IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 10. NO. 1. JANUARY 1991 63

Synchronous Logic Synthesis: Algorithms for
Cycle-Time Minimization

Giovanni De Micheli, Senior Member, IEEE

Abstract—This paper presents a new approach to logic synthesis of
digital synchronous circuits. We present a model for synchronous cir-
cuits that supports logic transformations aimed at optimizing the cir-
cuit performance. Previous synthesis approaches attacked this problem
by separating the combinational logic from the registers and by apply-
ing circuit transformations to the combinational component only. We
show in this paper instead how to optimize concurrently the circuit
equations and the register position by a set of algorithms based on logic
transformations. Experimental results on benchmark circuits are re-
ported.

[. INTRODUCTION

HE IMPORTANCE of logic synthesis is pivotal in the com-

puter-aided design of integrated circuits. Logic synthesis
systems have been the object of extensive investigation, and
commercial implementations have shown to be practical for
product-level design of digital circuits.

Most digital designs are synchronous logic circuits that are
interconnections of logic gates and registers with synchronous
clocking. Feedback connections are restricted to be through
synchronous registers, to guarantee race-free design. Semi-cus-
tom circuit implementations, such as standard cells and sea-of-
gates, have motivated the use of multiple level (or multiple
stage) logic synthesis techniques. In particular, such implemen-
tations have shown to be more flexible and faster than two-level
implementations, such as programmable logic arrays. As a re-
sult, several techniques for multiple level logic synthesis tech-
niques have been investigated and clever algorithms for
combinational logic synthesis have been reported in the litera-
ture {1]-[5].

However. techniques for synthesizing synchronous logic cir-
cuits have been lagging behind, due to the additional complex-
ity of handling registers and feedback connections. Some logic
synthesis systems deal with such circuits by partitioning them
into an interconnection of a combinational logic component and
registers [1]. The combinational portion of the circuit is opti-
mized by combinational logic algorithms. Then registers are
added back to the circuit. Needless to say, such optimization
techniques are limited in their scope by this partitioning strat-
egy. An attempt to overcome this problem was recently pro-
posed [6] in which registers are temporarily removed to extract
the largest portion of a synchronous circuit that can be dealt
with by combinational logic techniques.

Some other logic synthesis cope with synchronous designs by
exploiting heuristic solutions to classical problems, such as state

Manuscript received January 1. 1990. This work was supported by the
National Science Foundation under Contracts MIP-8710748 and MIP-
8719546, and by DEC, AT&T., and Cray Research. jointly with the Na-
tional Science Foundation under a PYI Award.

The author is with the Center for Integrated Systems. Computer Systems
Laboratory. Stanford University, Stanford, CA 94305-4055.

1EEE Log Number 9039381.

minimization and state assignment [7]. In this case, the opti-
mization is done on a logic behavioral model in terms of state
diagrams or equivalent representations. The drawbacks of this
approach are two-fold. First, it is hard to evaluate correctly the
circuit timing characteristics and to develop timing optimization
algorithms. Secondly, it is not possible to improve a netlist-
based circuit specification in a step-wise way in order to take
advantage of the original circuit structure.

In this paper we attack the synchronous logic synthesis prob-
lem by considering algorithms that operate on the structural
specification of a synchronous circuit. We consider circuit
models that do not separate registers from the combinational
component. For this reason, we introduce the concept of syn-
chronous Boolean network and we study transformations on this
network that preserve 1/0 equivalence and that can be used to
improve the circuit cycle time and/or area in a step-wise way.
Some of these transformations are extensions of those used in
combinational logic synthesis and operate within and across the
register boundaries, by exploiting the possibility of moving the
register positions.

It is important to remember that a technique to position the
registers in a network, called retiming, was introduced by Leis-
erson and Saxe [8] in a different context, where logic synthesis
transformations were not considered. Indeed the retiming-based
algorithms presented in (8] find the register assignment corre-
sponding to the fastest implementation (or minimal area imple-
mentation) of a network. Unfortunately, there has been no major
use of retiming techniques in logic synthesis, because of the
emphasis on combinational logic techniques. In addition, the
optimality of Leiserson’s algorithms has limited value in logic
synthesis, because it assumes a static network topology, and
therefore, disregards transformations that alter combinational
logic gates and their interconnections.

This paper presents a model for synchronous logic synthesis
that combines retiming with combinational logic synthesis tech-
niques. We describe logic transformations that can be used to
optimize the circuit area (under cycle-time constraints) or the
cycle time (under area constraints). However, due to the nov-
elty and complexity of the problem, we cannot at present report
on a comprehensive approach to solving (even heuristically)
these synchronous logic-synthesis problems. For this reason,
we concentrate here on the use of logic transformations for the
cycle-time minimization problem and we present some results
on benchmark circuits to show the advantages and limitations
of the approach.

II. Basic CONCEPTS AND DEFINITIONS

We consider structural models of digital circuits. Such cir-
cuits can be specified by an interconnection of combinational
logic gates and clocked registers. We assume first that all the

0278-0070/91/0100-0063$01.00 - 1991 IEEE

64 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 10. NO. 1. JANUARY 199]

<XrXImO
an N u

INPUT
VERTICES

QUTPUT
VERTICES

INTERNAL
VERTICES

Fig. 1. Synchronous circuit and its representations.

registers are driven by one clock (i.e., single-phase circuits)
and that the latching is always positive (or always negative)
edge triggered. (Master-slave registers consisting of a cascade
interconnection of latches gated by the clock and its comple-
ment fall in this class.) We assume that the clock has a period
T (cycle time), and that the clock skew, the register setup, hold,
and propagation times are negligible.'

