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Abstract: The process of transforming an architectural spec-
ification of a streamlined processor (the IBM 801) in 0 a
design specification suitable for input to a silicon compiler
is described. Starting from that s{gecuficathn, the authors
develop a description of combinational logic, latches and
registers, hierarchically organized, which implement a plﬁe-
lined version of the processing unit. This description is then
automatically compiled down to the gate level in single-
ended cascode technology.

1. INTRODUCTION

The work described here is cPart of the ont%omyg devel-
opment of a prototype automated design tool, the Yorktown
Silicon Compiler (YSC)[1]. As an exercise for the compiler
and as an opportunity fo learn more about ﬁstem- evel
issues, we have developed a design for the IBM 801 proc-
essing unit [12] and described it in the Ian%ua es used as
input 'to the YSC. We chose the 801 architecture for two
reasons. First, since the 801 was developed at IBM Watson
Research Center, we had access to a detailed description
of its operation as well as to the developers themselves.
Second, the 801 is sufficiently complex to provide a good
test for the compiler, and at the same time sufficiently
simple to be understood by novice system designers. This
Paper describes the process of spanning the gag between
he aflchltectural specifications and the Input to the silicon
compiler.

1.1. The architecture

The architecture of a system defines its attributes as
seen by the programmer, that is, the conceptual structure
and sequential behavior of the machine, as distinct from the
organization, the logical design, the layout, and the per-
formance of any particular implementation. Ty ical parts of
an architecture specification are the instruction set, the
addressing capabilities, the registers visibie to the assembly
language programmer, and the interrupt handling. In spite
of the clear separation provided by this definition, it cer-
tainly would be injudicious to isolate architecture des:ﬂgn
from its target operating s¥st_em and compiler on one side,
and its hardware lmglemen ation on the other. It was there-
fore not surprising that again and a%am dunng this exercise
we were confronted with the fact that the 801 architects
had the application and the implementation constantly in
mind. Their decisions were mainly guided by the following
three basic design principles.

1. Its compiler should be able to produce object code with
an efficiency comparable to the best hand code so that
assembly language programming is never needed for

erformance. .

2. Each instruction should be executable in one short ma-
chine cgcle, and yet the path lengths of the computa-
tions should not be commensurately larger than those
required by machines with more complex instructions.

3. The idle time of the processing unit due to storage ac-
cess should be kept small.

What follows is meant only as a brief introduction to the
architecture of the 801 processor. For more details the
interested reader is referred to [12].

The 801 is a true 32-bit minicomputer architecture.
The arithmetic and logical operations deal with 32 bit
words. Shifts and rotates can have lengths of UP to 32 bits.
Addresses are 32 bits long. The 801 architects foresaw a
comguler capable of a verf¥1 effective utilization of a large
number of registers, and therefore decided to prescribe a
register file of 32 fullword general purpose registers (GPR).

Instruction length and format greatly influence the
complexity of the hardware for decodar_\ﬁ; and the efficiency
of a pipeline if implemented [10]. erefore, acceptin
some alignement constraints can ‘be very beneficial wit
respect to hardware simplification and pipeline implementa-
tion. This was recognized in the architecture design of the

0 Each instruction is exactly one word long, and is
aligned on word boundaries. Only few instruction formats
are used. All operands are, depe_ndmgl_on their size, aligned
on halfword or fullword boundaries. These constraints, the
emphasis on register utilization, and the single-cycie in-
struction J)nncnple, move the 801 into the class of
streamlined architectures [7]. Although maréy,of its proper-
ties are shared with the so-called reduced instruction set
computers (risc), the size of the instruction set alone would

rsnoa{(e such a qualification a misnomer in the case of the

Typical instructions are provided for storage access
address computation, branching, and comparing. onsjstenf
with the third basic dqsqn principle, the processor is_al-
lowed to continue with instruction execution after the initia-
tion of a storage access. The processor will then only stall
if the memory system has not yet rovided the requested
data when the content of the affected re ister is needed.
To make better use of this facility, the op |m|zm§ compiler
can reschedule the storage access instructions o reduce
the number of stalls. Also, a branch with execute instruc-
tion (similar to the delayed branch in reduced instruction
sets) allows the compilér to move inevitable instructions
n}to :he normally idle period following a taken branch in-
struction.

