PERFORMANCE-ORIENTED SYNTHESIS IN THE
YORKTOWN SILICON COMPILER

Giovanni De Micheli

IBM - T.J.Watson Research Center
Yorktown Heights, NY 10598

Abstract: We present some algorithms for the optimization of the switching-time
performances of synchronous systems designed by the Yorktown Silicon Com-
piler. Circuit performance is related to the worst-case propagation delay of
signals between two register boundaries and the optimization of circuit per-
formance is equivalent to the minimization of the critical path detay through
combinational circuits.

We consider here a global approach to timing performance optimization
which involves operations at the logic, topological and physical level of de-
scription of the circuit. We assume that the combinational portion of the circuit
being designed is described at the logic level as an interconnection of gates im-
plementing single-output logic functions. This description may be transformed,
by a procedure called logic re-synthesis, by modifying the internal structure of
the logic gates and their interconnection 10 minimize the propagation delay of
those signals limiting the performance of the circuit. At the topological level,
we perform a timing-oriented re-positioning of groups of logic gates to reduce
the delay on the wires along the critical paths. At the physical design level, we
perform re-sizing of the driver gate sizes to improve the switching speed. These
operations are interlaced with the synthesis steps of the Yorktown Silicon
Compiler and can be seen as the ""code optimizer” part of the compiler that may
be invoked when compiling circuits with critical timing performances.

The algorithms are described as well as their implementation and the inter-
face to the Yorktown Silicon Compiler. The results of applying timing-
performance optimization to a 32-bit microprocessor design are reported.

1. INTRODUCTION

The Yorktown Silicon Compiler (YSC) {BRAY8S5a] is an automated syn-
thesis system that aims at generating circuit designs competitive with manual
designs in silicon area and switching-time performances. The circuit to be im-
plemented is described as a hierarchical interconnection of modules. The leaf-
modules are combinational logic units, registers and library cells, e.g. off-chip
drivers and receivers. The compiler generates the geometries of the masks of
the chip from this high level description. The quality of the "compiled"” design
is achieved by including several optimization procedures during the logic and
physical design phase. We refer the reader to [BRAY85a] for a description of
the compiler and to [BRAY85c] for the description of the design of a 32-bit
microprocessor using the YSC.

This paper presents some algorithms for optimizing the switching-time
performances of the circuits designed by the YSC. We consider here the design
of synchronous systems, designed in the SCVS technology {LUIS76] (dynamic
CMOS circuits operating in the domino mode). Circuit performance is related
to the worst-case propagation delay of signals between two register boundaries,
because the system clock has to be adjusted to allow the arrival of each signal
to the destination registers within the clock cycle. In this context, the opti-
mization of circuit performance is equivalent to the minimization of the critical
path delay.

Previous work on timing performance optimization addressed one partic-
ular level of the circuit representation. At the circuit level, Ruehli [RUEH77a},
Trimbereger [TRIM85] and Fishburn [FISH85] proposed device-sizing opti-
mization techniques. At the topological level, Burstein [BURS85] studied and
implemented placement and wiring strategies that optimize timing perform-
ances. At the register-transfer level, Leiserson [LEIS83], addressed the prob-
lem of performance optimization by moving the latch boundaries. This is only
a partial list of some significant contributions. Performance optimization was
also achieved indirectly by methods that simplify the circuit complexity by re-
ducing its area and/or number of gates (e.g. logic minimization) [HONG74]
[BRAY84b], or by choosing a placement of the gates that minimize the routing
wire length [KIRK83].

We consider here a global approach to timing performance optimization
which involves operations at the logic, topological and physical level of de-
scription of the circuit. In particular, at the logic level, we modify the internal
structure of the logic gates and their interconnection inside each combinational
module. At the topological level, we re-position the modules, and as a conse-
quence their gates, to reduce the delay on the wires along the critical paths.
At the physical design level, we optimize the gate sizes to improve the switching
speed. These operations are interlaced with the synthesis steps of the Yorktown

CH2353-1/86/0000/0138$01.00 © 1986 IEEE

138

Silicon Compiler and can be seen as the "code optimizer" part of the compiler
that may be invoked when compiling circuits with critical timing performances.