We model synchronous circuits by synchronous Boolean
networks. A synchronous Boolean network is described in terms
of Boolean variables and Boolean equations. Each Boolean
variable corresponds to either a primary input/output of the cir-
cuit or to the output of a combinational logic gate. A positive
integer label on a variable (superscript) denotes the synchro-
nous register delay, if any, of the corresponding signal with
respect to the primary input or combinational logic gate that
generates it. Zero-valued labels are omitted for the sake of sim-
plicity. Each Boolean equation has an unlabeled variable (i.e.,
with zero-valued label) as a left term and a Boolean expression
as a right term. The latter specifies the value of the left-term
variable in terms of other (labeled) variables, i.e., it is a mul-
tiple-input single-output combinational logic function. We de-
note by 9 the Boolean expression associated to variable i.

The network is modeled by the synchronous network graph,
that is, a directed weighted multigraph G(V, E, W), whose
vertex set ¥ = V' U V¢ U V° = {v} is partitioned into input,
internal, and output vertices that are in one-to-one correspon-
dence with the variables corresponding to the set of primary
inputs, logic gates, and primary outputs, respectively. We de-
note v; the vertex corresponding to variable i. The edge set E
and the edge weight set W are defined as follows. There is an
edge between v; and », with weight k when variable i appears
in the expression § for vertex v; with label k. Zero-valued
weights are not indicated by convention. There is a (weighted)
edge to each output vertex in ¥ from the internal vertex in V¢
corresponding to the gate generating that output signal. For each
pair of vertices joined by a path in G(V, E, W), the path weight
is the sum of the weights along the path. We assume that each

'In the case that the register setup ¢, and propagation 1, times are not
zero, it suffices to consider a reduced effective cycle time T — 1, = 1,
which represents an upper bound to the propagation delay through the com-
binational logic.

cycle (i.e., closed path) has strictly positive weight, to model
the restriction of breaking combinational logic cycles by at least
one register. An example of a synchronous digital circuit and
its representation is shown in Fig. 1.

In general, a synchronous Boolean network may have cyclic
dependencies, i.e., its corresponding graph may be cyclic. A
network is called unidirectional when the graph G(V, E, W)
is acyclic. Note that the combinational Boolean network (with-
out synchronous registers) introduced by Brayton [1] is just a
special case of the synchronous Boolean network that is acyclic
and whose labels are all zeroes.

The (direct) fan-in set of a vertex v; is the subset of vertices
that are tail of an edge (with zero weight) whose head is v; and
is denoted by FI(v;) (DFI(v;)). Similarly the (direct) fan-out
set of a vertex v; is the subset of vertices that are head of an
edge (with zero weight) whose tail is »; and it is denoted by
FO(v;) (DFO(v;)). Each internal vertex v, € V¢ (i.e., corre-
sponding to a gate) has as attributes an area estimate /; in terms
of literal count [1] and a positive propagation gate delay d,.
Each input and each output vertex has zero delay.

The propagation delay model captures the difference in speed
of gates implementing various Boolean expressions. Therefore,
it is a function of the structure of the Boolean expression. For
example, in the case of CMOS technology, such a structure is
characterized by the maximum number of N-type and P-type
devices in series. The delay function is assumed to be a mono-
tonically increasing function of /. It is important to remark that
an accurate gate propagation delay model should include load-
ing factors and device sizes. We assume that the choice of de-
vice sizes for a gate is done in a successive stage of logic design,
the technology mapping, so that it compensates for loading fac-
tors. Therefore, this propagation delay model includes an aver-
age loading factor.

Each vertex v; has a data ready time 7;, that is, the time at
which the signal generated by the corresponding gate is ready
with respect to the clock edge [9]. We assume the primary in-
puts to be synchronized to the clock positive edge, and there-
fore, their data ready time is zero. For any other vertex v, the
ready time is the sum of its propagation delay d, to the largest
data ready time of its inputs that are not registers, i.e.:

(1)

t;, =d; + max
eDFI)

DE MICHELI: ALGORITHMS FOR CYCLE-TIME MINIMIZATION

1) (1 A
c=A()B() [

X=D+C

65

Fig. 2. Retiming vertex v, by +1.

Since the subgraph representing the direct fan-in relation is
acyclic, the data ready time can be computed by topological
sort.

Given a cycle time 7, a synchronous network is a timing
feasible implementation if all the data ready times are bounded
from above by the cycle time, i.e.:

T = max (1,).
eV
Each vertex »; has a slack s; representing the additional delay
that the vertex can tolerate while preserving timing feasibility
of the network for a given T [9]. In a (timing feasible) network
a vertex is critical if its slack is negative (null).

The area taken by a network implementation depends on the
total number of literals and registers required. For each variable
i, let m; be the maximum of the labels that the variable takes in
the network representation. Then m; represents the number of
synchronous registers that are connected in cascade at the out-
put of the corresponding gate. An area estimate can be com-
puted as:

eV vie

A=a X L +8 2 m,.
v

where « and 8 are coefficients taking into account the relative
area cost of a literal and a register. Given an area bound 4,,,,,,
a network is an area feasible implementation if 4,,,, = A4, and
it is a feasible implementation if it is both area feasible and
timing feasible.

III. LoGic TRANSFORMATIONS IN SYNCHRONOUS LoGIC
SYNTHESIS

The problem of minimizing the cycle time (area) of a syn-
chronous Boolean network implementation, possibly under area
(cycle time) constraints, is difficult and no efficient exact solu-
tion method is known. Most techniques for multiple level logic
optimization are based on network transformations, that pre-
serve the 1/0 equivalence of the network and achieve area/time
optimal solutions with respect to some local criterion. Trans-
formations are classified as local and global. Transformations
are said to be local when they modify the representation of a
Boolean expression at a time (e.g., factoring or Boolean sim-
plification of an expression at one vertex of the network). Such
transformations have been presented in [1], [2] for combina-
tional logic synthesis and can be used (without significant ex-
tensions) in synchronous logic synthesis. because they do not

depend on the network model. Global transformations target
more than one expression at a time and they attempt to improve
the network by restructuring the global interconnections (e.g..
elimination, resubstitution, and extraction). We consider here
global transformations extended to synchronous logic synthesis
in relation with network retiming.