The 801 approach to protection is mainly based on its
compiler assumptions. Some run time extent chgt_:km% is
necessary in this approach and therefore condition fest
instructions were made available for insertion into_object
code. Arithmetic is 32-bit two's complement, with the
usual add and subtract instructions, beside some special
instructions for computing the minimum and the maximum
of two_values. There are also several instructions not nor-
mally found in a reduced instruction set, such as multiply
step and divide step, which allow complex operations to be
easily decomposed into sgguen_ces ot simple instructions.
Also, a rich set of rotate and shift operations, controlled by
another register or an immediate field are provided to re-
duce the path length of instruction streams.

The third basic principle immediately led to a
store-in-cache strategy. But instead of a single conventional
cache that delivers a word every cycle, an instruction cache
and a data cache were both included separately, thus ef-
fectively doubling the cache bandwidth and allowing as-
ynchronous fetching of instructions and data. Explicit in-
structions for cache management are introduced to make a
reduction in unnecessarY loads and stores of cache lines
possible at the software level.

. Finally, the number of interrupts defined for the proc-
essing unit is reduced by imposing software protocols for
mtetrru t handling and prescribing an external interrupt
controller.

1.2 Silicon compilation

From the specification of the architecture to the com-
plete mask set for a particular implementation of the 801-
processor on a single chip is a _complicated and certainly
not unique process. Many decisions about the machine
organization and the implementation techr_\olo%y still have
to be taken. At the moment it is not possible fo automate
the whole grocess, but it is feasible to have a completely
automatic tool performing the last part of that process.
Such a tool is often calléd a silicon compiler, because it
accepts a dQSCrIPtIOﬂ of the design at some intermediate
§ta%e and without interaction produces the data needed to
implement the system on a silicon chip. The Yorktown
Silicon Compiler project is intended to provide such a tool.
It accepts input in flexible and versatile Ianﬁua es_and then
automatically performs the remainder of the design roc-
ess. In addition to theugam in speed and accuracy of chip
design, we hope to produce competitive results in terms of
thedareta, performance and power requirements of the final
product.

The YSC requires a description of the chip in terms of
modules connected by nets. e modules themselves may
be described in the same way. The nets and the undecom-
?osed modules have attributes which drive their synthesis.

he thus established hierarchy is used pnmanl¥ as a guide
to the organization of the chip during the layout part o the
synthesis process.

A simple language has been developed to specify and
generate information concerning nets, modules and” their
attributes. Only three kinds of undecomposed modules
were used : combinational logic modules, storage devices
(latches, registers, etc.) and amplifier circuits (drivers,
receivers, rePeaters, etc.). The specification of the storage
devices and the amplifier circuits takes place entirely within

this hierarchical description language. Only the combina-
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tional logic modules need a specification complex enough to
require additional specification. Their_specifications are
Fenerated from descriptions_of each logic module in a Io$|c
anguage called YLL &t‘[ Thus the input to our compiler
consists of (i) a collection of YLL programs for combina-
tional logic together with (ii) a hierarchical description of
nets and modules, which indicates how the modules are
linked, and which specifies the components of the chip that
are not combinational logic modules.

The compiler performs transformations on a description
of the chip design starting with the input Iangua%e specifi-
cation and ending with the layout of the masks. The trans-
formations are performed by optimizing alﬁgrlthms which
successively refine the design description. is is illustrat-
ed in figuré 1. These algorithms have been_described in a
series of papers listed as references in {1]. The _s_ubl_ect of
this paper, how to get from an architectural specification to
the input to the silicon compiler in_its present status, is
indicated by the dotted box in figure 1.
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Figure 1. Schematic representation of the components of
the YSC

2. SYSTEM DECOMPOSITION

A document describing in precise and verbose detail
the 801 architecture, was our starting point. The first step
in preparing the input for the YSC was to understand the
machine being synthesized. This was achieved bfy convert-
ing this descr:{mon_ into an equally precise, buf far more
concise computer file specifying the effect of each instruc-
tion on the architected registers, the details of when inter-
rupts may occur and how they are processed. It became
the major reference for the remainder of the project, since
it was very useful for settling disputes (for example, techni-
cal details of various interrupt conditions), and to find com-
mon features (from within an editor, for example, we could
easily locate all of the instructions affecting a particular
special-purpose register). ~After that exercise we were
ready to take on the organization of the control and data
flow in our implementation.

