of granularity. We have shown how one can synthesize a run-time

scheduler in hardware and software that can predictably meet real-time constraints while dynamically executing
tasks in hardware and software. We have utilized the methodology of control-
ow expressions to synthesize the

hardware control portion of the scheduler.
We have addressed the important problem of real-time analysis in hardware/software co-design with a custom

run-time system. The Serra Run-Time Scheduler tool, which encapsulates the Clara Real-Time Analysis

tool, helps designers perform system-level design quickly and e�ciently. We can predictably meet hard real-
time constraints with our approach, based on static priority assignment, a custom priority scheduler, and a

synthesized run-time scheduler, which allows a more detailed analysis of the system. The �nal result is tighter
execution bounds thus squeezing more performance out of the same components than with a traditional RTOS

and associated real-time analysis.

38

Acknowledgments
This research was sponsored by ARPA under grant No. DABT63-95-C-0049 and by a Fellowship from National Semicon-
ductor. We also acknowledge the contributions of Sera Linardi, who ported cinderella to MIPS, Toshiyuki Sakamoto,
who wrote the Verilog hardware-tasks and implemented interrupts in the MIPS R4K model, Firdaus Abdullah, who
implemented the full Verilog simulations of the hardware-software run-time scheduler for the Robot Arm Controller, and
Yau-Tsun Steven Li, who provided guidance and support for cinderella-M and associated analysis.

References
[1] M. Abid, A. Changuel and A. Jerraya, \Exploration of Hardware/Software Design Space through a Codesign of

Robot Arm Controller," European Design Automation Conference, pp. 42-47, September 1996.

[2] Jay K. Adams and Donald E. Thomas, \Multiple-Process Behavioral Synthesis for Mixed Hardware-Software Sys-
tems," International Symposium on System Synthesis, pp. 10-15, September 1995.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell and A. J. Wellings, \Applying new scheduling theory to static
priority pre-emptive scheduling," Software Engineering Journal, pp. 284-292, September 1993.

[4] N. Audsley, A. Burns, R. Davis, K. Tindell and A. J. Wellings, \Fixed Priority Pre-emptive scheduling: A Historical
Perspective," Real-Time Systems, (8):173-198, 1995.

[5] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,
Ellen Sentovich, Kei Suzuki and B. Tabbara, Hardware-Software Co-Design of Embedded Systems The Polis Approach,
Kluwer Academic Publishers, Norwell, MA, 1997.

[6] F. Balarin, K. Petty, A. Sangiovanni-Vincentelli and Pravin Varaiya, \Formal Veri�cation of the PATHO Real-Time
Operating System," Proceedings of the 33rd Conference on Decision and Control, CDC `94, December 1994.

[7] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno and A. Sangiovanni-Vincentelli, \Formal Veri�cation of Embedded

Systems based on CFSM Networks," Proceedings of the 33nd Design Automation Conference, June 1996.

[8] Pai H. Chou and Gaetano Borriello, \Software Scheduling in the Co-Synthesis of Reactive Real-Time Systems,"
Proceedings of the 31st Design Automation Conference, pp. 1-4, June 1994.

[9] Pai H. Chou, Ross B. Ortega, and Gaetano Borriello, \The Chinook Hardware/Software Co-Synthesis System,"
International Symposium on System Synthesis, pp. 22-27, September 1995.

[10] C. N. Coelho Jr. and G. De Micheli, \Analysis and Synthesis of Concurrent Digital Circuits Using Control-Flow
Expressions," IEEE Transactions on CAD/ICAS,Vol. 15, No. 8, August 1996, and Technical Report CSL-TR-96-694,
http://elib.stanford.edu/Dienst/UI/2.0/Describe/stanford.cs%2fCSL-TR-96-694, Stanford, CA, April, 1996

[11] C. N. Coelho Jr., Analysis and Synthesis of Concurrent Digital Systems Using Control-Flow Expressions, Ph.D.
Thesis, Technical Report CSL-TR-96-690, http://elib.stanford.edu/Dienst/UI/2.0/Describe/stanford.cs%2fCSL-TR-
96-690, Stanford, CA, March, 1996.

[12] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms, The MIT Press, Cambridge, 1990, pg. 35.

[13] B. Dave, G. Lakshminarayana and N. Jha, \COSYN: Hardware-Software Co-synthesis of Embedded Systems",

Proceedings of the 34th Design Automation Conference, pp. 703-708, June 1997.

[14] G. De Micheli and M. Sami, editors, Hardware/Software Co-Design, Kluwer Academic Publishers, Norwell, MA,
1996.

[15] G. De Micheli, Synthesis and Optimization of Digital Circuits,McGraw Hill, Inc., New York, NY, 1994, pp. 208-211.