Retiming [8] is a technique that determines a register assign-
ment in a network (i.e., a set of weights in G(V, E, W)) so
that it is a timing feasible implementation for a given cycle time
T, if such an assignment exists. In our context, the retiming of
variable i by an integer r corresponds to adding r to its label,
and the retimed variable is denoted by i """, where the dot in
the superscript represents the label of variable i before retiming
(e.g., for variable i with label 2, fully denoted by i ', a retim-
ing by r = 3 yields i *** = i), Similarly, the retiming of
an expression 9 by an integer r corresponds to adding r to the
labels of all its operands and it is represented by 9", The
positive (negative) retiming of an internal vertex v; by r; is the
shift of r; register delays from its outputs (inputs) to its inputs
(outputs). It corresponds to retiming by r; the expression 9 of
v; and to retiming by —r; the variable / in the expressions of the
vertices of FO(v;). An example is shown in Fig. 2.

The retiming of the I/O vertices corresponds to transferring
synchronous delays from the circuit to the surrounding environ-
ment and vice versa. The retiming of an input vertex v; by r;
corresponds to removing r; synchronous delays from the cor-
responding input signal. Therefore, it is just the retiming by —r;
of the variable i in all the expressions of the vertices of FO(v;).
The retiming of an output vertex ; by r; corresponds to adding
r; synchronous delays on the output signal. Therefore, the re-
timing of an output vertex v; by r; is just the retiming by r; of
the expression 9 of v;.

In the sequel, we refer to retiming as to the retiming of one
or more vertices. It was shown in [12] that retiming the internal
vertices preserves the I/O behavior of the network, provided
that the resulting labels of the variables are non-negative.
Therefore, the retiming of a vertex is valid only for some re-
stricted values of r. Retiming all I/O vertices by the same quan-
tity r preserves also the 1/0 behavior, again provided that the
resulting labels are non-negative. Note that when the network
graph is connected, if any 1/O vertex is retimed, then all the
I/O vertices must be retimed by exactly the same quantity r to
preserve equivalence. A network retiming is feasible for a cycle
time 7, if the retimed network is a timing feasible implemen-
tation with non-negative labels and 1/0 equivalent to the orig-
inal network.

66 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL.

c=AB
(1
X=D+C
A
x=0+a" "
8
1
x=a"%8
1
v=2®c.8'"c

1
X=A()QB B

v=x"¢c

10. NO. 1. JANUARY 1991

Fig. 4. Resubstitution of ¢, into .

Leiserson and Saxe proposed an algorithm in [8] that searches
for the minimum T for which there exist a feasible retiming.
The corresponding network is said to be timing optimal with
respect to retiming. We consider here retiming in connection
with logic transformations that alter the structure of the network
graph.

The elimination of a variable with label k is the replacement
of the variable by its corresponding expression retimed by k.
Given two internal vertices v; and v; € FI(v;), the elimination
of z; into v; is the elimination of variable j in all its occurrences
in the expression 9 for v; (Fig. 3). The elimination of vertex v;
is its elimination into all the vertices in FO(v;). Note that the
elimination of a variable with label zero is equivalent to the
elimination used in combinational logic synthesis {1], [2]. The
elimination of a variable with a nonzero label corresponds to
merging two logic gates that are separated by a register, by
shifting the register to the inputs of the gate corresponding to
the variable being eliminated.

Let us consider the area cost (or value) of an elimination, say
v; into v;. An elimination changes the total number of literals
in a network by §,. This number can be computed as 6, = n;;(/;
— 1) — [, where n;, is the multiplicity of variable j in expres-
sion 9 [1], [2]. When elimination is performed across a register
boundary, then it is important to compare the saving in terms
of literals with the possible increase of registers &

me

Example: Consider the circuit of Fig. 3. The variation in the
number of literals is: §, = n (/. — 1) = [. = 1(2 - 1) =2
= —1, i.e., one literal is saved. Assume that variable ¢ is not
used in any other expression and that m, = m, = 0, i.e., no
register is present at the output of v, and v,,. After the elimi-
nation one register is needed to delay a and b and no register is
needed at the output of v, that is deleted from the network. Then
6,=1landé, = —a + (.]

Let us consider now the resubstitution [1], [2] for synchro-
nous Boolean networks. Let 9, §, Q, and ® be Boolean expres-
sions. Then g is a synchronous divisor of 9 if 3r = 0 such
that $ = §*”Q + ®Rand """ Q # &. Note that the prod-
uct g *7Q may have the algebraic or Boolean flavor, as de-
fined in [1]. Given two internal vertices ¢; and v; such that the
expression J is a synchronous divisor of 9, the resubstitution
of v; into v, is the factoring of §as j ¥ Q + ®. An algorithm
for synchronous division was presented first in [13] and it wiil
be described in detail later. Note again that the divisors defined
in [1] are a subset of the synchronous divisors, and therefore,
resubstitution with null retiming (i.e., r = 0) is equivalent to
resubstitution in combinational logic. The resubstitution of a
variable with nonzero retiming corresponds to adding one (or
more) register between two gates to simplify the latter (Fig. 4).

When resubstituting ¢; into v;, the variation in literals can be

DE MICHELI: ALGORITHMS FOR CYCLE-TIME MINIMIZATION 67
c
S X
X= (A(‘)f B“’)(C#D) A
B
v= (A+B) E
x=z ‘" {c.p)
Y=sZE
2=A+B
Fig. 5. Extraction of ¢.
c
b X
E
x=(a"8") (ewp)E
c
_7 (D
x=z"(csD) E A 4D X
Z=A+B B
Fig. 6. Decomposition of v,.
computed as 8, = —n,; ([, — 1), where n;, is the multiplicity of local change in area due to extractions: 6, = —n(L—-1)+1,

variable j in expression 9 [1], [2]. The number of registers in
the network is affected only by resubstitutions across register
boundaries (i.e., when r > 0).

Example: Consider the circuit of Fig. 4. The variation in the
number of literals is: §, = —n, (I, — 1) = —-1(2 - 1) = —1,
i.e., one literal is saved. (Note that the original expression of y
could be factored as c(a'®’ + b'")). Assume that m, = 0 and
that no additional delayed values of a and b are needed to gates
other than those shown in Fig. 4. Then§,, = —land §, = —«
- 8.]