2.1 High level description

in order to condense the bulk of information (as well as
to provide us with an understanding of the ofoera ion of the
machine), we translated the 801 principles of operation into
a high level programming language (almost any program-
ming Ian_gua e or hardware description language ‘would have
been suitable, but we choose the C-IanguaFe, because a C
compiler was available and we were most familiar with this
language.) The main routine is nothing else than a infinite
loop which for each cycle simulates the fetching and execu-
tion of the instruction, and tests the various interrupt con-
dition (figure 2).

#include ‘global.declarations’

main()

for(;;

) fzatgh instruction(); .
execuUte instruction();
handle_Thterrupts();

) .

execute_instruction()
switch(IR.opcode) {

case LC:
GPRLIR.rt] = read(mem,eff _addr(),char_type);
break; - -
}
}
Figure 2. General structure of the main program and the

execute_instruction() procedure

Each machine register was modeled with a variable
and variables were also used to represent the externa
control wires (e.g., external interrupts). The access to
memory was modeled with the functions read() and wnte(?.
The functions execute mstructlor}(?l and handle interrupts()
were built as case statements with the selection based on
the opcode of the fetched instruction (figure 2) and the
appropriate interrupt flags respectively.

Note that such a program still does not address the
yroblem of decomposing the machine or designing a pipe-
ine. However, while writing the program, we naturally
extracted frequently occurring suboperations of each in-
struction and made these common features into subrout-
ines. ~ This is the normal decomposition one uses when
faced with a large programming task. The identification of
these functions provided us with an initial breakdown of the
rocessor into smaller modules. We found, for example
hat the instruction set strongl{¥I suggested two modules at
the chip level: one with the arithmefic-logic operations as a
core, and one with _rotating and merging as its most impor-
tant operations. Once the¥ were identified, most instruc-
tions could be translated into subroutine calls to procedures
specifying the functional behavior of these modules.

2.2 The pipeline

Pipeline design is useful to .increase performance
through reduced cycle time, and since some of the 801
instructions seem naturally tailored to a pipelined imple-
mentation, we chose to implement what seemed to be a
natural 4-stage pipelined structure. That this choice was
not canonical, can be seen b& comparing it to the quite
different design discussed in [12].




The pipeline can be made such that the four stages nously clocked registers. All registers, except those in the
operate synchronously, and each completes its operation in  GPR, consist of master-slave latches, with or without an
one machine cycle. ~ At the boundary of each stage are enable line and controlled by a single two-phase non-
latches holding its next input and sforing its last result. overlapping clock, called M/S clock. A" machine cycle cor-

The stages are as follows: responds with the period between two master clock pulses.
. . . . For _reasons of testability by level sensitive scan design

F(fetch) Load into IR the instruction pointed to by  (LSSD) techniques, all registers are provided with a scan-in
the program counter. and scan-out line, and are connected to form a scan chain.

Load the appropriate register RS The GPR is implemented as a static random access memo-
D(decode) with the cgﬁte,ﬁsaof th% 3,,59,(5"5'3,?'053 ry, capable of reaglnF out any three and writing any two
registers pointed to bg he instruction, registers within a single cycle.
and create a decoded version of the . . o .
instruction’s operation code. At palrtltl%n Iof tft;e processing unit mt?f ?hd?ta-t_ltggl and
: a control module often seems obvious. at partition is
E(execute) ﬁgse{:g?e C‘r’r"';';(%' tslslgenaa'rs J:T?g:‘tghgvgﬁgg?é accepted and cFi.ven to the silicon compiler the two modules
to the execution unit. and latch the results will be realized in two nonoverlapping rectangles, and treat-
in RESULT. ~Also 'update the program ed almost independently from each other. Closer examina-

counter tion shows that such a decomposition is not necessarily the

) i . o optimum. The data-flow facilities are controlled by the

S(store) Place the result in a register, and initiate instructions at the corresponding stage of the pipeline.
requests to main memory. Since every stage of the pipe operates in a single cycle, the

. . . X . . control of each facility is_a combinational function. This

Under simplest conditions, one instruction resides in  organization suggests the idea of local control of the data-
each stage of the pipe and flows to the next during one flow: the control of each facility is a segarate unit, placed
cycle. Added complexity results when we consider the pext to the facility itself (or might even be merged’into it).
behavior required while branchm%h handling an,mterruph_or Local control is convenient because it reduces the wiring.
waiting for data. To the user, the processor's properties  Moreover, it can be_efficiently designed by exploiting the

must appear to be_the same regardiess of whether or not a i - ’ :
pipeling%s used. Thus the ratﬁer complex pipeline control .}';‘,“fﬁg ,32;."28,‘,’{3,‘}’:,‘1},%.&? codes as don't’care conditions

we will describe in section 2.4. can in principle be deduced

from an accurate model of the processing unit and the | . .

