HERCULES - A System for High-Level Synthesis

Giovanni De Micheli

David C. Ku

Computer Systems Laboratory
Stanford University

Abstract

This paper presents an approach to high-level synthesis of VLSI pro-
cessors and systems. Synthesis consists of two phases: behavioral syn-
thesis, which involves implementation-independent representations, and
structural synthesis, that relates to the transformation of a behavior
into an implementation. We describe HERCULES, a system for high-
level synthesis developed at Stanford University. In particular, we ad-
dress the hardware description problem, belhavioral synthesis and opti-
Imization using a method called the reference stack, and the mapping
of behavior onto a structure. We present a model for control based on
sequencing graphs that supports multiple threads of execution flow, al-
lowing varying degree of parallelisin in the resulting hardware. Results
are then presented for three examples: MCG502, Intel8251 and FRISC,
a 16-bit microprocessor.

1 Introduction

The goal of this project is to provide a systeni for the computer-aided
design and synthesis of digital systems, more formally called high-level
synthesis. ligh-level synthesis transforms a behavioral specification of
hardware in terms of hardware description language (1IDL) descriptions
into a structural interconnection of hardware units that may be mapped
effectively to a VLS] implementation.

ligh-level synthesis systems have been the object of extensive in-
vestigation both in the academic environment [7.8,11,16,13,14,15] and
in industry {1,5]. Uercules is developed in the frame of the Stanford
OLYMPUS syuthesis project, whicli consists ol three major conpo-
nents: high-levcl, logic, and physical synthesis, as depicted in Figure
1. Syuthesis can be seen as a pipeline through each component of the
design system. Bach component perforns transformations ou a given
representation, the result of whicli is a new representation that may be
processed by subsequeut stages. Feedback in the fornr of estimates on
area and timing is provided by the logic and physical synthesis tools
to eflectively guide optimizations during high-level and logic synthe-
sis. High-level synthesis is pivotal in determining how eflectively the
spectrum of tradeoffs between performance and area can be explored.

This paper describes an approach to high-level synthesis, focusing
primarily on the modeling of hardware behavior, the transformations
that preserve the functionality without structural implications, and the
mapping of behavior into a structure. Section 2 gives an overview to
the Iercules system. Seclion 3 presents the language we used for hard-
ware description. Section 4 describes the abstraction and oplimizations
used by belavioral synthesis. In particular, we present a method called
the Reference Stack that is used to simplify both behavioral optiniiza-
tions as well as subsequent structural mapping. Section 5 describes
structural synthesis, the transformation of behavior into a graphical
intermediate forin, and the mapping of the intermediate form onto a
structure. Finally, we present the results of applying this methodology
to several benchmark examples: Motorola 6502 microprocessor, Intel
8251 UART, and FRISC, a simple example proposed in [14].

25th ACM/IEEE Design Automation Conference

CH2540-3/88/0000/0483$01.00 © 1988 IEEE

2 System Overview

High-level transformations may be classilied as either independent or
dependenton the structural implementation. In the first case, the set of
transformations
behavior of the circuit. The lalter is called structural synthesis, and
is a transformation of a hardware behavior into a hardware structure.
At each level of synthesis, there is a correspouding intermediate vep-
resentation that serves as the abstraction on whiclh optimizing trausfor-
mations may be carried out. For behavioral synthesis, the abstraction is
a recursively defined parse tree that supports local scoping of variables
and bierarchical interconnection. For structural synthesis, the abstrac-
tion is a sequencing graph with muitiple threads of execution flow.

called behavioral synthesis since it operales on the

Behavioral synthesis involves optimization techuigues similar to
those used in optimizing compilers, such as dead code elimination,
variable unfolding, and constant unfolding. In addition, it includes
hardware-oriented optimizations such as procedure in-line expansion,
Joop uurolling, and meta-variable evaluation. We present a method
in Section 4.2 called the Reference Stack that is used to efliciently re-
solve variable unfolding, constant unfolding, conditional assignments,
and multiple assiguments in a one pass transformation on the parse
tree representation. In addition to the objectives stated above, the ref-
crence stack may also provide information (o structural synthesis which
will minimize the number of registers needed to implement the func-
tionality of the input description, as well as eliminate the controb steps
needed to implement assignments Lo variables.

