Inserting Active Delay Elements to Achieve Wave Pipelining

Derek Wong, Giovauni De Micheli and Michael Flynn *
Department of Electrical Engineering
Stanford University
Stanford, California 94305

Abstract

Wave pipelining is a technique for pipelining digital systems that can in-
crease clock frequency without increasing the number of storage elements.
In wave pipelining, multiple coherent waves of data are sent throufh a
block of combinational logic by applying new inputs faster than the delay
through the logic. ldeally, if all paths from input to output have equal
delay, then the circuit's crock frequency is limited by rise/fall times, clock
skew, and set-up and hold times of the storage elements. In practice, due
to the above limits and variations in fabrication, clock frequency can be
increased by a factor of 2 to 3 using the best available design methods.

We present algorithms to automatically equalize delays by inserting a mini-
mal number of active delay elements to lengthen short paths. This method
can be combined with delay balancing by adjusting gate speeds [11] to de-
sign wave-pipelined circuits.

1 Introduction

Wave pipelining is a design method that can potentially boost the pipeline
rate of practical circuits by 2 to 3 times without using additional registers.
In ordinary pipelined systems, there is one “wave” of data between register
stages. When a new set of values is clocked into one set of registers,
the values are allowed to propagate to the next set of registers before
the first set is clocked again. In contrast, wave pipelining is the use of
multiple coherent “waves of data between storage elements (see Figure
1). This is achieved by clocking the system faster than the propagation
delay between registers. The capacitance in the combinational logic circuit
is used to store values for pipelining.

For example, a fast 64-bit floating point multiplier implemented in com-
binational logic might have a propagation time of 10 nsec. Instead of
operating at 100 Mhz, the multiplier could operate with 3 pipeline waves
to achieve a clock frequency of 300 Mhz with the same 10 nsec tatency.

To operate at the highest possible clock frequency, all path delays from
every starting to every ending storage element must be the same. Clock
skew, variations in path length, riseffall times, and the setup time of the
storage element limit the maximum pipeline rate.

To our knowledge, there have been two published circuit implementations
of wave pipelining, the IBM 360/91{1, 2] and a recent experimental com-
puter[7], as well as some theoretical work [5, 4]. The IBM 360/91. was
implemented in SSI by balancing the circuit delays using manual design
techniques. The other wave-pipelined computer also was implemented iy
balancing the delays without the aid of CAD techniques.

Our ultimate goal is to build a wave-pipelined chip in VLS, identifying
and solving the necessary practical problems enroute. Currently, we are
designing new algorithms and the necessary CAD tools to automatically
balance the delays in a combinational logic circuit while minimizing power
consumption and added circuitry.

We have developed our tools for bipolar design in single-level, ECL/CML
technology since this technology is more suitable for wave pipelining than

0S. For more details on the concept of wave pipelining, technological
considerations, and previous work in this area, we refer to another paper

{1

In this paper, we discuss algorithms for inserting additional circuit elements
to lengthen short paths in a circuit. Although this method can in principle
be applied to circuits in any technology. in practice this method operates
in conjunction with another method of balancing delays which is primar-
ily designed for ECL/CML circuits. The other technique, adjusting gate
parameters that affect current and delay, is described in [11]. Following
an explanation of the frequency limit of wave pipelining, we explain the
problem of balancing paths in a circuit and the general strategy for solving
it. Then we describe the method of inserting additional circutt elements in

*This work was supported in part by an NSF Graduate Fellowship and a sup-
plement from Stanford l'ni\-m-sik This research was also supported by the Center
[or Integrated Systems at Stanford. The work was prrl’nrlur‘rl using equipment pro-
vided by NASA under contract NAGW 419. This work was also supported by NSF,
DEC. and ATET under a PY1 award.

CH2805-0/89/0000/0270$01.00 © 1989 IEEE

270

Clock Clock
| 1
Combinational Logic
Storage Storage
Element | 3 Wave 2 Wave 1 | Element

N\ /

Transition regions between waves

Figure 1: In wave pipelining, multiple coherent waves of data are sent
through combinational logic acting as a pipeline.

detail. We conclude with a description of example applications and future
research directions.