om, : n the previous section we already noted the suggested
pipeline assumptions. : division of ?he execution unit into twqy aths: one co% aining
2.3 Module definition an arithmetic-logic unit, and one with rotator and merge

It?gitc. |r|1 t'(hg high Iet\,/ef ;:l_escneltio? this o!aservation %oyd
i ; e translated into subroutine calls to procedures specifying
implilgattil"n)en;:oaur:ges%f g;it?gf,‘;”?;‘;',”}ni,%Jf‘;s_‘"%;‘,ggedofs et\{'%rsael the functional behavior of these two modules. In tﬁe rgah-
were explicitly mentioned in the architecture specification. Zation each call becomes part of the control |g§IC. operat-

Their exact instantiation, however, is still to be determined, ing multiplexers at the input to the modules and specifying
mostly on the basis of implementation cost, clocking the operation the selected module is to perform,

schemes, and testability considerations. We dgc_lded to . . o
implement the processing unit as a synchronous finite-state The decisions with- respect to module definition led to

machine consisting of combinational logic cells and synchro- the diagram of figure 3.
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Figure 3. Schematic of our organization of the 801 processor. Shaded boxes represent latches. Small inverters indicate
inversion between D1- and D2-domain.




2.4 Pipeline control

The operation of the pipeline under a branch instruc-
tion is fairly straightforward. If the branch is taken, the
pr%gram counter is loaded with the target address at the

nd of the E-stage. The partially executed instructions in

the other stages of the pipeline are now incorrect; in an
unpipelined qe5|gtn, they would never have been fetched.
To handle this situation, each stage of the pipeline has a
‘kill’ flag, which is propagated from one stage to the next
as the instruction flows down the pipe. A branch taken sets
the kill flag for all the other instructions currently in the
pif?e. When such an instruction reaches the S-stage, its
affect on architected storage is inhibited because the kill
flag is set. In this way, a branch instruction effectively
flushes the contents of the pipe.

_Interrupts are very similar to branches. In fact the
action of the processing unit under an interrupt is to store
the current status in special purpose registers and then to
branch to a fixed memory location. One additional consid-
eration is required, because interrupts can be generated at
any stage of the pipe. To handle this, associated to each
stage are interrupt bits, which flow along with the instruc-
tion like the Kkill ﬂa% escribed above. ~As interrupts are
generated, these bits are set, and when the instruction
reaches the S-stage, the interrupt is serviced.

. We remark that an instruction can
in, say, the D-stage, and then be killed by a branch instruc-
tion ahead of it. Tn this case, the instruction in the D-stage
should never have been executed and the interrupt it gen-
erated is ignored.

enerate an interrupt

Another consideration is the ‘waiting for data’ state of
the pipeline. Consider the example of loading a register
from external memory. = The load instruction generates a
memory request, which is sent off chip. Execution contin-
ues normally until a reference is made to the register which
was supposed to be loaded. If the memory request has not
et been serviced, we must wait for it before proceeding.
he waiting function is accom?hshed by inhibiting the trans-
fer of data from one stage ot the pipeline to the next. In
this way we effectively halt the pipeline until the external
request’is serviced.

The flow through the F-D-E-S-stages of the pipeline is
altered somewhat by certain bypasses in the glpelgne.
These speed the flow of the instructions through the plFe.
For instance, if an instruction in the D-stage requires the
contents of a register which is the target of a load instruc-
tion or the target of the result just computed in the E-
stage, the data will be routed into the appropriate latch on
the boundary between the D- and E-stages. On the next
cycle this data is stored in the correct re%nster, but it is
also already in the E-stage. This allows, for example, a
sequence of additions to be executed without interruption.
Another complication is that there are instructions that
refer to writing data directly into some of the architected
latches. This could be done at the end of the S-stage, but
this might cause some delay in the instruction flow. [f we
know that no interrupt will be processed on the next cfycle.
then it is allowed to perform this store at the end of the
E-stage. This generated the need for a signal
interrupt _at next cycle computed in the E-stage. In gen-
eral theSe decisions corrupting the clean design of the
pipeline, complicate the control logic and may affect the
cycle time of the machine.
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3. TECHNOLOGY CONSIDERATIONS

Up to this point our design has been technology inde-
pendent. Before passing the design to the silicon compiler,
decisions concerning the technology and the circuit family
have to be taken. Most of the limitations of the chosen
technology will be taken care of b¥_ the comrnler, but some
decisions that can improve the tinal result considerably
have to be forced manually.