Once behavioral synthesis is completed, structural synthesis maps
the optimized parse tree into a sequencing graph model called the se-
quencing infcrmediate form, or SiE for short. Note that at this point, the
resulting $IF may be immediately transformed into an implementation.
Tlowever, thie result may not be acceptable from a performance and/or
area standpoint. This is nol surprising, since area and delay models
have not been accounted for up to this point. ‘This leads to a ma-
jor emphasis of Hercules - ilerative refinement of the structural model,

guided by the estinates on area and timing prov ided by logic synthesis.
This iterative refinement approacl involving both high-level and logic
synthesis in a tightly interacting loop is an innovalive approach, and is
selected for the following reasons.

o We want to resolve a cyelic condition on the sequence of the syn-
thesis steps. A good estimate of area/delay can be done alter logic
synthesis. However, logic syuthesis can be carried out only alter
the functional blocks have been identified. A good partition into
functional blocks in turu requires the knowledge of the system eycle
time, which depends on the module delays.

Logic synthesis algorithms [4,17] have shown to be powerful eans
to reduce the complexity of the logic circnits. We have developed
a model for logic synthesis (hat allows the representation of our
modules (which are arbitrary sequential circuits) and we exploit
logic optimization algorithms early in the synthesis process.

We feel that some implementation decisions should be made by
comparing views of the circuit in dilferent domains, such as the
belavioral, structural and logic.

®

Paper 32.2
483

For these reasons, we feel that structural synthesis and logic synthesis
should be tightly coupled. In our approach, we synthesize first the
data path and control under the assumption that combinalional logic
takes zero delay and that no tiniing constraints (other than sequencing)
are imposed on the structure. Logic synthesis techniques [4] are then
applied to this initial structure to evaluate the area and delay figures of
merit. This inforimation, together with external constraint information,
are used to derive a more refined control structure and/or modify the
existing structure of the system.

The circuit representation is stored in a logic intermediate form de-
veloped at Stanford, called SLIF (Structural/Logic Intermediate Form).
SLIF supports hicrarchical structure of blocks, netlist interconnections,
complex components such as latch and tristate elements, as well as the
standard logic operations.

3 Behavioral Description

The goal of high-level description languages is to make possible the
mapping of the behavioral characteristics of a system into its physical
counterpart. For software systems the physical counterpart is the ex-
ecutable object code, whereas for hardware synthesis systems it is the
physical tayout of the chip.

We envision the entry level description of a
two sets of specifications: 1) a behavioral description that describes the
function of the system to be realized without committing to an imple-
mentation, and ii) a set of constraints on the design. The constraints are
related to the technology being used and to the interfacing of the system
with the outside environment. The second set of specifications, as con-
sidered by [3] allows the designer to specily upper and lower bounds on
the time difference between events corresponding to signal transitions.

There has been a great deal of debate on the style of behavioral
langnage best suited for hardware design. The result is a proliferation
of hardware languages that are too simulation oriented and hence overly
baroque for synthesis (e.g. VIIDL). The approach we undertook is to
use as a basis the C language, adding niinor extensions in order to tailor
it for hardware description. The motivations for choosing C over the
other possibilities are simplicity and familiarily. We wish to provide the
basic mechanisins to describe general hardware functionality, without

systent as consisting of

being burdened by timing and resource constraints. We feel design
constraints are inherently different from the functional description and
hence should be separately specified. Moreover, another advantage for
choosing C is the linkage to an existing functional simulator, TIIOR,
that is based on (' models [2].

3.1 Extending C for Hardware

Efficient hardware description requires several concepts (and corre-
spouding language constructs) that the C language lacks. Most notable
are eflicient synchronization and communication between different con-
current programs and the modeling of concurrent programs.

The extensions, both in concepts and in constructs, to the C language
are incorporaled into a derivative of the C langunage called HardwareC.
They are described below.