In principle, the strategy for timing optimization can be viewed as an iter-

ation of the two steps:

i) evaluate the critical path delay;

ii) modify circuit appropriately;
until a satisfactory performance is obtained. The evaluation of the critical path
delays departs from previous approaches [HITC82] {JOUP83] [OUST85] be-
cause the circuit to be optimized is being designed at the same time. In partic-
ular, the evaluation of the critical path delay requires the knowledge of the gate
positions, because it is affected by the wire lengths. Therefore it is not possible
to estimate precisely the delays before the physical design phase: however
floorplanning [OTTES84] should be driven by timing considerations. For this
reason, we estimate first the critical path delays after the logic design phase, by
neglecting the capacitive load due to wiring. The results of this estimate are
then used to drive the floorplanning. At this point, a more accurate estimate of
the delays can be obtained, because the positions of the modules are known.
If the performance is not satisfactory, the circuit may be redesigned for optimal
performance by:

i) re-sizing the active devices;

il) re-synthesis of the combinational modules;

iii) re~-positioning the modules.
These operations are iterated until a satisfactory performance is achieved or no
improvement is detected. Other figures of merit of the design, such as silicon
area and wiring length, are also taken into account. The original logic repre-
sentation of the circuit optimizes the number of gates and their internal com-
plexity, which correlate to the optimization of the silicon area [BRAY84c]. The
algorithms for performance-oriented re-design trade-off the silicon-area opti-
mality for a faster timing performance. Due to the complexity of this approach
and the interrelations among the effect of the changes at the logic, topological
and physical level, it is not possible to guarantee an optimality of the procedure
in rigorous terms. However, the heuristic procedures used for re-sizing, re-
synthesis and re-positioning have shown to yield good designs in most cases.

| LOGICDESIGN |

v

| DELAY EVALUATION]

[FLOORPLAN |
|

iv4
| DELAY EVALUATION |

PERFORMANCE 22

no

v

I RE_SIZING | ﬁLSYNTHESIS l [RE_POSITIONIN(ﬂ

| | |

v
| LAYOUT]

2. CRITICAL PATH DELAY ESTIMATION

We consider here the design of synchronous systems using the YSC, where
the registers are synchronized to one system clock. The goal of our technique
is to minimize the maximum propagation delay between any two clocked regis-
ters. Therefore we model the signal propagation through the combinational part
of the system. We consider each signal stored in a register as both a primary
input and output to the combinational sub-system.

Combinational logic can be described as an interconnection of logic gates
by means of nets, carrying logic signals. The primary inputs to this network are
also interconnected to the logic gates by means of nets. The primary outputs are
identified by the gates generating the corresponding signal. We assume each
logic gate to be unidirectional. Therefore we can associate a direction to each
net corresponding to the signal propagation direction along that net. The
interconnection can be modeled by a directed graph G(V, 4), whose node set
V= {vt =VeUFVF = {+v]U{v}isin one to one correspondence with the set
of logic gates (¥#) and primary inputs (V') and whose edge set 4 is in one to
one correspondence with the nets. To avoid race conditions, the system design
is constrained to be unidirectional, i.e. G(¥, A) is acyclic. A node v is said to
be a predecessor (successor) of gate v, if there is a directed path from v to v,
(from v, to v) in G(¥, A). A predecessor (successor) is said to be direct if the
path has length one. The signal propagation is modeled by associating a prop-
agation delay d(v#) to each logic gate or, equivalently, a weight to each node in
the set V2. The propagation delay through a physical gate can be modeled by
simulating a transition due to a change in an input value. In the case of SCVS
circuits [CHEN84a], the delay model of a gate depends on: i) the size w of the
drivers (i.e. the devices implementing the static inverter driving the output wires
of a gate); ii) the capacitive loading ¢ at the output, which in turn depends on
the fanout of the gate and the wiring capacitance to ground; iii) the structure
of the path discharging the sense node and in particular the maximum number
of devices in a discharging path /. It is convenient to express the propagation
delay as d = a(w) + B(w)c + y(w)!. The coefficients a, B and y are tabulated
for a finite number of values of w and are obtained by regression analysis after
circuit simulation [CHEN85]. We associate also to each logic gate a data ready
time r(w#),i=1,2,..., | V¥¢| . The data ready time of a gate is the time at
which the signal generated by that gate is ready. Similarly, we associate to each
primary input a data ready time #(¥),i=1,2,..., | ¥'| . For our purposes,
we synchronize the computation of the data ready times to the system clock.
Therefore we assume the data ready time to be zero for each primary input
corresponding to a register. The data ready times of the remaining inputs are
set to the delay of the corresponding input signal with regard to the system
clock. The data ready times at the logic gates can be computed by tracing for-
ward the signal propagation, i.e. by computing:

max
vy =dw) + e g Hw) K = {ks.t (w,v) € A}

for each node v corresponding to a gate in a sequence consistent with the partial
order represented by the graph.

