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ABSTRACT

Symbolic minimization consists of determining a two-level sum-of-products
representation of a switching function in a minimal number of product-terms,
independently of the Boolean encoding of all (or part of} the inputs and outputs.
When the objective is to determine a binary-valucd description, the minimal
symbolic representation determines a set of constraints for the encoding of the
input and outputs into Boolean variables. Symbolic minimization is related, but
not equivalent, to multiple-valued logic minimization. It represents a new con-
cept in switching theory, Formal definitions and properties of a symbolic rep-
rescntation of a switching function are presenled for the first time. An
algorithm for symbolic minimization is described. The algorithm is imple-
mented in a computer program called CAPPUCCINO, which is built on top of
a modified version of the heuristic logic minimizer ESPRESSO-11.

1. INTRODUCTION

In standard logic design, Boolean representations of switching functions are
obtained from a functional description, such as a Hardware Description Lan-
guage program, by representing each variable by Boolean symbols. The opti-
mization of logic Tunctions, and in particular two-level logic minimization, is
performed on the Boolean representation. The result of logic optimization is
heavily dependent on the representation of the variables. As an example, the
complexity {in particular the minimal cardinality of a two-level implementation)
of the combinational component of a finite-state machine depends on the as-
signment of Boolean variables to the internal states. Here, the design of
switching functions is restricted to combinational two-level sum-of-products
representations. Logic optimization is therefore equivalent to logic minimiza-
tion, i.e. finding a representation of minimal cost, where the cost is the number
of product-terms involved.

A technique to avoid the dependence on the variable representation in the
optimization process consists of two steps: i) determine a minimal rcpresen-
Lation of a switching function independently on the encoding of its inputs and
outputs; ii} encode the inputs and outputs so that they are compatible with the
minimal represenlation.

This method can be applicd to solve the following problems of logic design:

P1) Find an encoding of the inputs (or some inputs) of a combi-
national circuit that minimizes its cost.

P2) Find an encoding of the outputs (or some outputs) of a
combinational circuit that minimizes its cost.

P3) Find an encoding of both the inputs and the outputs (or some
inputs and some outputs) of a combinational circuit that mini-
mizes its cost,

P4) Find an encoding of both the inputs and the outputs (or some
inputs and some outputs) of a combinational circuit that mini-
mizes its cost and such that the encoding of the inputs is the same
as the encoding of the outputs (or the encoding of some inputs is
the same as the encoding of some outputs.)

Finding an optimal state assignment of a sequential circuit is equivalent to
problem P4, when the sequential circuit is implemented by feeding back (pos-
sibly through registers) some outputs of a combinational circuit to its inputs.
Similarly, finding the encodings of the signals connecting two {or more) com-
binational citcuits, that minimize the total cost, can be reduced to problem P4.
The author presented in [DEMI84c] [DEMI85a] an approximation to the sol-
ution of the state assignment problem (P4), in which the cost was minimized
with regard only to the encoding of the inputs. In particular, the technique
presented in [DEMI84c][DEMI85a] solved only problem P1. Problem P2 was
attacked by Nichols [NICH65], but the algorithm he presented could deal only
wilh smali-scale circuits.

The difficully in solving problems P2-P4 is related to finding a minimal
two-level representation of a switching function independently of the encoding
ol both inputs and outputs. Symbolic minimization consists of determining the
minimum cacoding-independent two-level sum-of-products representation of a
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switching function. Is is minimum in number of product-terms and independent
of the encoding of all (or part of) the inputs and outputs. The minimal symbolic
representation determines a set of constraints for the encoding of the inputs and
outputs.

This paper describes how symbolic minimization is defined and achieved.
Formal definitions of the representation of symbolic functions are reported in
Section 2. An algorithm for symbolic minimization is described in Section 3. The
related constrained encoding problems are sketched in Section 4. Extensive
description and results are reported in [DEMI85a] [DEMISSb).