The extraction of a common subexpression of expressions 9
and g corresponding to two vertices »; and ¢ is the addition to
the network of a vertex v, (with the related edges) correspond-
ing to a common synchronous divisor of 9 and § and to the
factoring of 9 and g in terms of the new variable / (Fig. 5). The

where usually n = 2 because vertex v, is extracted from n = 2
other vertices. The number of registers in the network is af-
fected only by extraction across register boundaries.

Example: Consider the circuit of Fig. 5. The variation in the

number of literals is: §, = —=2(L. — 1) + .= =2(2 - 1) +
2 = 0, i.e., the number of literals is constant. The variation in
register is: §,, = — 1, and therefore, 6, = —8. |

There are different ways of decomposing a Boolean expres-
sion. In this paper we define decomposition of an expression g
its replacement by the expression: j " Q + ®, where j is a
new variable, its corresponding expression g is a synchronous
divisorof § and j ¢ * " Q # . The decomposition of a vertex
v; implies the addition to the network of vertex v; (Fig. 6). De-
composition can be applied recursively to v; and v;.

Note that decomposition increases the number of literals §,.

68 [EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL

For this reason, decomposition is used in combinational logic
synthesis only to break the large expression that has no efficient
implementation or to satisfy timing goals. However, decom-
position in synchronous logic synthesis can lead to a reduction
of the number of registers, and therefore, be beneficial for area
reduction as well.

Example: Consider the circuit of Fig. 6. The variation in the
number of literals is 6, = +1. The variation in register is: é
= —1, and therefore, 6, = a — 8.

m

IV. ALGORITHMS FOR SYNCHRONOUS LOGIC SYNTHESIS

Since optimizing synchronous Boolean networks is a difficult
problem, heuristic optimization is achieved, as in combina-
tional logic synthesis, by applying an operator to the network
(i.e., iterating transformations of a given kind) until local op-
timality with respect to this operator is found. Then a different
operator is applied.

The transformations presented in Section III can be used to
optimize the circuit area (without/with cycle time constraints)
or the circuit cycle time (without/with area constraints). Area
optimization with a given transformation (e.g., elimination, re-
substitution, etc.) can be achieved by using a greedy strategy
in selecting the vertices that are the target of this transforma-
tion. The selected vertices are those such that the variation in
area 6, = ad, + B36,, is negative and minimal. A detailed de-
scription of these transformations is reported in [14].

We concentrate here on logic transformations that reduce the
cycle time. For this reason, we present first an algorithm for
constructing a feasible retiming for a given cycle time T, if one
exists. The algorithm is based on the synchronous network
model and supports the design of large synchronous networks.
Then we present an algorithm for synchronous division. Even-
tually we present techniques for timing optimization using logic
transformations across register boundaries.

4.1. An Algorithm for Finding a Feasible Retiming

We describe in this section an algorithm that can be used to
construct a feasible retiming of a synchronous network for a
given cycle time T. It is based on an algorithm described first
in [10] and later in [11], but it is not so well known as the one
presented in [8]. The original algorithm was not geared towards
modeling Boolean networks: in particular multiple synchronous
1/0’s were not supported. In this paper we are concerned with
networks with multiple 1/O’s, under the assumptions that all
inputs are synchronous to the system clock. Such a model better
conforms to synchronous digital circuits that need to be inter-
connected among each other.

The algorithm is iterative in nature. At each step, the vertices
whose data ready time is larger than the required cycle time T
are flagged and put in a temporary set M. The vertices of set M
are retimed by r = +1. These steps are repeated until the net-
work is timing feasible for T or procedure exir returns TRUE.

retime {
for (k = 13:k++) {
Compute ¢, for each vertex v; € V:
M= {v,lt,>T}
if(M =)
return(TRUE);

10. NO. 1. JANUARY 1991

else {
if (exityreturn (FALSE);
Retime by 1 all vertices in M;
if (M O VP # &) set-outputs;

}
}

set-outputs §{
Retime by 1 all primary output vertices not in M;
S = {v e V9|3 a zero weight path from an input vertex
to v};
Retime by 1 all the input vertices and those in S;

}

exit §
return (k = | V|);

This algorithm differs from the original one [10] by having a
conditional call to the subroutine ser-outputs. Let us consider
first the analysis of the original algorithm and let us consider
networks without multiple I/O’s. In this case procedure set-out-
puts is never called. The following theorem applies to such net-
works.

Theorem 1: Given a cycle time T, algorithm retime returns
TRUE if and only if a feasible retiming exists [10]. a

Let us consider now synchronous Boolean networks with
multiple I/0’s. It can be easily shown that when the algorithm
returns TRUE, a feasible retiming for the given cycle time T is
constructed by the algorithm. Indeed, in this case all the data
ready times are bounded by the cycle time 7. When an output
vertex is in set M, then all I/O vertices are retimed by r = +1,
to preserve equivalence. Retiming an output vertex corresponds
to delaying the corresponding signal by one cycle. Therefore,
all other output vertices are retimed (to keep the output signal
in phase with each other) and a synchronous delay is recovered
by retiming the inputs vertices and an appropriate set S of in-
ternal vertices. This set S, possibly empty, includes those in-
ternal vertices connected to some input vertex by a zero-weight
path. Retiming by r = +1 the input vertices and those in the
set S guarantees that no negative label is introduced while re-
timing the I/0’s. In addition, since ¢,, > T implies t; > T Vu;
€ DFO(wv,,), then the retiming of a vertex implies the retiming
of all the vertices on zero-weighted paths originating from it as
well. Therefore, no negative weights (labels) can be introduced
by retiming internal vertices. Therefore, I/0 equivalence is pre-
served at each iteration of the algorithm.

Furthermore it can be shown that no feasible retiming exists
when the algorithm returns FALSE.