2 Maximum Pipeline Rate

that the minimum clock period at which a wave-

It can be shown [11
le clocked is limited by f:p > Alp+2x AC + sy +

pipelined circuit can
tpp where

e {_p = clock period
® 5y = set-up plus hold time for edge-triggered registers
(For latches, {5 = length of transparent period plus hold time)

tp = propagation time of the longest path in the combinational logic

Alp = max difference in path length over worst-case design, process,
and environment

AC = worst-case clock skew

{rp = worst-case rise or fall time (10% to 90% voltage swing) at the
last logic stage.

In this paper, we focus on reducing the clock period by reducing the varia-
tion in path length Atp. We present algorithms to modify circuits to make
them balanced under nominarprocess and temperature conditions. ldeally,
if all path delays from input to output are equal under nominal conditions,
the clock frequency is limited only by AC, tsy, tpp, and Atp due to
process/temperature variations.

3 The Wave Pipelining Problem

3.1 Problem Definition

To design wave-pipelined circuits, we need to balance the path delays. For
practical circuits, we constrain the nominal path delay to be a predefined
constant Dy 1 x because the circuit must interface to other components in
the system. We therefore define the balancing problem of wave pipelining
as follows:

Balancing Problem

Given a combinational logic circuit without feedback, derive an 1/0O equiv-
alent circuit such that all nominal path delays from input to output are
equal to a given constant Dy, 4x.

u]
The following modeling assumptions are made about the circuit:
1. Each gate propagates signals one way from inputs to outputs.

2. Gate delay can be adjusted by a parameter (e.g. tail current in ECL/
CML) and can range from Tysin[i] to Tasax [i] for each gate i.

3. Adjusting the delay of a gate does not affect the capacitative load at
its inputs or outputs.

4. Path delays can be increased by inserting active delay elements. These
elements are buffers with one input and one non-inverting output. They
have adjustable delays between By and I3y .4x.

We propose two ways of attacking the balancing problem: inserting delay
elements and adjusting gate parameters. They are called fine and rough
tuning respectively:

e Finc {uning adjusts gate parameters so that the circuit is balanced.
As a secondary goal, it minimizes power consumption.

o Rough tuning inserts a minimal number of delay (padding) elements
so that it is possible to balance the circuit by just adjusting the gate
parameters. K/Iinimizing the number of inserted elements minimizes the
added area.

The overall strategy to balance a circuit is as follows. Before inserting delay
elements, we tune the gate parameters using fine tuning to balance the
circuit as much as possible, thus minimizing t%ne number of delay elements
needed. After this, the rough tuning procedure is run to insert active
delay elements where necessary. Witﬁ the proper type of delay element,
a final fine tuning pass will balance the circuit within a tolerance factor
proportional to the minimum possible delay By ;x of a delay element.

In this paper, we present the algorithms for rough tuning in detail. Fine
tuning is describecrin another paper [11]

4 Rough Tuning

We model the circuit using a polar, weighted, directed acyclic graph. Nodes
represent the inputs anc? outputs of gates. Arcs are of two types and
represent 1/O dependency within a gate and among gates. The weights
on the two types of arcs represent propagation delays of gates and del ays
of inserted elements, called padding clcmenis. The first set of weights are
known, while the second set represents the unknown of the problem. Our
technique determines this second set of weights.

A graph is constructed from a circuit using the following steps:

1. A node is associated to each output (inverting and non-inverting) of
each gate. An additional node is associated to each gate to represent
all its inputs.

2. Directed arcs (i) are defined as follows:

o Typel (internal)r—i is an input node and j is an output node of
the same gate. Type | arcs represent gate delays.
e Type E (externa? ——j is an input node which is a direct fanout of

output node i. Type E arcs represent delays of padding elements
that are inserted.

The arcs are numbered from 1 to NumArcs
3. Weights on arc n.= (ij) are defined as follows:

e Type | (internal) — Weight D[n] > 0 indicating the nominal prop-
agation delay from any input of the gate (represented by the node
i) to an output j.

o Type E (external) — Weight 11'{n] > 0 indicating the amount of
nominal delay to insert between the output of a gate corresponding
to i and the input of a gate corresponding to j. Initially, all the
W[n]'s are zero.