3.1 Single-ended cascode voltage switch circuits

The main benefit of a silicon compiler are fast error-
free design without communication problems between ex-
perts of quite different fields. These should not be obtained
at the price of considerable increases in area, power and
delay, compared to manual designs. Achieving competi-
tiveness is facilitated by the use of a fast, area-efficient,
powerful logic family in° which a_complex function_ can be
performed in a smgle circuit. Methods for manipulating
complex logic functions are better suited for computers
than for humans. So, if there is an advantage in_using large
logic families, it can only be realized through high degrees
of automation.

Single-ended cascode voltage switch (scvs), realized in
a cmos technology, is such a amllg. Its circuits operate
according to the domino principle [9,8,5,6], i.e. a capaci-
tance is charged during a so-called precharge phase, and
discharged durlng the evaluation phase if its switching net-
work has a conducting path to ground under the current
values of the logic inputs. The phases are derived from a
smgle'clock, thus avoiding delays due to clock skew. The
switching network can be realized by the relatively small
nmos transistors, and only part of the small (compared to
conventional cmos) overhead has to be realized in the
much larger pmos transistors. Previous experiments on
individual” control logic macros and arithmetic-logic units
indicated that significant savings in area and delar could be
obtained at the macro level by using this technology [2,5]
in spite of the requirement that signals cannot be inverte
to feed other circuits in the same evaluation phase.

3.2 Clock domains

SCVS seems to be an excellent candidate for our pur-
ques, rovided that some rules are taken into account if
his technology is going to be used for every combinational
logic cell. We ‘therefore extended the basic domino-circuit
and provided the system with two_distinct clock signals, DI
and D2 respectively (Figure 4). The circuits between two
latch boundaries are partitioned into two domains b apBlg-
ing these two clock signals, a D1-domain and and a -
golinam. The rules for interconnecting these circuits are as
ollows:

. Ontly tt:ircuits in the D1-domain can have an inverted
output.

. An ?nvert_ed output can only be input to a circuit in the
D2-domain. 5 . . .

. Only one inverter is allowed in any chain from input latch
to output latch.

W N =

The assignment of each of the logic macros to the two
domains was done manualI& The crucial part of the as-
sighment was that for the two main functional data paths,
the ALU path and the rotate-merge path.

qnd

arts in the

, while the OSIC controlled by D2 begins at
TRus when the D2 goes high at t3, no invalid
2 circuits is Begun, t;, is

chosen different from t;, to reduce the peak current drawn from the power sources at the beginning of precharge.




. The addition computation in the ALU was broken down
into ALU1 and ALU2, and these were assigned to the D1-
domain and the D2-domain respectively (figure 3). ALU1l
consists of the carry generate part of the adder, and ALU2
consists of_the exclusive-or operations for obtggnmg the
sum bits. The carry generate tunctions are positive tunc-
tions of their inputs, such as

COUT - AB + (A + B)ClN'

Thus no inverts are required inside ALUl1. The sum output
of ALU2 corresponds roughly with

S = A®B®C

and therefore requires both phases of all signals so that the
inverts of A.B and C must be made available. This is ac-
complished .by inverting signals produced in ALUl1. Without
the use of inverters, additional ?osmve logic would be re-
quired to compute the inverse of A, B and C (roughly dou-
bling the size of ALUI). This would be a severe penalty in
terms of area and power.

. The rotate-merge block also_requires inversions in its
final phase. The function of this block is to rotate one
word and merge this result with another word where the
merge is controlled by a 32-bit mask. The mask acts like a
set of selector controls and as such both phases of the
mask must be available. In addition some out?‘uts of the
merge result must be available in the negative phase to set
a condition code. To circumvent having to propagate these
complements back to a latch bount_jar¥ the mask generator
macro and the rotate macro are in the D1-domain, while
the merge macro is in the D2-domain (figure 3).

4. COMPILER INPUT

.Once the numerous decisions concerning pipelining
choice of modules, control signals, interrupt mechanism and
so on were made, we began the task of describing this

roposed implementation of the 801 architecture in the
anguages required by the Yorktown Silicon Compiler. In
the sequel we will assume some familiarity with that system,
particularly its logic language.