1. Processes - lardwareC provides for the definition of hardware
processes. A system can be modeled as a set of concurrent pro-
cesses, where the modes of interaction are through the particular
style of interprocess connuunication (IPC). This paradigm is ap-
propriate for hardware since hardware modules are resources that
are allocated, and which continuously operate on a time varying
set of inputs. Upon completion they automatically restart in order
to operate on the next set of inputs.

‘The concept ol concurrent processes is very powerful both in soft-
ware and in hardware. In botlt domains, it allows the designer (1)
the ability to specify parallelism between interacting modules at a
high-level, and (2) the ability to isolate communication poiuts be-
tween one process and another. The latter is accomplished through
the use of IPC.

Paper 32.2
484

. Memory - [lardwareC allow

Automatic synthesis is restricted at present to heing within process
boundaries. This is acceplable since the designer in most cases has
a reason for partitioning the problem into processes in the first
place. It does not, however, preclude the possibility of process-
level partitioning as in an architectural exploration tool.
Processes may be used by the designer to architect pipclining or
other design styles at the hehavioral level, which greatly enhances
the power of high-level hardware description.

. Interprocess Communication - It is instructive to note, and

hopefully learn, from the analogies of design in the software do-
main. In software systems, there are two paradigms for interpro-
cess conununication: sharcd memory and message passing. Each
approach has its advantages and limitations. For example, in com-
munication through shared memory, the performance advantage is
oflset by an increase in the complexity of the tesulting program.
Likewise, the conceptual elegance of message passing solves both
synclironization and connnunication in systems, bul may result in
unacceptable performance penalties if it is used without restraint
[6].

For hardware design, we woull like the flexibility of using the ap-
proach that is best fitted for a particular problem. For large volume
data transfers, the preferred method is to use shared memory, using
message passing purely for synchronization and limited transfer of
information [6].

it aliows for shared mem-

NardwareC offers both approaches. Fi
ory comununication through the use of parameters to routines. Sec-
ond, it allows a synchronous send-receive message passing scheme
with fixed-size messages. The size of a message represents the num-
ber of bits that is communicated hetween the processes, and may he
specified by the designer in the description. Synchronous message
passing provides an simple yet powerful approach to inter-process
synchronization and limited information transfer without incurring
the cost of message buffering.

An example of the use of IPC in hardware design is the lutel 8251
UART description, shown in Figure 2. The figure is an outline of
the interprocess interaction between four independent processes:
Main, SyncRcor, AsyncReer, and Xmit. Mawn accepts commands
from the microprocessor interface and sends or receives appropri-
ate information to and from the receiver and transmitter processes.
SyncReor (AsyncRcvr) receives the synchronous (asynchronous) se-
rial data and sends it to the Mam process. X'mif reccives the data to
be written from Main and serially outputs the data. Synchroniza-
tion is achieved since hoth processes must be ready simultaneously
for a message transaction to occur.

s for the definition of mewmory mod-
ules. Memory is a logical entity that is, at this stage of description,
independent of the style of inplementation. 1t can be an archi-

tected register, a register file, or a general purpose menory. Each
entry in the memory module is of fixed size, and a particular entry
may be accessed via an index, not necessarily known at compile
time. An exaple for a RAM is

declare memory RAM[AddrSize] [DataSize];

RAM is a memory module with AddrSize address bits and Data-
Size dala bits. Access to meinory is not arbitrated by the system.
lowever, Ilercules will guarantee that within one process, memory
accesses will be made exclusive in time. Therefore, if the memory
is used by only one process no arbitration is needed.

. Parameter Classes - Parameters to routines are categorized into

three types: in, oul, and mout, depending on whether they are
only referenced, only modified, or either referenced or modified.
Inout parameters are bidirectional wires. The access protocol lo
this bidirectional line is left to the task of the designer, not the
system.

Architected Registers - At times the designer would like to ex-
plicitly associate a given local variable with a register. This sit-
uation may arise for instance if the variable is an internal status
register or some register that has particular significance for test-
ing or simulation. HardwareC provides the capability to declare

5

architected registers within a procedure. An architected register is
declared as

register ProgramStatus[SIZE];

and will be implemented as a register in data-path synthesis. Siuce
it implies structure, architected registers are not strictly behavioral
constructs. However, they are provided to accommodate designers
that may describe at a lower (structural) level.