Theorem 2: For any synchronous Boolean network de-
scribed by G(V, E, W) and a given cycle time T, algorithm
retime returns TRUE if and only if a feasible retiming exists.

]

Proof: To prove the theorem, it is sufficient to note that
running algorithm rerime on any multiple I/O network G(V, E,
W) is equivalent to running the same algorithm on a modified
network without [/O’s. Consider a modified network obtained
by merging the input and output vertices into a dummy vertex
vy, with d;, = T, and by adding one to the weights of all edges

DE MICHELl: ALGORITHMS FOR CYCLE-TIME MINIMIZATION

incident to v,. For any feasible retiming of both networks, the
data ready time is the same for each pair of corresponding in-
ternal vertices. Indeed a retiming of the modified network can-
not remove the synchronous register delays from the dummy
vertex v, to any vertex depending on a primary input, and there-
fore, the data ready time of these vertices is preserved. In ad-
dition, since any retiming of the modified network does not
change the cycle weights in the corresponding graph [8]. then
all the 1/0 paths weights are preserved in the original network.
Therefore, a feasible retiming of the modified network co-im-
plies a feasible retiming of the original network. Consider now
algorithm retime. The retiming of a primary output vertex in
the original network corresponds to retiming v, in the modified
network, and therefore, to retiming all other primary output
vertices. In turn, the retiming of ¢, causes the retiming of all
the vertices in the set S. Therefore, running algorithm retime
on any multiple I/O network is equivalent to running the same
algorithm on the corresponding modified network and the claim
follows from Theorem 1. |

The theorem shows that the existence of a feasible retiming
can be computed in O(|V||E|) time for general synchronous
Boolean networks, because each of the | V| iterations involves
the computation of the data ready times, which can be done by
topological sort (O(E)). In some cases, the algorithm can ter-
minate earlier.

Theorem 3: If at any iteration of the algorithm, 3¢, e M N
S and v,, is a primary output, then no feasible retiming exists.
]

Proof: In this case, there is a zero weighted path from
some input vertex to v,, and ¢,, > 7. Since the path weight must
be preserved, then t,, cannot be reduced. |

This theorem provides an early exit condition which is in-
corporated into procedure exit of algorithm retime.

exit {
if (k = | V) return (TRUE);
S = {v € V|3 a zero weight path from an input vertex to
v};
if(M N SNV % &) return (TRUE);
return (FALSE);
3.

Algorithm retime has two major advantages over the original
retiming algorithm [8]. First, the description of a synchronous
Boolean network structure in terms of a (sparse) graph suffices
to implement the algorithm. This contrasts the requirements for
the algorithm in [8], that needs two full square matrices of di-
mension | V|. Second, rezime is an incremental algorithm, and
so it can be applied in connection with network transformations
that make small modifications to the network to check feasibil-
ity.

The algorithm requires the update of the data ready times at
each iteration. Note that not all the data ready times need to be
recomputed. Therefore, a selective-trace algorithm can be used
to determine the vertices whose data ready times need to be
updated. Let X represent the subset of vertices that are retimed
at a given step of the algorithm. The algorithm starts by select-
ing the subset Y of the vertices in X whose direct fan-in set is
not in X. These vertices represent gates connected to some in-
puts or to some register-outputs and whose data ready time is
equal to their propagation delay. Then, the algorithm iteratively

69

updates the data ready times of the vertices in the direct fan-out
cone of these vertices. The data ready time of the remaining
vertices need not to be updated.

update (X) {
while (X + &) {
Y={veX|DFl(v) N X = &};
compute data ready time for vertices in Y;
X = X U DFO(Y);
X=X-Y

4.2. Synchronous Division

Synchronous division is required to perform resubstitution
across register boundaries, as described in Section III. Indeed,
the resubstitution of a vertex v; into vertex v;, requires repre-
senting the expression at vertex v;as 9 = j“ "7 Q + ®. There-
fore, § must be a synchronous divisor of 9. We consider here
only algebraic division [1]. The condition that an expression is
a synchronous divisor of another one is checked by routine syn-
chronous-divisors, that iterates algebraic divisions. Algebraic
division of the two expressions is performed by procedure alg-
div, which is described in [1], [2].

synchronous-divisors(9, §) {
QR = ;
99 = expand(9);
for (r = 05:r++) {
39 = expand ("),
If (exit(d, §© " ")return
QR = QR U alg-div(99, §9):
}

}.

Algorithm synchronous-divisors operates as follows. Proce-
dure expand replaces every variable with a nonzero label by a
new variable. Therefore, expressions 99 and JJ are polyno-
mials that can be divided by algorithm alg-div [1], [2]. Proce-
dure exir returns TRUE if any variable in §**" has a label
larger than the maximum of the labels that the corresponding
variable takes in 9. In this case, no nontrivial divisor can be
found, because expression g contains a literal not in 99, and
therefore, g cannot divide 99 [1], [2]. Clearly this condition
is true for any value of r larger than the current index of the
loop of the algorithm. Note that when both expressions 9 and
g have no labels, then 99 = 9 and §g = ¢, and the algorithm
performs just the algebraic division as in [1], [2] and returns
after one iteration.

The algorithm stores the quotient and the remainder of the
division in Q®, which is initialized empty. Note that an expres-
sion g * " may divide an expression 9 for more than one value
of r. Therefore, the algorithm stores all nontrivial quotients Q
and remainders ® in Q®. When multiple choices are possible,
the resubstitution algorithm selects the most convenient divisor
based on the timing (and/or area) estimates.

4.3. Algorithms for Cycle-Time Minimization

The problem of minimizing the cycle time T is approached
as in the case of combinational logic [2]. [9]. The strategy is to
generate a sequence of networks that are timing feasible for de-

70 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 10. NO. I. JANUARY 1991

£l - K L
Critical Path _
- -
E] K

Fig. 7. Elimination at the head of a critical path.

creasing values of T. Transformations are applied to the critical
vertices of each network in the sequence. A network is timing
optimal with respect to a transformation when no further reduc-
tion of the cycle time can be achieved by applying the transfor-
mation.