4.1 The logic language

We beﬁin b¥) discussing the descriptions in the lo%ic
Ianguage, L. Once the control signals which link the D-
and E-stages of the gl?eh‘ne had been established, writing
YLL programs for each logic macro in the 801 turned out to
be a fairly straightforward and modular Erogrammmg task.
Since the use of YLL for describing ALUs, rotators and
other_structured macros has been described elsewhere [4],
we will limit ourselves to two remarks on our experience in
writing control logic.

. First, the description of control logic is organized and
simplified by the use of tables. These allow us to refer to
instruction codes directly by mnemonic. Furthermore, the
tables list for each instruction numerous properties of the
operation it is intended to perform, allowing us to write
logical equations that directly query specific properties of
the instruction at hand.

Example. Shown below is a portion of ROTIN, the table of
rotate and merFe instructions. For each instruction, we
have symbolically described the operation it Performs. In
this case, the entries in the table answer questions such as:
where does the rotation count come from? Is the rotation
to the right or to the left?

A Opcode Count Merge Type R/L
RIMI 29 C_RB MASKIN LEFT
RMI 22 C_RB MASKIN LEFT
RINM 11 C"IR SHORT LEFT
RNM 10 C_IR SHORT LEFT
RRIB 63 C_RA BITIN RIGH

The YLL code below describes a portion of the control logic
for the rotate/merge block. R is an 8-bit logic signal
that contains the current instruction code in the E-stage.
These three lines examine INSTR to determine if the count
for the rotation comes from the register IR, RB or RA. The
first line of code constructs a control signal C_ IR which is
turned on exactly when the current instruction corresponds
to any line in the ROTIN table beannF the entrfn‘c IR’
such as RINM or RNM above. The logic for this tontrol
signal is snmp? an expression which tests to see if the 8-bit
data INSTR (suitably encoded) matches the opcode of
RINM or RNM, as given in the table. In this way, a corres-
P_onden;:e between lists of opcodes and conceptual proper-
ies of instructions is established.

A

C_IR+v/(ROTIN IS 'C_IR')iINSTR
C—RB+v/(ROTIN IS 'C—RB')iINSTR
C_RA«v/(ROTIN IS 'C—RA')iINSTR

We remark that these instruction tables are not part of
the architecture, but were inferred from it. In fact, the
selection of confrol signals and the construction of versatile
macros implementing a given instruction set via these con-
trols is a fundamental step in the design process. The
automation of this step represents an important area for
future research.

A second novel feature of our YLL description is that
we have explicitly described conditions under which we
don’t care about the values of certain signals, and we have
used this information to simplify the resulting logic.

Example. The statements shown below follow the control
logic above. When the [otate(mer e block is_in use, the
count must come from either IR, RB or RA. So when the
count-selector control signals are all zero (false), the cur-
rent instruction is not using the output of the merger. Un-
der such a condition, we actually don’t care what the values
of these control signals are (since they don’t affect the
final result). To take advantage of this additional freedom
we define below an intermediate logical expression DC
specifying exactly these don’t-care conditions.

DC+~v/(ROTIN IS 'C IR C RB C_RA').1INSTR
DC SIMPDC C_IR,C_RB,C_RZ =

The first statement creates a logic function which is the
negation of the care conditions, in this case those instruc-
tion opcodes that are associated with ¢ TR, C RB, and
C RA. The second statement tells YLL 6 simplify the logic
for_the three count-selector signals, using the fact that
their values can be arbitrary under the condition DC.

This facility allows us to automatically take advantage
of an intelligent choice of operation codes, such as that
specified for the 801 architecture. Suppose, for example,
the first two instruction_ bits are always ‘O’ for a
rotate/merge instruction. Then there is never any need to
interrogate these bits when computing rotate/merge con-
trol. We can simply assume they are both zero, since when
they are not, we don’'t care what the control signals are.
This effect is achieved by using the don’t care set as
above. (Of course there is some control signal which re-
cords the fact that we are using the output of the merger,
ta_nd whéch)does care about the first two bits of the instruc-
ion code.