6. Operators - A variety of combinational operations are provided
by HardwareC. These include Boolean operations (and, or, not,
xor), comparisons (equal, not equal, >, <, etc.), and arithmetic
operations (+, -). Only Boolean operations will be synthesized in
the data-path using logic equations. F'he non-Boolean operators
are linked it fronr a library of functional units. The use of library
units simplifies hardware description, and increases the flexibility
of resource scheduling and allocation. For example, if a particular
unit does not satisly the design constraints, then another unit with
the same functionality but with different area/timing specifications
may be nsed instead.

. Variable Types - HardwareC allows two types of variables. A

Boolean typed variable is either a scalar, or a one-dimensional bit
vector of a given size. An infeger typed variable is a meta-variable;
and is never synthesized in hardware. Meta-variables are used by
the designer to sunplify the description, and are resolved at compile
time.

4 Behavioral Synthesis

The term behavioral synihests applies to an abstraction and the opti-
mizations that are carried out on this abstraction that are independent
of its structure. For example, operator folding would not be considered
as part of behavioral synthesis since it aflects the allocation of resources
in the resulting implenentation.

The abstraction we have chosen is a recursively defined parse free.
Fach leaf node in the parse tree is a simple statement, such as memory
access, assigninent, message passing, or binary and unary operations.
Each internal node in the parse tree represents a structured program-
ming construct. such as blocks, while statements, switch statements,
etc. There are several features of the parse tree that not only simplify
optimizations applied at the behavioral level, but also simplify the map-
ping to a structural intermediate representation. The advantages are
given below.

1. Hicvarchical Description - The parse tree allows hierarchical blocks
to be described. This has an impact on later structural mapping.

2. Local Scoping of Variables - By grouping together variables with
thicir scope of definition, the parse tree simplifies several behavioral
optimizations that would otherwise be extremely difficult, such as
loop unrolling and in-line expansion of procedures where duplica-
tion of part or all of the parse tree is necessary.

3. Elegant Algorithms - Because of its recursive structure, the parse
tree allows elegant algorithums to be written.

4. Multi-Pass Bchavioral Synthesis - The parse tree as an intermediate
representalion permits a multiple pass system. Ilor example, the
reference stack algorithin depends on knowing a priori the variables
that are modified in the body of a loop. Iowever, in a one pass
systeny, it is inpossible to obtain this information without manual
specification. By having a multiple pass system, we can obtain the
modified variable information in one pass, then invoke the reference
stack algorithm on another pass. Each behavioral optimization
constilutes as a pass through the parse tree.

4.1 Behavioral Optimizations

The set of behavioral transformations that are performed is described
below.

o Loop Unrolling. For loops with fixed bounds are unrolled. This will
avoid introducing registers to hold results of loop computation, at
the expense of extra hardware. Ilowever, the hardware may be
folded by structural synthesi

Procedure In-Line Expansion. Replaces a call to a rontine with the
contents of the routine. 'This is carried out selectively, and allows
the designer to flatten the call hicrarchy.

e Mecta-Variable Evaluation. Meta variables are replaced by corre-
sponding value.

o Flatten Block Hievarchy. Removes unnecessary block nestings in
the parse tree.

o Reduce Constant Conditionals. Coustant conditions are cither
swept away, or replaced by the branch of the conditional cor-
responding to the constant value. For example, if (1) stmtl;
else stmt2; will reduce to stmtil.

o Variable Unfolding. Using the Reference Stack.

o ('onstani Unfolding. Using the Reference Stack.

o Dead Code Elimination. Dead code means operations that will not

affect the output of the corresponding routine (i.e. parameters of
the routine). There are (wo types of dead code. !
can resull from the program description. This occurs if code is writ-

st dead code

ten where it can not be accessed, such as after a return statement.
Second, dead code can result [rom wnused variable refercnces. For
igned to

examnple, 1l operations ate performed with the results
internal variables, then they can he effectively removed since the
program hehavior at the program houndary has not heen affected.
This type of elimination can be recursively backiracked to remove
all unnecessary operations.