4. Asource and sink are added to the graph. Using type E arcs, the source
node 0 is connected to all primary input nodes, and the sink node N is
connected to all primary output nodes.

This type of delay model is sufficient to accurately represent delays in a
single-level ECL/CML gate because the delays are equal from each input.

Figure 2 shows an example conversion of a small circuit to our graph
representation. Nodes 1 and 4 represent the inputs of the two gates
Nodes 2, 3, and b represent the outputs. Heavy arcs are internal to one
gate; regular arcs are external.

The path weight or length between two nodes along a series of arcs is
defined as the sum of the arc weights including both T and E-type arcs

4.1 Problem Formulation for Rough Tuning

Before stating the rough tuning problem, we would like to comment on
how gate delay models affect the capability of a rough tuning technique
to solve the balancing problem.

In practice, gate delays vary, and the delay of a padding element must be
set within the range By n to Bajax. The finite range of delay of the

271

Light type E arcs represent inserted delays.
Heavy type I arcs represent gate delays.

Figure 20 An example conversion lrom a circait to a DA for Rough
Tuning.

padding element has two consequences. First, the minimal number of delay
elements to be inserted along arc k is [(117{k]/ By x)]. Second, there is
no physical implementation of a delay if I1'[k] < Hy/yn: such delays are
said to be nof implemcntable. We assume that Bajax/Banin > 2 (easily
satisfied by gates in ECL/CML technology).
Since some weights are not implementable, rough tuning might not guar-
antee the exact balancing of a circuit. For this reason, we state the rough
tuning problem as follows

Defn. Rough Tuning Problem

Given a combinational logic circuit without feedback, find a set of imple-
mentable arc weights W to

o Make the longest source-to-sink path have weight Dy 4x . and
o Minimize /) where the shortest path has weight Dy ax — AD

a
The parameter A1) measures the path length difference due to design.

An optimal solution is one that minimizes added area, i.e. it minimizes
the number of added delay elements Y [(WW[i]/ Barax -

Using realistic models of delay elements, the rough tuning al
antees a reasonable bound on AJ) (see section 4 32 that should be less
than the worst-case path variation due to the other factors affecting Afp
(process variations, temperature fluctuations. and data-dependent delays)

orithm guar-

4.2 Using Loops to Balance the Circuit

The number of paths in a polar graph may be exponential in the problem
size. We therefore transform the rough tuning problem into an equivalent
one where we balance the loop weights.

A loop is defined to be a set of arcs that form a cycle in the underlying,
undirected graph. Each loop in this graph has a source and a sink, which
are defined to be the nodes with zero incoming and zero outgoing arcs,
respectively, when considering only the arcs in the loop. The two directed
paths from the loop's source to sink are called the sidcs of the loop. The
weight of each side is the sum of the arc weights including both land E-type
arcs. If the weight of the two sides is equal, then the loop is balanced

Suppose we augment the directed acyclic graph by adding one arc of type
| from source to sink with weight [y, x. Then, the circuit is balanced
if and only if all the loops are balanced. In addition, the circuit is also
balanced if and only if a spanning set of linearly-independent loops is
balanced, commonly called a set of fundamental loops [3]

Since the number of fundamental loops is linear in the size of the problem,
this result enables us to verify efficiently whether a circuit is balanced of
not. A spanning set of fundamental loops can be constructed as follows

B3)

. Construct a spanning tree in the DAG beginning from the source.
. Let A represent the set of arcs that are not in the tree
. Let L be the (initially empty) set of loops.

AW N~

. Add one arc (called a link) from A to the arcs in the tree. This defines
exactly one loop called a co-trec loop that is added to L. We say that
the link closes the loop

5. Repeat for all the arcs in A.

The loops in L are linearly independent since each non-tree arc is in exactly
one loop.

The choice of a spanning tree is important because it affects some prop-
erties of the resulting fundamental loops. A longest-path spanning tree is
a spanning tree rooted at the source such that the tree contains a longest
path from the source to each node

Proposition 1: In any fundamental loop constructed from a longest-path
spanning tree, the link is always on the side of smaller weight.

Theorem 1. Non-trce Arcs are Type E

Given a DAG representing a circuit and a longest-path spanning tree built
from the source, every link is a type E(external) arc.