A network can be made optimal with respect to retiming by
running algorithm retime for decreasing values of 7. In partic-
ular, Leiserson and Saxe suggested to compute the path prop-
agation delays between all vertex pairs, and to binary search
among these values for the minimum value for which retime
returns TRUE [8]. While the computation of all-pair delays may
be computationally expensive, a convenient heuristic to solve
the problem is to decrease T by fixed increments. so that its
value can be a practical choice for the cycle time.

A straightforward strategy for timing optimization is to alter-
nate the search for a network that is timing optimal with respect
to retiming (i.e., that optimizes the register position) with a set
of transformation on the combinational portion of the circuits
(obtained by temporarily removing the registers). Such an ap-
proach has the appeal of leveraging efficient algorithms for
combinational logic techniques, such as those used in MIS [2].
Unfortunately this approach falls short in a few cases.

First note that a network may be optimal with respect to the
available transformations, but it may be improved by the com-
bined application of two (or more) transformations. In particu-
lar, a combinational logic transformation may lead to a
nontiming feasible network for which there exists a feasible re-
timing. The drawbacks of this approach are the expanded search
space and the need of storing temporarily the network after the
transformation. A more efficient approach is to use transfor-
mations across register boundaries, that can be thought of as a
combination of retiming of a vertex and a combinational trans-
formation in a single step.

We would like to comment now on the advantages of the
transformations across register boundaries that are useful for
timing optimization. Let us assume that the network is optimal
with respect to retiming (by using the rerime algorithm for de-
creasing values of T) and with respect to the other transforma-
tions within register boundaries (as described in [9] and in {2]).
We assume that T is the minimum cycle for which the network
is timing feasible and we address the problem of reducing it by
attempting transformations across register boundaries. Also in

this case, logic transformations (as described in Section III) are
applied to the critical vertices of the synchronous Boolean net-
work, that is made timing feasible for decreasing values of T.
The section of candidate vertices for the transformations is
guided by the following considerations.

Let us consider first elimination. In particular, we consider
as candidates for elimination the critical vertices whose corre-
sponding gate is connected to a register, i.e., at the head of a
critical path (Fig. 7). Let us assume, for the sake of simplicity
that there is only one such candidate, say v; and that it is critical
(i.e., its slack 5; = O or equivalently its data ready time L=
T). The elimination of such a vertex shortens the critical path
and it is beneficial if no other longer critical path is introduced
in the circuit. Therefore, to verify the feasibility of the elimi-
nation of a candidate vertex v;, we must consider the increase
of data ready time of each vertex v, € FO(uv;). The data ready
time at these vertices may increase, because the corresponding
propagation delay may increase, being a monotonic function of
the number of literals that are increased by elimination. If such
increases are all strictly bound by the corresponding slacks, then
the elimination is accepted because there is a cycle time T’ <
T for which the network is timing feasible after the elimination.

Let us now consider resubstitution across register boundaries
of two vertices, say v; into v;. In this case, the data ready time
1; may decrease and #; remains constant. Indeed, the number of
literals /; at vertex v, is decreased by the resubstitution, and its
corresponding propagation delay may decrease. Thus candi-
dates for resubstitution can be searched among critical vertices
that are the tail of a critical path (i.e., v, is a tail of a critical
path and v; € FI(v,)). Candidates are selected to minimize lo-
cally the cycle time T. Since an upper bound on the decrease of
T is the variation in propagation delay d,, this variation can be
used to rank candidates. Consider, for example, the circuit of
Fig. 8. The critical path has as a tail vertex »,. The resubstitu-
tion of vertex v, into »; decreases the propagation delay d;, and
therefore, reduces the data ready time of the vertex at the head
of the critical path. If the maximum value of the data ready time
is attained at that vertex only, then the cycle time T can be
reduced.

Similar considerations apply to decomposition across register
boundaries. Suppose for example that we decompose an expres-
sion 9 as j**"Q + ®. Then the delay through »; may de-

DE MICHELI: ALGORITHMS FOR CYCLE-TIME MINIMIZATION

E]

71

-

E]

Critical Path

4
\ 4

E]
Bl
B

Fig. 8. Resubstitution at the tail of a critical path.

crease. Therefore, the candidates for decomposition are still the
tail of critical paths, and the variation in d, can still be used to
rank candidates. However, in this case, contrary to resubstitu-
tion, it is important to verify that no other critical paths are
introduced with v; as a head. This check can be done by veri-
fying that d; is bounded by the slack of each vertex v, € DFI(v;).

V. EXPERIMENTS ON BENCHMARK CIRCUITS AND
RESuULTS

Even though retiming techniques have been known for a de-
cade, we are unaware of reports of its application to logic syn-
thesis. Experimental results with an implementation of the tim-
ing optimization algorithms based on retiming have shown that
the quality of the results depends on: i) the logic depth of a
circuit; ii) the delay model; and iii) the circuit type. For this
reason it is hard to assess the value of these techniques as a
whole, and our analysis is more articulate.

The logic depth of a circuit can be measured by the average
number of logic stages (with bounded number of inputs) be-
tween two register boundaries. It is obvious (and confirmed by
the experiments) that the likelihood of changing the logic by
retiming in a shallow circuit is low. On the other hand, deep
circuits (i.e., with many logic stages between registers) are more
amenable to be retimed because there exist a larger set of equiv-
alent networks that can be obtained by retiming. The depth of
the network can be increased by performing decomposition and
extraction prior to retiming. Unfortunately these operations
change the timing performance of the network, making it diffi-
cult to assess the intrinsic gain due to retiming.

The delay model also affects the results. Since changing the
propagation delay through a gate is equivalent to changing a
datum of the problem, different final results are obtained for
different models. Therefore, the quality of the results has to be
calibrated with the delay models. In our experiments, we used
the following formula for the propagation delay: d = 0.8 +
0.1N + 0.1P, where N and P are the maximum number of N
and P transistors in series, respectively. The area model, i.c.,
the choice of the coefficients « and (3 that represent the relative
area cost of literals and registers, affects the acceptance of the
transformations when minimal area implementations are sought
for. In the case of unconstrained timing optimization, that is.

in the case dealt with here, the area coefficients affect the total
area estimate. In our experiments we have chosen « = 1 and 8
= 8.