An important information about signal timing is the slack of the signals
generated by each gate (called also slack at the gate). The slack of each primary
output (or at the gates generating a primary output) is defined as the difference
between a chosen time /(1) (e.g. the minimum system cycle time) and the
computed data ready time 1(»). For the other gates, the slack s(v) at node v, is
defined to be:

s = 0 L5 + Kk 1)~ 10 }

J={jst (v,-,xj-) € A} K=1{ks.t (vk,‘y) € A}

The slacks at each gate measure how much additional delay may each signal
tolerate, while satisfying the relation (%) < #(v) at each node v corresponding
to an output signal. The slacks can be computed by tracing the signal propa-
gation backward in the circuit, i.e. by computing the slack at each gate in a se-
quence consistent with the partial order represented by the graph obtained from
* G(V, A) by reversing the direction of each edge.

Let ¢ > 0 be an arbitrary constant. The set of critical nodes C< V is the set
of nodes C = {vs.t. s(v) < e}. The critical graph H(C, B) is the subgraph of
G(V, A) induced by C. A critical path is a directed path in the H(C, B). The
meaning of critical node, graph and path depends on the choice of /() at each
node v corresponding to an output signal and on the parameter e. If ¢ () is the
required circuit cycle time (or a required arrival time for circuit output signals)
and ¢ is a negative number which takes into account safety margins and toler-
ances, then the critical nodes represent the gates whose data ready time need
to be reduced to meet the timing specifications. With this choice, this formalism
can be used to design the circuit in a performance feasibility region. A different
design strategy may try to achieve the best timing performance of a given circuit
and then adjust the system clock accordingly. In this case, let v* be the node
corresponding to the highest data ready time in the circuit, i.e.

V' = arg Vn:a);/ #(v) Then, the system clock period is bounded from below by
v'. Timing performance optimization aims at reducing v. Let 7(») = v for
each node v, corresponding to an output signal. If we choose ¢ = 0, then the
critical graph is the set of nodes having the property that any independent var-
iation in the data ready times of any node separation set implies a variation in
«(v") . (In particular, the critical graph may be a simple path and the separation
set just any node.) Therefore the nodes (gates) along the critical graph are
"critical" because the timing performance of the circuit (limited by #(+")) can
be optimized by improving the data ready time at the critical nodes. This can
be done by reducing the propagation delay at that node, or at a critical prede-
cessor. Note also that a variation of the data ready time of a critical node v may
influence ¢(v°) by very little if the direct successor of that node has a non-critical

! There may be more than one node in € with minimal slack. More precisely, let ¢ = min

139

direct pregecessor vsuch that | #(y) = #(v) | is a small quantity. In other words,
node v;is "'almost critical". The choice of positive values for parameter ¢ allows
to widen the set of critical nodes.

Though our approach is fairly general, we consider in the seque! the prob-
lem of minimizing the maximum data ready time v' and therefore we choose
t(v) = v for each node v corresponding to an output signal and we set ¢ to a
proper fraction of v. From the model of the circuit and the model of the prop-
agation delay, it is clear that the timing performance can be improved by
changing the sets of parameters {w} (driver size), {c} (load capacitance} and
{1} (gate structure) and/or the structure of the graph G(¥, A). Device re-sizing
aims at optimizing the set of parameters {w}. Circuit re-synthesis improves the
timing performance by changing the structure of the graph G(V, 4) and, as a
by-product, the parameters {/} and {c¢}. The module re-placement aims at
speeding-up the circuit by modifying the parameters {c} by changing the wire
lengths.

An efficient design requires a trade-off between area and timing perform-
ances. In our model, a figure of merit « measures the required silicon area.
Figure o is a function of the number of gates, the total number of devices inside
each gate the number and size of the drivers used in each gate.