The proof is reported in [12].

From Proposition 1 and Theorem 1 it follows that every fundamental loop
has an adjustable (type E) arc on the side with smaller total weight.

4.3 An Algorithm for Rough Tuning

Based on the above idea of balancing a spanning set of loops, our rough
tuning procedure balances a circuit by inserting delay along type E arcs as
necessary. The rough tuning algorithm has three major steps: constructing
a well-balanced solution, optimizing it, and implementing the weights by
using padding elements. The second step may be skipped, if non area-
optimal but balanced circuits are sought for.

Rough Tuning Algorithm
1. Construct a DAG to represent the circuit. Add one type | arc of weight
Dpsax from the source to the sink.
2. Build a longest-path spanning tree T from the source.

3. For each link i, insert the proper arc weight I¥[i] to balance the corre-
sponding fundamental loop

4. Apply the repadding algorithm (described in section 4.3.1) to minimize
the number of delay elements.

5. Implement the delay weights by inserting delay elements.

Since the fundamental loops are linearly independent (each link is in one
and only one loop), all fundamental loops can be balanced independently
from each other.

At step 5, the delay weights are implemented as follows. For a weight
Wil > Baprn, insert [1V[i]/Basqx] delay elements on arc i (Recail
that Byin and Bprax are the minimum and the maximum delay of a
padding element respectively).

For any weights that are smaller than Basyn, one of the following heuristic
methods can be used:

o Ignore any weights smaller than By n.

Then AD is bounded from above by AD < 1By, n where every input-
to-output path has at most » type E arcs that have weight < By;n.

e Implement weights greater than By;n /2 with a single delay element.
Then AD is bounded from above by AD < nBan /2.

If Dasax is smail as possible (i.e. equal to the critical path with all
gates at max power in the original circuit), then the new critical path
{p could exceed Dy 4x by up to nBaryn/2.

Note that AD represents an upper bound on the mismatch of the source-
to-sink path delays. Fine tuning [11] can further reduce this mismatch and
in some cases it may perfectly balance a circuit.

4.3.1 Achieving an Optimal Solution

Delay weights can sometimes be shifted from one portion of a circuit to
another. For instance, if all the type E arcs on one side of a gate (either at
the input or outpugl) have positive weight, then some delay can be shifted
to the other side. This can reduce the number of delay elements required
when the number of arcs is fewer on the other side.

This section presents a method for systematically shifting delay weights to
minimize the number of delay elements. We call this method repadding.

272

A Simplified Graph uses one node per gate
and only type E arcs.

Figure 3: An example conversion from a circuit to a simplified DAG
for Repadding.

It is derived from a method described in [6] for minimizing register count
in sequential circuits by moving register boundaries.

We first obtain a simplified graph by contracting all arcs of type | (Internal).
An example of this is shown in Figure 3. Nodes 1 and 2 correspond to the
two gates. An external arc exists for each connection in the eircuit.

Then, new arc weights are defined as the pair (1 [(7, j)]. Wy [(i. j)]) for
each arc (ij):

o Wx[(i,j)] = Wi 1))/ Barax]

o W [(i,)] = W[(i,/))/ Barax — Wx{(i,)]

Shifting padding elements from the outputs to the inputs of gate i is
represented by a signed integer variable R[i] associated to each node i.

Given a vector R representing repadding, the corresponding weights on
the arcs are

Wil) = Wx[(i.)+ R - R[i].
The formula IR[i)(indcgrec(i) — outdegree(i)) is the change in the to-
tal number of padding elements due to a repadding by R[i] at node i.

(Indegree(i) and outdegree(i) are the number of incoming and outgoing
arcs, respectively, at node i.)

The repadding problem can be formulated as a linear program correspond-
ing to a2 minimum-cost network flow problem:

Find a vector R to minimize 3 R[i|(indegrecli] — outdegrec[i]))
subject to:

R} - R[j] < Wx[(i,)] for all ares (i.j).

R[0} = R[N] = 0 for source 0 and sink N.

The constraints guarantee that the solution does not have negative arc
weights [6]).

The function indegree(v) — outdegree(v) measures the reduction in
S 1Wx[i] if one unit of delay is shifted from the input arcs of node v
to the outputs. Therefore, the linear program also minimizes the desired
function 3~ Wx[i].