4.2 The hierarchy description

We now turn to the description of nets and modules.
Once the YLL descriptions of each |0%IC macro are availa-
ble, they are processed bﬁ/_ a I%glc synthesis program [3] to
produce decomp files, which describe multistage circuitry
mglementmg the original logic in the target technology
(SCVS). The names of the primary outputs of each I%glc
macro are retained from the original YLL description. One
can think of the decomp files as compiled subroutines or
object modules, which must be linked together to form a
Rr'géhaYm. The data is produced by the design linker, called

The ARCHY processor takes as input a simple |anguaﬁe
describing the contents of a collection of modules.  The
lowest-level modules are physically realizable structures,
such as registers or logic macros. Associated to each such
structure is an ordered list of nets, indicating the signal
wires to which it is attached. This list is simply a collection
of alphanumeric names which have global significance. The
list is either s,{)ecmed explicitly in the input to ARCHY, or
derived implicitly, as for decomp files, where the net names
have been preserved from the original YLL code. Most
modules are connected to a clock signal, which is specified
in the input to ARCHY, and controls the activation of the
module. " Thus the organization of sequential and parallel
execution of devices is implied in this language.

The ARCHY processor builds up a netlist, referring to
the existing decomp files as pecessary. It also builds a
description of each module.  This description includes the
type of the module, which is DECOMP for combinational
logic, LATCH for master-slave latches and registers, and so
on. As mentioned in section 1.2, many objects are com-
pletely described in the ARCHY input.

Example. To describe a master-slave register with an addi-
tional enable signal (which can inhibit the data transfer), we
use the ARCHY statement

LATCHE RA_IN[0-31] RA[0-31] RA_EN (MSCLK




This specifies that the 32 signals RA__IN are to be latched
to the signals RA at the clock pulseMSCLK. The signal
RA EN can enable or disable this transfer. No additional
information is needed for the layout program to construct
this register.

Part of the ARCHY input describing the rotate/merge
section of our 801 implementation is shown below.

MODULE ROTNMRG

DECOMP SHIFTC DOMINO-I
DECOMP ROTATE DOMINO-I
DECOMP MASKMX DOMINO-TI
DECOMP MERGE . DOMINO-II

A Make sure inverts are availlable
INVERT MASKMX MERGE (DOMINO-TI

In the above we are describing part of the module
ROTNMRG. It contains several logic macros; the declara-
tion that these macros all belong to one module, will group
them as a unit for the layout process. We have specified
that the first three macros run on the D1-clock signal, while
the merge takes place at second stage, controlled by the
D2-clock signal. Before D2 goes to the high value, signals
from the D1-domain can be inverted as needed. The state-
ment INVERT MASKMX MERGE examines the correséppndmg
decomp files to see if a signal required by MERGE in one
polarity is produced by MASKMX only in the opposite polar-
ity. so, an inverter will be generated. /
used ARCHY not only to describe the linkage of the logic
macros, but to generate linkage as necessary. It also has a
facility for auditing the net generation, to check that con-
nections are made, that no module requires a signal which
has not been made available, and that the rules for creating
inverters are not violated.

5. DESIGN STATISTICS

In this section we summarize very briefly some results
obtained by exercising the YSC with our 801 processor
design. A more extensive report on results of the YSC for
this design will be published in the future.

5.1 Input code

The high level description consisted of 1602 lines of
C-code (with_722 semicolons indicating the amount of
active code). These were translated into

- 1877 lines of YLL code (33 pages); 1106 were com-
ments.

- 547 lines of tables (9 pages); 126 were comments.
- 199 lines of ARCHY code (4 pages); 68 were comments.

In total there are 1323 lines of active code (24 Pages)
for input to YSC. Since YSC has no libraries except for a
register file and bit images for.sm§le latches, drivers and
{_ecelvers, the data above contains the entire chip descrip-
ion.

5.2 Logic synthesis

Our decomposition led to a total of 118 different unde-
composed modules. The combinational logic modules have
been synthesized down to the gate level. Also a global
netlist was created for the chip.  These data have been
used for Fate level simulation and timing optimization at the
chip level.