3. DEVICE RE-SIZING

The device sizing strategy used here is a heuristic descent technique. The
size of the device implementing the drivers is adjusted (re-sized) by changing
its width, which is a linear function of the parameter w ; the device length is kept
constant. The sizes of the devices of the discharging path are kept constant,
because the capacitance of the sense (pre-charged) node is negligible with re-
gard to the gate and wire capacitance connected to the driver output. It is
practical for layout design purposes to limit the choice of the driver device
widths to a finite number. Therefore we assume that the parameter w can take
a finite set of values {1, 2, ..., p}. In our delay model, the functions 8(w) and
y(w) are monotonically decreasing with w, while a(w) is monotonically increas-
ing with w. This is consistent with the fact that the current flowing through the
MOS drivers is directly proportional to the gate width (the higher the current,
the lower the propagation delay) and that the driver gate capacitance increases
as the size increases (the higher the gate capacitance the higher the propagation
delay). As a net result, for typical values of ¢ and /, the propagation delay is
monotonically decreasing with w, i.e. Ad(v) sd(w+ 1,¢,0) = d(w,c, 1) is al-
ways negative for each node v e V5. Note also that the SCVS gate input
capacitance does not change with w because only the driver size changes.
Therefore an increase in the parameter w is always beneficial in reducing the
propagation delay through the corresponding gate and does not cause an in-
crease of the data ready time at any other gate, i.e. the mapping w - V' is
monotonically decreasing.

The algorithm for device sizing can be sketched as follows:

STEP 1: Compute the critical graph H#(C, B). Let H(C', B') be
the graph obtained from H(C, B) by deleting the
nodes corresponding to gates with maximal size, i.e.
with w = p,

STEP 2: If no node in C’ has non-positive slack, stop. Else set

€ =9

STEP 3: Let C'?be the subset of C’ corresponding to the nodes
with minimal slack. Select o € C’ as the node that
maximizes | Ad(c)| . Let€ = € U {o}.'

STEP 4: Delete from H(C', B') all the nodes that are predeces-
sors or successors of o, If the node set €’ is not empty,
go to STEP 3.

STEP 5: Increment w for the gates corresponding to the nodes
in ¥. Go to STEP 1.

The detection of the critical nodes is achieved by computing the data ready
times and the slacks, as described in Section 2. The computation of the criticat
nodes is done at each outer iteration of the algorithm, because the data ready
times and the slacks are affected by the changes in the parameters {w}. At
STEP 3 and STEP 4, the algorithm constructs a node separating set € of the
graph H(C’, B'). The selected node ¢ is chosen among those with minimal slack
in the set as the one with maximal decrease in propagation delay for a unit
increment in the driver gate size. The motivation of such a selection is as fol-
lows. The nodes with minimal slack (C”) correspond to the most critical gates
in the circuit. To decrease the data ready time at one of these gate (target gate)
we can decrease its propagation delay or the propagation delay of an appropri-
ate predecessor. Predecessors with higher slacks are disregarded, because
changes of their propagation delay would not affect the data ready time at the
target gate. For this reason we choose as target gate one in the set ¢’ and in
particular the one that maximizes | A d(v) | , which in turn is an upper bound
of |Ad(v)| . At STEP §, the sizes of the gates represented by € are incre-
mented by one. This has two consequences. First, the maximum data ready
time #(v") decreases, because ¥ contains at least one critical node with non-
positive slack. Second the data ready time at other "almost critical'" output
gates may decrease, in particular at some primary output gates whose data ready
times differ from v* by less than e.

max

ced s(c). ThenC' = {ce C'sAl..t(c)=a},anc|u-rargcE C.,IAd(t)l .

The rationale of the algorithm is to apply a global strategy for timing opti-
mization. In fact, local optimization of only one output data ready time would
be of little value if another output gate has a close data ready time. This other
gate would probably generate the signal with highest data ready time at the next
iteration of the algorithm and the algorithm would take many iterations to im-
prove sensibly the circuit timing performance. Note that by choosing ¢ = 0,
only the sizes of the gates that affect «(v') are incremented. (Local strategy).
The global strategy is achieved by choosing ¢ > 0. There is a trade-off in the
choice of €; by increasing £ fewer iterations are needed to achieve a given timing
performance but possibly more devices are re-sized than those strictly needed.

The algorithm described above terminates if there are no critical nodes
whose size can be increased and affect «(v*), i.e. critical nodes with zero slack.
Equivalently the algorithm terminates when the maximum data ready time #(v')
is determined by a sequence of gates with maximum sized drivers. Since v' is
monotonically decreasing with w, the descent algorithm terminates at a point
of constrained optimality. To improve further the timing performance of the
circuit with the given technological constraints on the maximum size of the
drivers, it is necessary then to change the structure of the circuit by re-synthesis
or to change the position of the gates, as described in the next two sections.