Therefore, the steps for achieving an optimal solution are as follows:

Repadding Algorithmn

—

. Construct the simplified graph model and the corresponding linear pro-
gram.

2. Compute 12 by solving the linear program.
3. Compute the new arc weights using
WilG)] = Wx[(, D)+ RIJ) - Rli].
4. Recompute the full arc weights using Wi = Wi [i)* Bagax + Wy [i].

4.3.2 Remarks on Repadding

o It can be shown that every basic optimal solution is an integral vector
(assuming an optimal solution exists) [6][9]. This ensures that only
entire units of delay can be shifted.

By using the weight pairs. we do not allow the repadding algorithm
to shift delays that are smaller than 73y;4x. It can be shown that
shifting delays smaller than [33; 1x can in some cases increase rather
than decrease the number of delay elements needed.

When an output has multiple fanouts and more than one fanout arc
has a positive delay weight, the physical implementation can share
delay elements rather than implementing multiple delay chains Sharing
padding elements can still be formulated as a linear program. The
details are not reported here, but a similar formulation is reported in
6].

4.4 Properties of Rough Tuning

The rough tuning algorithm has the following properties:

1. For a circuit whose gate delays are integer multiples of the padding
element delay, the rough tuning algorithm guarantees to balance the
circuit with a minimum number of padding elements.

2. For circuits using delay elements that have an adjustable delay from
Birix to By ax. the rough tuning algorithm guarantees to balance a
circuit after fine tuning to within N < uBy n or nl3yyn /2 (de-
pending on the heuristic chosen in section 4.3), where every input-to-
output path has at most n type E ares with weight less than /3y, .

3. For circuits using delay elements that have an adjustable delay from
Barix to Basax, the method locally minimizes the number of added
delay elements

4. The theoretical computational complexity of the rough tuning algorithm
is dominated by the solution method for the minimum-cost flow prob-
lem. In practice, the Simplex algorithm for solving the linear program
is superlinear with respect to the problem size

5 Implementation and Applications

The rough tuning algorithm has been implemented by a computer program
that interfaces to tie format for logic design called SLIF developed at
Stanford

We now present the results of applying this method to four example circuits,

The first two circuits are a 4-bit carry-lookahead adder slice and a 16-bit
carry-lookahead adder using 4-bit slices. To demonstrate the benefits of
rough tuning alone, we assume fixed delays of 1 for the gates (correspond-
ing to gates set at high power) so that fine tuning becomes unimportant
The padding elements have adjustable delays between 1 and 3 units. Rough
tuning is required to balance the circuit. If each padding element is as-
sumed to take 3/4 of the area of an average gate, then the results are as
reported in Table 1

The second two circuits are the partial-products generator plus carry-save
adder sections of 4x4 and 8x8-bit combinational CML multipliers. Approx-
imate CML gate delay and capacitance models were developed based on
simulations of ECL circuits.

The results were achieved using the combined rough/fine tuning procedure.
The final fine tuning pass was not performed since the circuits were not
laid out. The run-time of the combined tuning procedure is dominated by
fine-tuning which solves a large linear program to set the gate currents
The rough tuning procedure only takes a tiny portion of the run-time
using a heuristic approximation to retiming (with no linear program solving
necessary)

About 5% to 10% of /) can be added to the final AJ) to include the
difference between rising and falling delays in CML. The increase in cell area
is given as two numbers. The first uses a straightforward implementation
where single-output CML buffers are 64% as large as a 3-input OR gate.
However. since nearly all signals are used in both polarities and the pagding
is nearly identical for both, the number of buffers can be cut nearly in half
by replacing true and complement buffers with slightly larger, dual-output
buffers. This results in the reduced area estimate in parentheses.

Rough tuning makes these circuits wave-pipelineable. In all four examples,
Al)is changed from almost Dy, 1 x to nearly zero.