4.2 Reference Stack

The objective of the reference stack is to efliciently resolve rariable
unfolding, constant unfolding, and resolution of condilional assignments
and mulliple assignments in an one-pass transformation on the parse
tree representation. The information generated by the relerence stack
to reduce the control steps that are traditionally needed to miplement
assignmients to local variables. While the reference stack algorithm is
fully detailed in [9], we present here the basic principles of the algorithm.

When a program references a particular variable at a diflerent lo-
cations in the code, it may reference dilferent ralucs of that variable,
depending on whether assigniients were made between the references
The value of a variable in a program is delined to be the data most
recently assigned to that variable. The reference stack keeps a stack
for every variable in the program, where the top of stack represents the
most recent value at that particnlar stage ol translation. For example,

a=b+c, Tl=b+c,
a=1TI;

d=a: = d=T1;

a=a+1, T2=T1+ 1,
a="172;

e =aj e="1T72,

Tl and T2 are temporary variables used to hold the resuits of a
given operation, and are automatically generated by the parser. In the
example, it is clear that whenever an assignment is made to a given
variable, subsequent. references to that variable resulls in referencing
the valuc, and not the variable. The same sunplification can be done

Paper 32.2
485

for constant unfolding, where the value of a variable may be a constant
value instead of a variable.

The problem is complicated by the fact that we may have conditional
assignients to a variable. A canonical example is

a=1;

if (condition)
a=10b;

r=a;

What is 27 ldeally, 2 should be the output of a multiplexer of two
values hased on the result. of condition. Therefore, a Boolean equation
describing the value of z 1s x = (condilion Ab) V (condition A 1). This
is exactly what the reference stack does.

The reference stack is used in the one-pass transformation as follows.

o Initially, each variable in the routine will initialize its corresponding
reference stack (one for each bil) with a certain value. For input
and imout parameters, the value is itself; otherwise, the value is 0
or sonie error value.

If an assigument is made to a given variable, the top of the reference
stack will be modified to the assigned value, so that subsequent
references may access the most current value of the variable.

When a conditional branch is encountered, a new eutry is pushed
onto the reference stacks of all the variables for each dilferent case
of the conditional. The new entries are initialized to be the previous
top of stack. Assignments in a given branch of the conditional will
affect the corresponding top of reference stack only. References to
variables will access the most recent value assigned to it within the

same branch.

Upon completion of the conditional, we will create a virtual mul-
tiplexer variable whenever a variable has been modified within a
branch of the conditional. The mux is virtual since if it is not
subsequently referenced, it will be removed.

When while loop is encountered, a new entry is pushed onto the
reference stack for both the loop exit (0) and loop enter (1) condi-
tions. For the loop enter condition, initialize the top of stacks for all
variables that are modified in the body of the loop to themselves;
otherwise, initialize to the previous top of stack.

Upon exit from the loop, for each variable that is modified, record
the initial value belore entering the loop, and the final value af-
ter exiting from the loop. This information is used by structural
synthesis [9].

5 Structural Synthesis

Structural synthesis is the transformation of the hehavioral represen-
tation, described by one or more parse trees, into a structure consist-
ing of an interconnection ol modules. Since Lhe modules are arbitrary
combinatioual or sequential circuits, we have chosen to merge together
both the data patli and the corresponding control into a single module.
Combined synthesis has heen used for example by [5]. At present, the
target of synthesis is a synchronous digital systen, although the model
is applicable to any implementation.

Our abstraction for structural synthesis is a sequencing graph model
called the sequencing imtermediate form, or siF for shori. It supports
multiple threads of execution flow through the graph, which deviates
from the existing approaches where only a single thread of control is
possible through the hardware [17].

The vertices of the graph are the operations to be perforwied, and
the edges represent the predecessor /successor relations belween the ver-
tices, subject to data dependency restrictions that may exist between
them. There are several advantages to using the sequencing graph as
the abstraction for structural synthesis. They include the following.

Paper 32.2
486

Multiple Thread ol Execution Flow allows the synthesis system to
explore the design space corresponding to sequential verses parallel
iuplementations.