The type of circuit being optimized is also important. Some
sequential circuits used as benchmarks are finite state machines
(FSM’s). Such circuits are characterized by having cycles in the
network graph of weight equal to one. They are also character-
ized by shallow logic expressions, because they are in general
derived from two-level representations. While the depth of the
circuit can still be increased by logic transformations, FSM’s
are still hard to retime because their state equations are rela-
tively simple and often their critical path is an I/O path with
weight equal to zero. Since the weight on that path cannot be
changed by retiming, the critical I/O path is a lower bound on
the cycle time.

Pipelined circuits, when deep enough, can be in general im-
proved by retiming. An interesting class of circuits are those
that are synthesized automatically from behavioral descriptions
and that have merged data path and control. These circuits often
show longer critical paths in the data path portion than in the
control part, and therefore, benefit from an uniform register re-
distribution.

The algorithms have been tested on benchmark circuits. In
particular, the examples Ex1-7 are derived from the MCNC
FSM examples Ex1-7. Since these benchmarks are provided in
two-level forms, the starting points for our experiments have
been derived by means of an arbitrary, but fixed, sequence of
logic synthesis steps. Area and timing variations are computed
from these starting points. The examples Ex8-12 were synthe-
sized directly from high-level descriptions with no other manip-
ulation at the logic level. In particular Ex8 and Ex9 are the
phase decoder and the receiver of the daio chip [15], Ex10-
Ex12 are benchmarks for high-level synthesis (gcd, length and
proadd). Ex13 and Ex14 are two ALU’s, derived from the
MCNC multiple level benchmark circuits Alu2 and Alu4, re-
spectively, by adding output registers. ’

Table I reports the overall results of reducing the cycle time.
The runtimes are in the order of a few seconds on a DEC-station
3100 for the largest circuit. The following transformations have
been applied to the benchmark circuits: decomposition, retim-
ing, elimination, and resubstitution. Other transformations on
the combinational portion of the circuits (as performed by [2]).

72 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 10. NO. 1. JANUARY 1991
TABLE I
COMPARATIVE TIMING AND AREA VARIATION
Original Optimized Absolute
Circuit Circuit Variation Relative Variation
Example Type Time Area Time Area Time Area Time Area
Exl FSM 16.5 690 16.5 588 0.0 —-102 0.0% -14.0%
Ex2 FSM 11.1 421 10.7 439 -0.4 +18 -3.6% +2.3%
Ex3 FSM 7.9 218 7.7 282 -0.2 +64 -3.9% +29.0%
Ex4 FSM 12.1 271 11.3 253 -0.8 —18 -6.6% -6.6%
Ex$§ FSM 6.9 202 6.9 199 0.0 -3 0.0% -1.4%
Ex6 FSM 9.9 264 8.9 264 -1.0 0 -1.0% 0.0%
Ex7 FSM 8.6 231 8.5 225 —0.1 -6 -1.1% -2.5%
Ex8 HL 209 2491 19.7 2643 -1.2 +152 -5.7% +6.1%
Ex9 HL 24.6 2266 214 2610 -3.2 +344 —-13.0% +15.1%
Ex10 HL 35.0 1036 335 1418 -1.5 +382 -4.2% +36.8%
Ex11 HL 8.5 213 6.5 188 -2.0 =25 —-23.5% -11.7%
Ex12 HL 11.4 211 6.7 222 -4.7 +11 —-41.2% +5.2%
Ex13 PIPE 17.8 662 9.7 1078 -8.1 +416 -45.5% +62.8%
Ex14 PIPE 22.1 1165 12.2 1949 -9.9 +784 —44 8% +67.2%

have not been applied for the sake of evaluating the limitations
of the new algorithms.

In the case of the FSM examples, the algorithms achieve an
average decrease in cycle time of 3.4% with a negligible aver-
age area variation. The critical paths of circuits Ex1 and Ex5
are fully combinational I/O paths, making the synchronous
techniques useless to speedup the circuit. For circuits synthe-
sized from high-level representations, the algorithms achieve an
average speedup up of 13.9% and an average increase in area
of 13.8%. A larger variation is achieved for the last circuits,
where retiming creates two pipeline stages, as expected. The
average speedup is 45.1% and an average increase in area is
65.6%. Note that the increased area cost is mainly due to an
increase in the number of registers.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

This paper has presented a new approach to the optimal logic
synthesis of digital synchronous circuits, based on the concur-
rent optimization of the circuit equations and the register posi-
tions. This method, which combines retiming techniques with
network restructuring operations, can achieve, in principle, re-
sults that are at least as good as those obtained by other logic
synthesis approaches that separate the combinational logic from
the registers. Indeed, standard combinational logic synthesis
techniques are compatible with the new algorithms and can be
integrated in the same framework. The experimentation of the
algorithms on benchmark circuits has given some preliminary
encouraging results. Significant reduction of the cycle time has
been achieved in the case of networks synthesized from high-
level descriptions and in the case of pipelined circuits, while
marginal improvements have been measured in the case of FSM
circuits. The overall average speedup is about 16% at the ex-
penses of an area increase of 19.5%.

This research has shown the feasibility of approaching syn-
chronous sequential logic design from a new perspective, based
on a stepwise refinement of a structural logic representation, in
terms of an interconnection of components. We think that the
problem of selecting the optimal number, type, and intercon-
nection of registers in sequential logic design can be modeled
by optimizing synchronous Boolean networks. Therefore, new
approaches to classical problems, such as the state assignment
problem, could be developed with this setting. However, sev-

eral problems are not yet solved and deserve further research.
First, there should be a study of the appropriate set of logic
transformations for synchronous sequential logic, with partic-
ular reference to the possibility of reaching all the possible cir-
cuit configurations with equivalent I/0 behavior. Second, there
should be a search of efficient retiming techniques supporting
an extended propagation delay model with explicit fan-out de-
pendency as well as satisfying both upper and lower bounds on
propagation delays. Such an extension would support logic syn-
thesis techniques for circuit designs with gated latches and with
non-negligible clock skew. Third, there should be a study of
technology mapping techniques that take advantage of the in-
formation contained in the synchronous Boolean network and
of the application of retiming techniques to mapped networks.