[16] R. Ernst, J. Henkel, Th. Benner, W. Ye, U. Holtmann, D. Herrmann and M. Trawny, \The COSYMA environment
for hardware/software cosynthesis of small embedded systems," Microprocessors and Microsystems, 20 (1996) pp.
159-166.

[17] M. Garey and D. Johnson, Computers and Intractability A Guide to the Theory of NP-Completeness, W. H. Freeman
and Company, N.Y., 1979, pg. 239.

[18] R. K. Gupta, Co-Synthesis of Hardware and Software for Digital Embedded Systems, Kluwer Academic Publishers,
Boston, MA, 1995.

[19] J. Henkel, R. Ernst, \The Interplay of Run-Time Estimation and Granularity in HW/SW Partitioning," 4th. Int'l
Workshop on Hardware/Software Co-Design, Pittsburgh, 1996.

39

[20] J. Henkel, Th. Benner, R. Ernst, W. Ye, N. Sera�mov and G. Glawe, \COSYMA: A Software-Oriented Approach
to Hardware/Software Co-Design," The Journal of Computer and Software Engineering, Vol. 2, No. 3, pp. 293-314,
1994.

[21] F. Hillier and G. Lieberman, Introduction to Operations Research, 6th edition, McGraw-Hill, Inc., New York, 1995,
pp. 424 - 469.

[22] M. Humphrey, G. Wallace and J. Stankovic, \Kernel-Level Threads for Dynamic, Hard Real-Time Environment,"
16th. IEEE Real Time Systems Symposium, pp. 38-48, 1995.

[23] D. Knapp, Behavioral Synthesis: Digital System Design Using the Synopsys Behavioral Compiler, Prentice Hall,
Upper Saddle River, NJ, 1996.

[24] David C. Ku and Giovanni De Micheli, High Level Synthesis of ASICs Under Timing and Synchronization Con-
straints, Kluwer Academic Publishers, Norwell, MA, 1992.

[25] A. W. Leigh, Real Time Software For Small Systems, Sigma Press, Wilmslow, U.K., 1988.

[26] C. Liu and J. Layland, \Scheduling algorithms for multiprogramming in a hard-real time environment," Journal of
the ACM, 20(1):46-61, January 1973.

[27] Y. Li, S. Malik and A. Wolf, \Performance Estimation of Embedded Software with Instruction Cache Modeling",
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 380-387, November, 1995.

[28] S. Malik, W. Wolf, A. Wolf, Y. Li and T. Yen, \Performance Analysis of Embedded Systems," in G. De Micheli and
M. Sami, editors, Hardware/Software Co-Design, pp. 45-74, Kluwer Academic Publishers, Norwell, MA, 1996.

[29] V. Mooney, C. Coelho, T. Sakamoto and G. De Micheli, \Synthesis From Mixed Speci�cations," European Design
Automation Conference, pp. 114-119, September 1996.

[30] V. Mooney, T. Sakamoto and G. De Micheli, \Run-Time Scheduler Synthesis For Hardware-Software Systems and
Application to Robot Control Design," 5th. Int'l Workshop on Hardware/Software Co-Design,, pp. 95-99, Braun-
schweig, Germany, March 1997.

[31] V. Mooney and G. De Micheli, \Real-Time Analysis and Priority Scheduler Generation For Hardware-Software Sys-
tems with a Synthesized Run-Time System," Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, pp. 605-612, November, 1997.

[32] S. Narayan, F. Vahid and D. Gajski, \System Speci�cation with the SpecCharts Language," IEEE Design & Test
of Computers, pp. 6-13, December 1992.

[33] S. Prakash and A. C. Parker, \SOS: Synthesis of Application-Speci�c Heterogeneous Multiprocessor Systems,"
Journal of Parallel and Distributed Computing, Vol. 16, pp. 338-351, December, 1992.

[34] K. Ramamritham, \Allocation and Scheduling of Precedence-Related Periodic Tasks," IEEE Proceedings on Parallel
and Distributed Systems, 6(4):412-420, April 1995.

[35] L. Sha, R. Rajkumar and S. Sathaye, \Generalized rate monotonic scheduling theory: a framework for developing
real-time systems," Proceedings of the IEEE, 82(1):68-82, January 1994.

[36] D. Verkest, K. Van Rompaey, I. Bolsens & H. De Man, \CoWare{A Design Environment for Heterogeneous Hard-
ware/Software Systems," Design Automation for Embedded Systems, Vol. 1, No. 4, pp. 357-386, October 1996.

[37] T. Yen and W. Wolf, \Performance Estimation for Real-Time Distributed Embedded Systems," Proceedings of
International Conference on Computer Design, pp. 64-69, 1995.

40