min/max min/max

total total gates  xstrs total

blocks gates inbick  inbick xstrs
Combinational logic blks 58 1415 1/110 10/1344 17660
Inverter blks 8 150 1/97 3/291 450
Sub totals 64 1565 “IBIT0
Regular latch blks (LSSD) 5 38 1/32 24/768 912
Latch/Enable blks (LSSD) 31 514 1/32 32/1024 16448
Register file 1 1184 1184 19000 19000
Sub totals 37 1736 ~36360
Driver blks 4 69 1/32 4/128 276
Receiver blks 10 41 1/32 0/0 0
Tri-state driver/receiver 1 32 1 320 320
Sub totals 15 142 596
Totals 118 3443 55066

hus we have -

Some statistics_of the synthesis results have been entered
in the table. The totals in this table do not include the
internal powering of snﬁ_lnals for example by clock repeat-
ers, but do include all the oh-chlp drivers and receivers. In
compiling the statistics, all output buffers are assumed to
be of minimum size, and none of the domino circuits was
assumed to have any of the options given in figure 4, ex-
cept possibly for the inverters between the clock domains.
So the transistor totals for the domino circuits include only
the transistors regulred for the gate logic and 5 transistors
for the buffer and clock. The decomposition of the logic
was done with thedposs1b|I|_ty of distributing the control to
or near to the modules being controlled. Thus of the 58
combinational logic modules, 25 generate control signals.

5.3 Layout design

The system requires 142 bonding pads for data com-
munication with its environment. Together with the supply
pads and the clock, they require a periphery of :31.7 mm.
The bonding pad macros take an area of 23.8 mm®, leaving
about 39 mm*“ as active grea. The area taken by cells was
computed to be 19.4 mm*“ which leaves fifty percent of the
active area for the global wiring. In the global netlist, there
are 2500 nets, but of these only 500 are not 32 bit vectors
which are part of the dataflow. The floorplan is to contain a
data flow stack where most of these 32 bit signal nets are

-routed in straight lines in second level metal over the stack,

thus reducing the global wiring space considerably.

The design rule set used by the macro assembler was
competitive, but not a production standard. Once the macro
assembler has been adapted to a current production stand-
ard, and all its components are in place the design will be
compiled by the YSC using that design rule set.

6. CONCLUSIONS

With the design methodology supported by the current
version of the YSC, the translation from the high level de-
scription to the block diagram is left up to the human de-
signer. Notable attempts have been made in the past to
automate this step (once given a description of the machine
similar to our high _level descnptm{\)). For example, the
MIMOLA program [14] and the CMU's Datapath-Analyzer
11,12] attack the R,robl,ems of translating’' a high-level
escription of a machine into basic modules. Input to the
YSC at a higher level is under consideration.

For the 801 design, the translation from the high level
description to the diagram was not difficult. Only a rela-
tively minor part of the design effort would have been
saved with an automated system. However, there are se-
veral advantages to a more automated system. One is that
no new errors are introduced during the franslation process.
Another is that more experimentation with the processor
structure is possible. With a silicon compiler such as the

SC, quite accurate information about critical timing and
layout can be produced quickly. In this design exercise it
would have been interesting to try different pipeline_varia-
tions, to determine their effect on the cycle time. Experi-
mentation with different facilities, dataflow paths, tri-state
buses etc., would have revealed their effect on the overall
layout. A ripe area for immediate development seems to lie
in desgn aids operating in the range between full automa-
tion at the high level and the level represented by the input
to an optimizing silicon compiler such as the YSC:

. The full automation of this translation |Process into an
efficient structure appears very difficult. For example, in
this design, the intentions of the machine architect in
choosing the instructions to facilitate a pipeline were rather
obvious. Once the pattern was discovered, designing the
pipeline was relatively easy, but automating this is clearly a
much more difficult task.

.. Currently, the power of the YSC is that once the indi-
vidual logic’ macros have been identified and described
functlonaJ in the Yorktown Logic Language (YLL), the logic
editor and layout tools produce a hl_Fh Iy-ogtlmlzed macro-
cell which implements the function. Thus, the YSC provides
a very powerful translation from an intermediate-level de-
scription into a mask-layout.

The introduction of two distinct clock signals essentially
allows us to obtain the advantages of domino-type circuits
at the system level. This notion can be extended, but more
experience is required to see how generally applicable this
technique would be. Although system design is made
slightly more complex by the invert-free constraint, this
exercise has demonstrated that the benefits of single-
ended cascode voltage switch circuits can be realized for a




reasonably large chip. Further design aids should be able
to simplify the system aspects of the specifications.

Finally, our impression was_that the 801 architecture is
relatively "easy to implement. The implications in the in-
struction set “with respect to short and simple machine
cycles and pipelining were soon recognized, and our deci-
sions concerning system decomposition and clockin
scheme did not adversely affect the effective cycle time o
our implementation of the 801 processor. We believe that
our design confirmed that the goal set by the the architects
to allow an implementation having a short cycle time was
successfully met.
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