2. BASIC CONCEPTS AND DEFINITIONS

Symbolic functions are switching functions whose variables can take a fi-
nite set of values. Each value is represented by a word (or mnemonic), i.e. by a
string of symbols. A symbolic variables s has a set of admissible values §. The
symbol ¢ is reserved to denote that variable s does not take any value of S. For
functions of # input variables and m output variables, let 8!, i = 1,2, ..., nand
SO, i=1,2, ..., m be the set of admissible values for the cotresponding vari-
ables 5! and s°. Then the domain of the symbolic function is the Cartesian
product §'=S] x 8 x +-- x S| and the range is the Cartesian product
§0= S0 x S x -+ x §Q. The clements of the domain are denoted by s' and
those of the range by s°.

A pletely specified symbolic function of # input variables and mn output
variables is a function f:8! » SO, that maps each element of the domain to an
element of the range. An incompletely specified symbolic function is a function
having the property that, for some inputs, some output variables can take any
value in the corresponding range. The collection of these paints of the domain

is called the den’t care set of that particular output variable.

Note that the Boolean or binary~valued functions are symbolic functions,
whose variables can take the values 8 = {0, 1} . The domain is {0, 1}*. The
range of a completely specified function is {0, 1}™. For incompletely specified
functions, let the symbol * represent the don't care condition. Then the range is
{0, 1, *im Similarly, the variables of multipie-valued functions can take the
values §=10,1,...,p— 1} , where p is the radix of the representation
[RINE77]. Algebras have been developed for both the Boolean and the
multiple-valued [POST21] representations. The representation of the result of
Boolean operations are based on a linear order of S. Let 1 S -» N be an enu-
meration consistent with the linear order, where N is the set of natural numbers.
In particular:

i) Product (AND) : sAs’ = #' min(r(s), r(s'))

ii) Sum (OR) : sV’ = =" max(r(s), r(s')

iii) Complement (NOT) : 5= r' (p ~ 1 — r(s)).
Note that the order does not affect the semantics of the representation of a
switching function; however the order affects heavily the size of the represen-
tation. For example, canonical representations, such as sum-of-products or
product-of-sums depend on the lincar order of § : in particular the minimal rep-
resentations of a Boolean function and of its complement as sum of products
have different sizes, and algorithms have been developed to exploit this fact
[SASAB2].

Representations of symbolic functions depend on the definitions of the
operations among words. Unfortunately, no order relation is meaningfula priori
among the elements of a symbolic description. For this reason, operations on
symbolic representations are related to order relations among words. Ta the
following presentation, single-output functions are considered first, i.c. m = 1,
to simplify the notations. The cxtension to muitiple-output functions is then
shown.

Symbolic functions are represented here as sums of products of literals. Let
¢SS be a set of words. For any variable s € S, the symbolic literal function is
defined as follows:

15, 0) =TRUEifs €0
%00 = FALSE else

The set ¢ is the pattern of the literal.



By using a sum of product of literals representation, only the order in S°
affects the representation, because the literal function maps words into Boolean
variables (TRUE,FALSE) independently of the order in §'. Note that if a lin-
ear order relation is specified among the words of the range, symbolic functions
representations are cquivalent to multiple-valued logic functions represent-
ations [RINE77]. In particular, a multiple-valued representation can be ob-
tained from a symbolic representation by interchanging each symbol s with
r(s), where r( » ) is the appropriate enumeration.

Since an order in $° is not necessarily given, the definitions of the repre-
sentation of a symbolic function are compatible with a set, possibly empty, of
partial order relations among the elements of the range. Let
R =1{(s,5"); 5,5 € 8§} be a partial order relation on SO, We say that s covers
¢ if either s = ¢’ or ¢’ = ¢ or (5, s') € TR, where TR is the transitive closure of
R. The symbolic sum of two words s and 5" is well-defined only if a covering
relation exists among the elements involved. In particular:

N !
’ s if scoverss
sVs =

. '
s il s coverss

Else the symbolic sum is ambiguous or ill-defined.

s O 7,
A symbolic product p(s', 7} of literals

A symbolic product-term of literals is the » + 1-tuple (g, ...
where 0,68, i=1,2,...,n 7€ 8°.
k(s 0), i=1,2,...,nisa function:
rit i{s/, ) = TRUE, Vi=1,2,...
¢ clse

1= o

Two products p,, p, intersect if 3s' e ' such that p(s', 7,)#¢ and
p(st, 1) #6. Two products are output-disjoint if p,(s!, 7,) intersects p,(s', 7,)
implies 7, = 7,.