6 Summary and Future Directions

Wave pipelining can potentially increase a system's clock frequency by 2
to 3 times without using additional pipeline registers. To maximize clock

273

Circuit Add4 Add16 Mult4x4 Mult8x8
Size 30 134 90 498
Padding Elements 11 86 33 302
Depth (gate levels) 4 8 5 9
Est. Increase In Area 29.1% 481% 23 (16)% 39 (25)%
Darax 4 8 2.0 ns 40 ns
Al)(before) 5% 875% 80% 90%
A)(after) 0% 0% 5.0% 3.9%
Power (after) NA NA 97.7 mW 4113 mW
Run-Time (uVAX 3200) NA NA 0.140 hes 11,90 hrs
Rough Tuning Run-time NA NA 0.01 hrs 0.02 hrs
‘Table 1: Example Results

rate, we must minimize the variation in path length

We have developed and implemented new algorithms to automatically bal-
ance delays in combinational logic circuits %Jsing our rough tuning algo-
rithm, we insert delay elements such that the circuit can be balanced by
setting gate parameters. Rough tuning constructs a spanning set of loops
in a graph representation of a circuit, then balances the loops by inserting
delay elements. By building the loops from a longest-path spanning tree,
the loops can always be balanced independently. A linear program perform-
ing repadding minimizes the number of delay elements required. Rough
tuning is guaranteed to balance the circuit within some A7) depending on
the availa%)le delay elements

In practice, rough tuning operates in conjunction with fine tuning[11] to
design wave-pipelined circuits that have both minimal added area and min-
imal total power consumption.

Next. we plan to design a test chip demonstrating wave pipelining. We
have selected CML as the technology for implementing our sample chip
which will be a 32-bit multiplier with possibly some additional datapath
logic.

7 Acknowledgements

Mark Horowitz was very helpful in pointing out pitfalls and in particular an-
alyzing technology considerations. Arthur Veinott Jr., Michael Saunders,
and V\%aher Murray were generous in their advice about practical and theo-
retical considerations of solving optimization problems Timothy Pinkston
reviewed drafts of this paper.

8 Bibliography

1 S. Anderson, J. Earle, R. Goldschmidt, and D. Powers
System/360 Model 91 Floating Point Execution Unit."
IBM Journal of Research and Development, pp. 34-53.

2 L. Cotten. “Maximum Rate Pipelined Systems.” 1969 AFIPS Proceed-
ings of Spring Joint Computer Conference, pp. 581-586.

3 C. Desoer and E. Kuh. Basic Circuit Theory, pp. 477-483
McGraw-Hill(New York, NY).

4 B. Ekroot. Optimization of Pipelined Processors by Insertion of Com-

binational Logic Delay. Sept. 1987, Ph.D. Dissertation, Electrical En-

gineering, Stanford University, Stanford, CA

B. Fawcett. Maximal Clocking Rates for Pipelined Digital Systems. Dec.

1975. Report R-706 from Coordinated Science Laboratory, University

of illinois, Urbana, IL.

C. Leiserson, F. Rose, and J. Saxe. "Optimizing Synchronous Circuitry

by Retiming” 1983. Proceedings of the 3rd CalTech Conference on

Very Large Scale Integration.

7 Q Lin and P_Xia. “The Design and Implementation of a Very Fast Ex-
perimental Pipelining Computer.” 1988, Journal of Computer Science
and Technology. Vol. 3, No. 1 (Beijing

8 D. Marple. Performance Optimization of Digital VLS| Circuits Sept.
1986, Ph.D. Dissertation, Electrical Engineering, Stanford University,
Stanford, CA.

9 A. Veinott, Jr. Specialist in combinatorial operations research. Private
communication in 1989

10 S. Waser and M. Flynn. Topics in Arithmetic for Digital Systems
Designers. p. 88. 1989, Preliminary 2nd edition of: Introduction to
Arithmetic for Digital Systems Designers, 1982, Holt, Rinehart, and
Winston (New York, NY

11 D Wong, G. De Micheli and M. Flynn. “Designing High-Performance
Digital Circuits Using Wave Pipelining.” Proceedings o%VLSl ‘89, Mu-
nich, Germany, August 1989.

12 D. Wong, G. De Micheli, and M. Flynn “Inserting Active Delay Ele-
ments to Achieve Wave Pipelining.” 1989, Technical Report CSL-TR-
89-386. Electrical Engineering, Stanford University, Stanford, CA.

“The IBM
Jan. 1967,

1969,

(3