In the implementation of the algorithm, for practical reasons, two other
stopping criteria are used at STEP 2. The algorithm terminates if the number
of outer iterations reaches a predefined quantity or if the area estimate
uf = f(w) , reaches a pre-defined bound .. Note that by adding this two
other stopping criteria, the optimality of the solution cannot be claimed. How-
ever, a "‘good" solution can be found with limited computing time and/or silicon
area and power requirements. This solution is the starting point for the other
optimization strategies described in the next sections.

4. CIRCUIT RE-SYNTHESIS

We consider in this section the problem of improving the circuit perform-
ance by changing the gate interconnection. According to our model, we attempt
to optimize the circuit by modifying the graph G(V, 4) by adding/deleting
nodes and/or edges. Note that a change in the graph structure affects both the
gate fanout (and therefore the set of parameters {c}) and the gate fanins (and
therefore the gate structure and the set of parameters {/}). We consider only
implementable transformations, i.e. we assumne that the internal parameters of
the gates involved satisfy the technological constraints after the transformation.
We consider two basic transformations: gate absorption and gate generation.

Let gate j be a direct predecessor of gate i. The gate absorption is the re-
placement of gate i by gate i'. The inputs to gate i are all the signals Lhat are
input to gate i and to gate j, except for the output of gate j. Gates i and /' are
equivalent in the sense that their outputs coincide for any valid combination of
the circuit primary inputs. Note that gate j needs not to be implemented, if it
has no successor and if its output is not a primary output of the circuit.

ABSORPTION

Gate generation is the transformation opposite to absorption. Gate i is re-
placed by gate i'. A new gate, j, is generated and it is a direct predecessor of gate
The inputs to gate i are some of the signals that are input to gate and the
oulput of gate j; the inputs to gate j are the remaining inputs to i. Also in this
case, gates i and / are equivalent in the sense that their outputs coincide for any
valid combination of the circuit primary inputs.

Gate transformations change the number of stages, or logic levels, needed
to implement one {or more) pnmary output of the circuit. In general, for a gate
absorption (generation) gate ¢ is more complex (simpler) than gate i and
therefore its propagation delay may get larger (smaller). The data ready times
of all the gates that are successors of gate / are affected by the transformation.
Moreover, the fanout of the direct predecessor of gate i’ and j may change and,
as a result, the data ready times at some other circuit outputs. Let £'(v) denote
the data ready time after the transformation and let
Au(vy = (v) = «(v) = s(v) . A transformation of gate / is said to be locally
favorable if in the modified circuit: i) A wu(w) + s(v) < 0, i.e. the data ready time
decreases; il) A u(y) < 0 Vj#i, i.e. any increase in the data ready times is less
than the slack. Since a gate transformation affects the entire circuit, it is im-
portant to measure its global impact on the timing of the circuit. Let
Au ={Auv), Aulw), ..., 8 u(vy). Then a figure of merit of the global
impact of the transformation is measured by n » Au, where 7 is a vector of
coefficients. Gate transformations affect the snhcon area (estimated by «#) of

the circuit implementation, because of the change in the number of gates and
in their internal structure. Therefore a comprehensive figure of merit is
Ae = 1"« Au+ 0A &, where 8 is a scalar coefficient.

Circuit re-synthesis can be applied directly to the entire combinational
portion of the circuit represented by G(V, A4), by using an algorithm with a
strategy similar to that presented in Section 3:

STEP 1: Compute the critical graph H(C, B). Let H(C', B') be
the graph obtained from H(C, B) by deleting the
nodes corresponding to the gates that cannot be
transformed due to technological constraints.

STEP 2: If no node in C’ has non-positive slack, stop. Else set

€

STEP 3: Let C’?be the subset of C’ corresponding to the nodes
with minimal slack. Select a node ¢ = ¢ C” and a lo-
cally favorable transformation that maximizes [Ae].
Let® =€ U {e}.

Delete from H(C', B') all the nodes that are predeces-
sors or successors of e. If the node set C' is not empty,
go to STEP 3.

Perform the chosen transformations at the gates corre-
sponding to the nodes in €. Go to STEP 1.

STEP 4:
STEP 5:

The algorithm allows fairly general circuit transformations. However, it is
inefficient to apply it to large circuits because for each node there are several
transformations to be evaluated. In particular, each selected node may absorb
one or more predecessors. Similarly, for each selected node, several gate gen-
erations may be possible by considering the possible decompositions of the logic
function implemented at the gate. Each transformation requires a re-
computation of the data ready times. Unfortunately, in the case of large circuits,
the computing-time requirements make this approach unattractive.