A symbolic function can be represented in a sum of product of literals form,
if ¥s' € S' for which the function is specificd, the operation of symbolic sum
among products is well-defined. In particular, such a representation always
exists in the following two cases: 1) for any linear order in §°; ii) if the repre-
sentation is a sum of pair-wise output-disjoint products.

Sum of product of literals representations are conveniently represented in
tabular forms, as a stack of product-terms, A symbolic implicant is a symbolic
product p(s', ) such that ¥s' € S for which the symbolic function is specified,
Jf(s") covers p(s', 7). A symbolic cover of a symbolic function is a set of
implicants whose sum is f(s*), ¥s' € S' for which the symbolic function is spec-
ified, A minimum cover is a cover of minimum cardinality, i.e. minimum number
of product-terms.

Example: The following table is a symbolic cover of a control function
with n = 2 inputs and m = 1 outputs.

INDEX AND OR ADD JMP CNTA
DIR AND OR CNTB
IND AND CNTB
IND OR JMP CNTD
DIR IND ADD CNTC
DIR JMP CNTC

Here, S| = {DIR,IND,INDEX} ; S}={AND, OR,ADD,JMP}
§° = {CNTA, CNTB, CNTC, CNTD} . This representation is compatible
with an empty setl R of partial order relations on S°, because it represents
a sum of output-disjoint product-terms.

3. AN ALGORITHM FOR SYMBOLIC MINIMIZATION

Finding a minimum symbolic cover is a complex task and is at least as dif-
ficult as determining a minimum cover of a multiple-valued function. Both tasks
involve the solution of a covering problem, which is a NP-complete problem.
Therefore heuristic algorithms are used to determine a minimal (local minimum)
solution. However, recent progress in heuristic logic minimization has led to
techniques which very often yield minimum solutions in the binary [BRAY84b]
and multiple-valued [RUDE85a] case.

We assume the reader is familiar with the operations involved in heuristic
logic minimization [BRAY84b] [HONG74]. A minimal cover is obtained from
an initial cover by iterative improvement. Operations like product-term merg-
ing, product-term expansion and removal of covered terms, reduction and re-
shaping of product-terms and detection of irredundant covering set of terms are
used to delermine a minimal cover. These operations can be applied to symbolic
product-terms, provided that the logic sum of the terms involved, if any, is
well-defined.

products. Sub-optimal results were obtained duc to this restriction,

In previous approaches to solve problem P4 [DEMI84c] [DEMI8S5a), exploiting the order in S° was not considered and symbolic
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The idea behind symbolic minimization is to generate order relations among
the elements of SO during the minimization process. The symbolic minimizer
detects partial order relations that are necessary to define sums of product-
terms which would decrease the symbolic cover cardinality. As a result the or-
der relations are determined a posteriori by the minimizer. The output of the
minimizer is a minimal cover and a partial order on S° !,

The order relations are represented by a directed graph G(V, 4) , where the
node set ¥ is in one-to-one correspondence with $°. The edge set 4 is initial-
ized empty and is constructed during the minimization process. An edge be-
tween two vertices defines a order relation between the corresponding elements
of §. Therefore the sum of two distinct elements of S is well-defined if there
is a directed path between the corresponding vertices.

Symbolic minimization is achieved by an iterative improvement of the initial
cover, Let SO={s0i=1,2,...,¢} (the labelling is arbitrary). Let
ON,i=1,2,..., q be the subset of the initial symbolic cover consisting of the
product-terms with 7 =s°. The initial cover is a set of output-disjoint
product-terms, because no order in S© is specified before the minimization.
Therefore, product-terms in ON, do not intersect product-terms in ON, if i#j.
Each set ON, is a symbolic single-output single-valued function. A minimal
representation of ON;, denoted by M, , can be obtained by using 2 muitiple-
valued-input, binary-valued output minimization technique.