ACKNOWLEDGMENT

The author would like to thank Thierry Klein, Roger Yip,
and Luis Stevens who worked on this project at Stanford Uni-
versity. They developed some of the ideas of the retiming,
synchronous elimination, and synchronous resubstitution algo-
rithms and implemented them. The author would also like to
acknowledge the stimulating discussions with Andrew Fox,
Michiel Ligthart, and Frederic Mailhot at Stanford and those
with Sharad Malik and Ellen Sentovich at U. C. Berkeley. He
would also like to thank the anonymous referees, whose com-
ments were useful in improving the manuscript.

REFERENCES

[1] R. Brayton, ‘‘Algorithm for multilevel synthesis and optimiza-

tion,”” in G. De Micheli, A. Sangiovanni-Vincentelli, and P. An-

tognetti, Ed., Design Systems for VLSI Circuits: Logic Synthesis

and Silicon Compilation. Martinus Nijhoff, 1987.

R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang

““MIS: A multiple-level logic optimization system,'" /EEE Trans.

Computer-Aided Design, vol. CAD-6, pp. 1062-1081, Nov.

1987.

J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L. Trevillyan,

**LSS: A system for production logic synthesis,”" IBM J. Res.

Develop., vol. 28, no. 5, pp. 537-545, Sept. 1984.

[4] K. Bartlett, W. Cohen, A. De Geus. and G. Hachtel, *'Synthesis
and optimization of multilevel logic under timing constraints,.”’

[2

3

DE MICHELIL: ALGORITHMS FOR CYCLE-TIME MINIMIZATION

151

[6

(71

91

(10]

{11]

(12]

(13]

[14]

IEEE Trans. Computer-Aided Design, CAD-5, pp. 582-596, Oct.
1986.

S. Muroga, Y. Kambayashi, H. Lai, and J. Culliney, ‘*The trans-
duction method—Design of logic networks based on permissible
functions,”’ IEEE Trans. Comput., vol. 38, pp. 1404-1424, Oct.
1989.

S. Malik, E. Sentovich, R. Brayton, and A. Sangiovanni, ‘‘Re-
timing and resynthesis: Optimizing sequential networks with
combinational techniques,’” in Proc. Hawaii Int. Conf. on System
Sciences, Kona, HI, vol. 1, Jan. 1990, pp. 397-406.

G. Saucier, M. Crastes de Paulet, and P. Sicard, “*ASYL: A rule-
based system for controller synthesis,”” IEEE Trans. Computer-
Aided Design, vol. CAD-6, pp.1088-1097, Nov. 1987.

C. Leiserson, F. Rose, and J. Saxe ‘‘Optimizing synchronous
circuitry by retiming,"” in R. Bryant, Ed., Third Caltech Confer-
ence on VLSI. Computer Science 1983, pp. 87-116.

G. De Micheli, ‘‘Performance-oriented synthesis in the York-
town silicon compiler,”” IEEE Computer-Aided Design, vol.
CAD-6, pp. 751-765, Sept. 1987.

J. Saxe ‘*Decomposable searching problems and circuit optimi-
zation by retiming: Two studies in general transformations of
computational structures,”’ Ph.D. dissertation, Dept. Comput.
Sci., Carnegie Mellon Univ., 1985.

C. Leiserson and J. Saxe, ‘‘Retiming synchronous circuitry,”” In-
ternal Rep. MIT/LCS/TM-372, 1988.

——, “‘Optimizing synchronous systems,”’ J. VLSI Computer
Syst., vol 1, no. 1, pp. 41-67, Spring 1983.

G. De Micheli and T. Klein, ‘*Algorithms for synchronous logic
synthesis,”” in Proc. Int. Symp. on Circuits and Systems, Port-
land, OR, pp. 756-761, May 1989.

G. De Micheli and R. Yip, ‘“Logic transformations for synchro-
nous logic synthesis,”” in Proc. Hawaii Int. Conf. on System Sci-
ences, Kona, HI, vol. 1, Jan. 1990, pp. 407-416.

73

[15] M. Ligthart, A. Bechtolsheim, G. De Micheli, and A. El Gamal
*‘Design of a digital audio input output chip,”’ in Proc. Custom
Integrated Circuit Conf., San Diego, May 1989, pp. 15.1.1-
15.1.6.

Giovanni De Micheli (8°79-M’83-SM’89) re-
ceived the Dr. Eng. degree in nuclear engi-
neering from the Politecnico di Milano, Italy,
in 1979, and the M.S. and Ph.D. degrees in
electrical engineering and computer science
from the University of California, Berkeley, in
1980 and 1983, respectively.

He has held positions at the Department of
Electronics, Politecnico di Milano, Italy, and
at Harris Semiconductor, Melbourne, FL. From
1984 to 1986, he was with the IBM T. J. Wat-
son Research Center, Yorktown Heights, NY, where he was Project
Leader of the Design Automation Workstation Group. Presently, he is
an Associate Professor of Electrical Engirieering and Computer Sci-
ence at Stanford University. His research interests include several as-
pects of the computer-aided design of integrated circuits with particular
emphasis on automated synthesis, optimization and verification of VLSI
Circuits. He is the co-editor of Design Systems for VLSI Circuits: Logic
Synthesis and Silicon Compilation (Martinus Nijhoff, 1987).

Dr. De Micheli is a member of the editorial board of IEEE Design
and Test magazine. He was the Technical and General Chairman of
the International Conference on Computer Design in 1988 and 1989,
respectively.