2. Varying Degree of Parallelism is aclieved simply by modifying the
predecessor-successor relations hetween the vertices. It is crucial
for structural synthesis, since to fully explore the tradeolls between
area and performance the synthesis systetn needs to examine the
effects of varying the degree of parallelisim on the resulting imple-
mentation,

3. Abstraction for Synthesis. 'The concept of sequencing graph ab-
stracts nicely the interdependencies between the operations, and
provides an elegant foundation for later control/timing optimiza-
tions.

4. Extension to Accommodate Timing Constraints. Sequencing graph
model may be exlended to take into consideration timing con-
straints between the operations (vertices). ‘This may be represented
by associating the timing constraint to each edge. This issue is cui-
rently under investigation.

Structural synthesis consists of two tasks. The first task is dafa path
synthesis, which directly maps the behavioral intermediate form onto a
structural interconunection. The second task is confrol synthesis, which
determines how and when data traverses through the data path. The
output of structural synthesis is a set of logic equations with delay
information that describe the control and portions of the data path
(excluding library clements, such as adders and multipliers). This is
stored in the SLIF format.

5.1 Data path Synthesis

Data path syuthesis maps operations to a set of logic equations. In
particular, it perforius the following tasks.

o Boolean operations - Boolean operations such as AND, OR, XOR,
and NOT are described by the appropriate logic equations.

Register allocation - a variable may either be implemented as a
wire or a register. Under our structural model, a local variable is
mapped to register only if it is either explicitly declared to he an
architected register, or il is “used before set™ in the body of a data
dependent loop. The “used hefore set™ semantic implies storage of
computation for the next iteration of the loop.

Interface to procedure call - procedure calls may have arguments
that return a value (out parameter), or it may requiire arguments
that both input and return a value (inout parameter). The data
path needs to provide for the interfacing and information transfer
between the cailer and the called routines.

Links to library modules - library modules implement the conmbi-
national operators such as addition and subtraction, and must he
instantiated and linked with the logic equations that describe the
data path.

Connection o Paramelers - accesses Lo inout parameters (bidirec-
tional) are controlled by tristate elements.

5.2 Control Synthesis

Control Synthesis consists of two tasks. The first is sequencing control
wlich is responsible for preserving the sequencing hehavior from the SiF.
At this level, several simplifying assumptions are made. Specifically,
combinational logic blocks are assumed to have zero execution delay,
and we ignore external protocol constraints. The goal of sequencing
control is to capture the behavior of the structure in a minimal number

of states and transitions between the states. 'The approach used by
Hercules is a ripple through control model.

The second task is the constraini control which deals with the con-
straints imposed by real hardware systems. This is doue after logic

synthesis since it relies on the delay and area information. Specifically,
combinational logic blocks are evaluated for delay and area estiinates
[4]. This information is fed back Lo guide subsequent design optimiza-
tions during structural synthesis. Along with these estimates, external
protocol specifications are also inposed on the structure. The goal of
constraint control synthesis is to find an optimal cycle time based on
both design and timing constraiuts.

5.3 Control Model

We model hardware control by a control graph embedded into sie. The
vertices of the control graph are categorized into two types: state and
stateless vertices. Stale vertices are those operalions that require at
least one cycle for execution in our hardware model, and include as-
signment to parameters, memory access, 1essage passing primitives,
calls to non-combinational routines, and while loop condition evalu-
ation. Stateless vertices are those that do nol necessarily require one
cycle for execution, and include switch condition evaluation, block start
and block end, joins from conditionals, and no-op vertices.

The flow of execution through the grapl can viewed as an execution
wavefront that ripples through the graph. Each vertex upon completion
will activate its successors. For stateless vertices, no time s needed for
execution in the sequencing control model, and control is immediately
branched ofl to the successors.

5.4 Implementation of Control

The control is inplemented as an interconnection of Moore type finite
state machines, one for cach state vertex of the control graph. Each
of the finite state machines may be designed either in terms of level-
sensitive or edge-triggered registers.