The strategy for circuit re-synthesis which has been implemented exploits
the structure of the circuit and the nature of the transformations. A partition
of the the circuit into functional units with specific tasks (e.g. ALU, rotator, ...)
is used. This partition corresponds to the one used by the YSC for synthesis
purposes, i.e. the blocks of the partition are the combinational modules that are
leaves of the hierarchical circuit description. Transformations are applied only
inside the combinational modules. Each combinational module is described by
a sub-graph G™(V™, A™) of G(V, A). A critical module is a module whose sub-
graph has critical nodes.

At first, the critical graph for the entire circuit is computed. Then, the
critical modules (i.e. the modules along the critical graph) are redesigned one
at a time. For this purpose, each graph corresponding to a critical module is
considered along with its boundary conditions, which are the data ready times
at the module inputs and the slacks at its outputs. While doing re-synthesis of
a module, the goal is to reduce the data ready times at the critical nodes. Note
that since the module is "extracted" from the whole circuit, the slacks cannot
be recomputed after each transformation. Therefore the critical nodes are
computed only once and the transformations are applied to reduce the data
ready times at these nodes.

The overall goal of the algorithm is an area-time-effective synthesis. An
absorption leads to a more compact implementation, if the absorbed node is not
implemented. Therefore, if the absorbed node had more than one direct suc-
cessor, it is convenient to try to have it absorbed by its direct successors, even
if these absorptions would not improve the timing performances; they would
improve though the silicon area. The generation of a gate requires the imple-
mentation of an additional gate: the cost of the additional area can be (partially)
offset by the internal simplification of the successor gate. For this reason, it is
convenient to consider the ""common sub-expressions’ [BRAY84c] of the logic
functions implemented by two (or more) gates as candidates for the nodes to
be generated. In this case, any node generation would lead to the simplification
of the two (or more) direct successors of the generated node, and eventually to
a reduced loss (or possibly a saving) in silicon area.

STEP 1: Compute the data ready times 1(v) and the slacks s(v)
for all nodes in G(V, A). Compute the critical graph
H(C, B). Select a critical module. Let GM(V™, 4A™)
be its graph representation and C™ be the critical
nodes within the module. Let o ., be an upper
bound on the area of the module.

STEP 2: For each critical node ¢ ¢ C™ and for each direct pred-
ecessor 4 € C™ of o, let o absorb 4 if the absorption
is locally favorable and o < o ,,.

STEP 3: For the logic functions implemented by the gates cor-

responding to ¥m , compute all common sub-

expressions. For each sub-expression common to at
least’one node in C™, generate the corresponding gate

if the generation is locally favorable and of < o,

Perform area/delay trade-off by moving sub-
expressions across gate boundaries to reduce gate and
device count.

STEP 5: Disregard the module from further considerations. If
all critical modules have been considered, stop. Else,
go to STEP 1.

STEP 4:

The algorithm selects at STEP 1 as critical module a sub-circuit whose
nodes have no predecessor in any other critical module which has not been re-
synthesized. The reason is not to change the data ready times at the input gates
of a module after its re-synthesis, since the circuit structure has been tuned to
this particular input signal arrival-time distribution. For the selected module,
the number &, is an upper bound on the module area after re-synthesis, be-
cause node absorption and generation lead in general to an increase in silicon
area. The common sub-expressions are computed as described in [BRAY84c].
After having re-synthesized the module, the data ready times and the slacks are
recomputed for the whole circuit. The algorithm terminates when all critical
modules have been re-synthesized.

5. CIRCUIT RE-POSITIONING

The re-positioning algorithm aims at improving the timing performances
by reducing the capacitive load {c} of the critical gates. This is done by short-
ening the length of the nets carrying critical signals. In the YSC, each module
is designed as a rectangular macro-cell consisting of an interconnection of cells
implementing each a logic gate. Gates are interconnected by wires that run in-
side and outside the macro-cell. We assume that the capacitive loading on a gate
depend primarily on the length of the wires that go across the module boundary.
Therefore we restrict our attention to the inter-module wiring and we estimate
the wire lengths by the macro-cell positions.

The goal of the algorithm is to reduce the length of the critical nets by
changing the mutual positions of the modules. The rationale of the re-
positioning algorithm is to "bring closer' the critical nodes (gates) to their di-
rect successors in other (not necessarily combinational) modules. Since any
change in a module position affects the length of all the nets connected to it,
we require that any change in the module position correspond to an improve-
ment in timing performance, For this reason we introduce the geometrical slack
g(v) for each net connected to the output of the gate denoted by v. The ge-
ometrical slack g(v) is derived from the slack s(v) and represents the additional
length that each net can tolerate while satisfying the relation r (v) > 1(v) at each
output node v.

The re-positioning algorithm is based on pair-wise module interchange.
The moves that are allowed are position interchanges between modules with
compatible shape and such that the increase in wire-length for each net con-
nected to each gate v, of the modules under consideration is less than g(v). The
objective function is a weighted sum of the net-lengths connected to the critical
nodes. The algorithm uses a greedy strategy in determining a sequence of al-
lowed moves corresponding to a maximal decrease of the objective function.
The algorithm can be sketched as follows:

STEP 1: Compute the critical graph H(C, B), the set of critical
modules M , the slacks s(v) and the geometrical slacks
8.

STEP2: Let M = M. Reset the flag.

STEP 3: If M’ = ¢ and the flag is set go to STEP 2. If M' = ¢
and the flag is reset stop.

STEP 4: Select m ¢ M'. Determine the set of allowed moves for

m. If this set is empty, remove m from Else,
choose the interchange that maximizes the decrease
of the objective function and set the flag. Go to STEP
3.

The aigorithm determines first the set of critical modules. Then a candidate
module for interchange is selected by using a weighted sum of the parameters
of the critical nets connecting it to other modules of compatible shape. Then the
set of allowable moves is determined by considering the geometrical slacks. If
no move is possible, the candidate is rejected. Else, the local best interchange
is performed and another interchange for that module is searched for. A flag
signals that at least one interchange has been performed. When all the critical
modules have been examined as candidates, another pass (STEP 3 and STEP
4) is done if the flag.is set. Else the algorithm terminates. If the original
placement was obtained by minimizing the total wire length, this number is
monitored during the interchange. The algorithm trades off the total wire length
for the wire length of the critical nets. An additional termination criterion that
may be used is reaching a bound on the total wire-length.

6. IMPLEMENTATION AND RESULTS

The aigorithms have been implemented in three APL workspaces. The
program that evaluates the delay represents each combinational module by an
APL variable and constructs a pointer structure that allows a fast evaluation of
the data ready times and the slacks. The re-synthesis program is implemented
as an overlay of the YLE program [BRAY84c]. The re-synthesis of a module
corresponds to the update of a variable in the delay workspace, and therefore
the delay and slack evaluation can be executed efficiently without re-linking the
entire circuit data-structure, Similarly, the re-positioning algorithm is imple-
mented by an APL workspace that examines the compound (i.e. not leaf)
modules of the hierarchical chip description. The description of these modules
contains the relative position of the corresponding child-modules. This infor-
mation is used in the re-positioning algorithm.

The program has been used to optimize the performance of a 32-bit
microprocessor design having 1415 SCVS gates corresponding to 17660 devices

141

and a total of 55066 transistors including latches, a register file and off-chip
drivers and receivers [BRAY84c¢]). The combinational portion of the circuit
which has been optimized had 1565 equivalent logic gates (| V¥|) and 2698
nets (|41).

The device sizing algorithm was able to reduce the maximum data ready
time from 72.7 ns to 57.8 ns i.e. by 20.5%. [t took 46 iterations with ¢ = 0 and
the increase in driver active area corresponding the the driver sizing was 5.3%.
With ¢ = 2.5, it stopped after 17 iterations and the increase in the driver active
area was 9.8%. The computing time of a program that reads in the chip data
description, forms the internal data structure, runs the algorithm and updates
the chip description took 202 and 178 seconds on an IBM 3081 computer in the
two cases. Note that only a minor fraction of the computing time was spent by
the sizing algorithm.

The delay estimation algorithm detected 9 critical modules along the critical
path. Circuit re-synthesis was effective only for 5 of these modules, primarily
because the overall circuit partition had large and small modules (in terms of
number of gates) and re-synthesis could not speed-up further the small modules,
which were optimally designed by YLE in the original synthesis. Critical signals
were improved, after re-synthesis, by .5 to 1.6 ns, with an average speed-up of
9%. This figure is computed as the average of the ratio of the difference in data
ready time to the total propagation delay through the module.

The re-positioning algorithm was applied to the compound module con-
sisting of the "random logic" units corresponding to the control and interrupt
portion of the microprocessor. The re-positioning algorithm reduced the critical
net length inside the module by about 5%. This corresponded to an improve-
ment of the maximum data ready time of about 2.1 ns, i.e. 3.7%.