A finite state machine interacts with other finite state machines via
three signals - enable, done, and restart. The enahle input indicates the
start of execution, and is a conjunction of all the done signals from its
predecessors. The done output indicates the completion ol execution,
and the restart input resets the entire control graph. For the case of
a procedure call, the restart signal is equivalent to the enable signal
issued by the calling vertex. For the case of a process, it is issued as an
external signal.

The finite state machine consists of three internal states: RESET,
ACTIVE, and CONTINUE. The operation corresponding to the vertex
is executing only in the ACTIVE state. Upon completion of execution,
there is a transition from the ACTIVE to the CONTINUE state in which
the done signal is asserted. A transition out of the CONTINUE state Lo
the RESET state takes place when the restart signal is asserted, which
resets all finite state machines implemeuting the control graph. For
stateless vertices, the enable signal is defined shnilar Lo state vertices,
with the done signal equivalent to the corresponding enable. For further
details on the implementation, we refer the interested readers to [9].

6 Implementation and Results

Hercules is a system for high-level synthesis of digital hardware. It takes
as input a behavioral description in the form of one or more HardwareC
programs and generates an logic implementation in the form of one or
more SLIF files. There are over 22,000 lines of C code in the implemen-
tation.

Hercules has been used to synthesize several benchmarks examples,
including two proposed for the ACM High Level Synthesis Workshop
held at Rosario in January, 1988: the MC6502 microprocessor, Intel
8251 UART chip, and FRISC, a simple example described in {14]. The
results are tabulated for each benchmark in Figure 3. The values given
for the number of registers, temporary variables, and multiplexers are
in 1-bit quantitics. That is, a [6-bit register will give a count of 16
registers. The temporaty variahiles serve as nets connecting the func-
tional modules together. The table shows the total gate count in the
('MOS3 library, excluding components such as registers, tristates, and
adder /subtractor. Running titues are in the range of | minute for the
FRISC example to 5 minutes for the MC'6502 example on a VAX 11/780.

7 Conclusion and Future Work

We have preseunted a system for high-level synthesis of digital systems.
The high-level synthesis is broken down into behavioral and structural
synthesis. While the latter is largely responsible for exploring the cost-
speed tradeoffs in a design, the first is important in extracting the be-
havioral characteristics from the high-level descriptions. A new method
called the reference stack is introduced that performis many of the be-
havioral level optimizations in a one pass transformation, and aids later
mapping of variables to registers. We also propose a control model based
on sequencing graphs that supports multiple threads of control.

Future work includes developing iterative techniques to improve the
structure being generated, extracting area and delay information from
logic synthesis and applying them to structural synthesis. Control syn-
thesis that takes into consideration the user-defined constraints is also
pecessary in achieving reasonable results. TFurthermore, work is cur-
rently underway (o link Hercules to the TUOR simulator, which can
provide feedback on the correctness of the deseription.

8 Acknowledgment

"The Hercules project is supported by NSF Contract MIP-8710718 and
by the Stanford Center for Integrated Systems seed fund No. 1720062

References
[1] J. Bhasker. An Optimizer for Hardwarc Synthests, Scientific
Honeyweller, vol 7, no 3, 23-31.

[2] L. Soule and Tom Blank. Stafustics for Parallclism and Ab-
straction level in Digital Simulation, Proceedings of DAC
Conlerence, Miani Beach, July 1987, p H88-591.

3

Gaetano Boriello and Randy H. Katz. Synthesis and Ople-
mization of Interface Transduccr Logic Proceedings of 1€
CAD Conference, Santa Clara, 1937,

[4] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A.
Wang. MIS: A Multiple-Levcl Logic Optimezalion System,
IBEE Transactions on CAD, vol CAD-6, No. 6, November
87, pp. 1062-1081.

[5] R. Camposano. Structural Synthesis in the Yorktown Silicon
Compiler, Proceedings VLS &7 Clonference, Vancouver, Au-
gust 87.

[6] D. R. Cheriton and W. Zwaenepoel. Distributed process
groups in the V kerncl, ACN Transactions on Computer Sys-
tems, 3(2), May 1985,

Forrest. Brewer and Dan Gajski. Kuowledge based Control i
Micro-Avchitecture Designs | Proceedings of Design Automa-
tion Conference, Las Vegas, 1987, pp 203-209.

[8] Louis J. lafer and Alice C. Parker. Automated Synthesis of
Digital Hardware, IEET Transactions on Computers, vol 31,

no 2, Feh 1982.

[9] David €. Ku and Giovanni De Micheli. HERCULES - Al
gorithms for High Level Synthesis, Stanford CIS “Technical
Report, 1938.

[10] M. C. Mclarland. The Valuc Tracc: A Data Basc for iAulo-
mated Digital Design, Report DRC-01-4-80. December [97R.

{11] J. A. Nestor and D. E. Thomas. Behavioral Synthesis with
Interfaces, 1CCAD 86, Santa Clara, November 1986, 11¢2-
115.

(12

W. Rosenstiel, R. Camposano. Synthcsizing Ciremls from Br-
havioral Level Specifications, 7th International Symposium on
Cowmputer Hardware Description Languages and their Appli-
cations, 'Tokio, Augnst. 1985,

Paper 32.2
487

Model of the Intel 8251 in HardwareC

Design
Constraints

Constraint
Capture

Main Process

decode (command);

StructurallLogic
Intermediate Form

gl S

Loglc Physical Xmht
Synthesis Synthesls

(Behavioral Structural
\ diate Form I diate Form

inivalze;
racelve(maln,
omit_detm);

ransmi deta;

Figure 1: OLYMPUS Design System block diagram - Hercules consists
of the shaded boxes, dashed arrows represent work in progress

Serial Interface

[13] Chia-Jeng T'seng and Daniel P. Siewiorek. Automated Syn-
thesis of Dala Paths in Digital Systems, IEEE Transaction
on Clomputer-Aided Design, vol CAD-5, o 3, July 1986.

[14] J. R. Southard. Macpitls: An approach to silicon compilation, Figure 2: Outline of 18251 process interaction
Computer, vol 16, pp 74-82, December 1983.

[15} D. E. Thomas. Automatic Dala path Synthesis Advances in
CAD for VLSI in Design Methodologies, vol. 6, S. Goto (ed.),
North Holland, 1986, pages 401-439.

[16] 11 Trickey. Flamel: A High-Level Hardware Compiler, IEEE
Transactions on CAD, CAD-6, No. 2 (March 1987), 259-269. FRISC | Lines of T Times T Instances ¥gawes | ¥ gawes
Code Called | Needed imz | CMOS3
CIRT i %6 1] —
[17] R. Brayton, R. Camposano, G. DeMicheli, R. Otten and J. m 9 ,i ; ’gf 2§g
van Lijndhoven. The Yorktown Silicon Compiler System, in ite L s ! 23 24
. o nisky . osley. 14
Silicon Compilation, D. Gajsky (ed.), Addison Wesley, 1988. FRISE e TR T T [Tas T
Needed | wires | register | unoptmz timz_| CMOS3
] B 8 710 105 32
1) ® 1 200 92 107
1 11 130 80 87
1 14 1 86 50 5
1| » 4 “ 52 66

FRISC | Lines of | Times [Instances | # bit # bit #gates | #gawes | # gates

Code | Called | Needed | wires | register | unoptmz | optimz | CMOS3

mc6502 80 1 1 143 46 228 115 140
group0 195 1 1] sst 33 625 | us 283
groupl 80 1 1 24 2 73} 120 128
group2 120 1 1 342 3 385 185 205
abs 12 11 2 83 0 n 35 40
immed 6 5 2 17] 57 23 3
indx 14 1 1 107 o m 70 82
indy 13 1 1 107 0 i 70 2
pull 12 7 3 11 0 103 60 7
push 1 10 3 12 0 102 60 7
read 8 31 6 6 8 62 33 42
write 7 8 2 3 o 36 27 3
setnz 6 21 2 1 [} 17 9 10
zp 8 15 2 58 0 75 32 39

Figure 3: Statistics for Benchmarks - Wires and Registers given as
oue-hitl quantities

Paper 32.2
488