7. CONCLUSIONS

Automated synthesis systems need to incorporate area-timing optimization
procedures to be effective. Here, a set of procedures for optimizing the area-
timing performances of the circuits designed by the Yorktown Silicon Compiler
has been presented. Optimization is achieved at the logic level by re-synthesis,
at the topological level by re-positioning and at the device level by re-sizing.
Experimental results on a micro-processor design example have shown the ap-
plicability and effectiveness of the optimization methods presented here for
large designs.

8. ACKNOWLEDGEMENTS

These ideas have been shared with Dr. R.Brayton and Dr. R. Otten of the
T.J.Watson Research Center.

9. REFERENCES

[BRAYR4b| R.Brayton. G.D.Hachtel, C.McMulten and A.L.S i- Vincentelli, "Logic Min-
imization Algorithms for VLSI Synthesis", Kluwer Academic Publishers, 1984.

[BRAY84c] R.Brayton and C.McMullen "Synthesis and Optimization of Logic Circuits", Int. Conf.
on Cire. and Comp. Des., Rye, NY, pp.23-28, Sep 1984.

{BRAYS85a} R.Brayton, N.Brenner, C.Chen, G.De Micheli, C.McMullen and R. Otten "The Yorktown
Silicon Compiler” Proc. Int. Symp. on Circuit and Systems, Kioto, Japan, pp. 391-394,
Jun 1985,

[BRAY&5c] R.Brayton, C.Chen, G.De Micheli, J.Katzenelson C.McMullen R. Otten and R.Rudell "A
Microprocessor Design Using the Yorktown Silicon Compiler" Proc. Int. Conf. on Circuit
and Comput. Des., Rye, N.Y., pp. 225-230, Oct 1985,

[BURS8S| M.Bursiein and M. Youssef, "Timing Influenced Layout Design" Proc. 22th Des. Autom
Conf. pp. 124-130, Las Vegas, Jun §5.

[CHENS4a] C.L.Chen and R.Otten "Considerations for Implementing CMOS Processors", Int. Conl.
on Circ. and Comp. Des., Rye, NY, pp.48-53, Sep 1984,

[CHENSS| C.L.Chen, Private Communication.

(FISH8S) J.Fishburn and A.Dunlop "TILOS: A Posynomial Progr Approach to T
Sizing" [nt. Conf_on Comp. Aid. Des., Santa Clara, pp. 326-328, Nov, 1985,

{HITC82] R.Hitchcock, G. Smith and D.Cheng, "Timing Analysis of Computer Hardware", 1BM
Journal of Research and Development, Vol. 26, No.1 pp.100-105, Jan. 1982.

[HONG74] S.J.Hong,R.G.Cain and D.L.Ostapko, "MINL; a Heuristic Approach for Logic Minimiza-
tion", 1BM Jour. of Res. and Dev., vol. {8, pp. 443-458, Sep. 1974.

(KIRK83] S.Kirkpatric, D.Gelatt and M. Vecchi, "Optimi by Si
May 1983.

[JOUP83) N.Jouppi, "TV: an nMOS Timing Analyzer”, in R.Bryant, Editor Third Caltech Conference
on VLSI, Computer Science Press, 1983,

[LEIS83} C.Leiserson, F.Rose and J.Saxe "Optimizing Synchronous Circuitry by Retiming". in
R.Bryant, Editor Third Caltech Conference on VLSI, Computer Science Press, 1983.

(LUIS76] J.Luisi, "High-speed low-cost clock-controlled CMOS logic implementation”, U.S. Patent
3982138, Sept 21, 1976.

[OTTE84] R.Otten and L.Van Ginnek "'Stepwise Layout Refi
Comp. Des., Rye, NY, pp.30-36, Sep 1984,

[OUST8S] J.Ousterhout, "A Switch-Level Timing Verifier for Digital MOS VLSI" [EEE Trans. on
CAD/ICAS, Vol. CAD-4, No 3, pp. 336-348, July 1985.

[RUEH77a] A.E. Ruehli P.K. Wolff Sr. and g.Goertzel "Analytical power/timing optimization tech-
nique for digitat systems" Proc. 14th Des. Autom Conf.

[TRIMS85} S.Trimberger "Automated Performance Optimization of Custom Integrated Circuits" in

A.Sangiovanni, Editor Advances in Computer-Aided Engineering Design, Jai Press, 1985.

N TR
A . Science,

", Int. Conf. on Circ. and