The leading idea behind symbolic minimization is that the product-terms in
the minimized covers M, i=1,2,...,g are not constrained to be output-
disjoint, by introducing appropriate order relations among the clements of §©.
For example, suppose that (sP, s°) € R. Then, while minimizing ON, to M,
ON; is considered as a subset of the don’t care set DG, because the sum of the
product-terms of ON; and ON] cannot yield s°.

To minimize ON, an explicit representation of the offset (or the don’t care
set) is needed. The offset corresponding to ON; , denoted by OFF, is the subset
of the domain which must have empty intersection with M;. In particular, it is
the subset of S* that is mapped by the function f to a value different than s® and
covered by sP. If G(V, A) represents the partial order, then the off-sets can be
defined as: OFF, = U, ON; J=1{ js.t3a path from v to v, in G(V, A)}. The
complement of ON, U OFF, is the don’t care-set DC; of the function, which is
used in the minimization process.

The symbolic minimization algorithm has a main iteration loop. At iter-
ation i of the loop, M, is is obtained by minimizing (ON, OFF), using a routine
that performs multiple-valued-input binary-valued output minimization. The
corresponding don’t care-set DC; includes by construction all the sets ON; for
which no path exists in G(V,4) from v to y. As a result, minimization may be
very efficient in reducing the cardinality of M; because of the particularly ad-
vantageous don’t care set. 1If, during the minimization, M, intersects ON,, the
relation (s°, s°) is recorded, by adding (v, %) to the edge set of the graph. This
has two consequences. First the relation (s?, s°) implies that sO covers sP.
Second it prevents that, at a further iteration of the algorithm, a minimized
cover M; intersects ON,, which would induce a contrasting relation (s, s°). At
step j of the loop, M;N ON, = ¢, because ON.SOFF, Therefore G(V,A) is
acyclic by construction. The structure of the algorithm is as follows:

SYMBOLIC MINIMIZATION LOOP

Data ON,i=1,2,...,q

Data G(V, 4)

A=4¢

while ( g or fewer iterations have been done ) §

i = select__function
OFF, =VU,0N; J={j|3a pathfrom v to v in G(V, 4) }
M, = minimize (ON, OFF)

A =AU {(%w) st M, NON#}

Procedure select__function sorts the sets ON, according to a heuristic crite-
rion. The minimization of multiple-valued-input binary-valued-output func-
tions is done using a modified version of program ESPRESSO-If [BRAY84b].
The don’t-care sets DC; are computed by the minimizer, by complementing
ON, U OFF,. The overall minimized cover is represented by the concatenation
of M,i=1,2,...,q. The final graph G(V, 4) represents the partial order on
SO . Thesets ON, i = 1,2, ..., g are obtained by partitioning the initial cover.
As a pre-processing step before the symbolic minimization loop, the sets
ON,i=1,2,..., qare minimized with OFF, = U,ON;; J = {j # i}. This helps
in reducing thc number of product-terms, without introducing any order re-
lation.

ion was approxi d by considering only sums of output-disjoint




Example: The following is a minimal symbolic cover.

INDEX AND OR ADD JMP CNTA
DIR IND AND OR CNTB
DIR IND ADD JMP CNTC
IND JMP OR CNTD

Here, R = {(CNTD, CNTB);(CNTD, CNTC)} . Note that the fourth
product-term has an intersection with the second and third one. The par-
tial order relation allows to reduce the cover cardinality by two.

Symbolic minimization can be extended to multiple-output functions
(m > 1) by considering covers with multiple-output product-terms and extend-
ing the definitions and operations appropriately. In particular, m partial orders

on the sets S° i=1,2,...,m are recorded in corresponding graphs
G(V, 4), i=1,2,...,m. This technique can be applied to mixed symbolic-
Boolean  representations. In this case, some of the sets
SLi=1,2,...,n8%i=1,2,...,m are the ordered set {0, 1}. For finite-

state machine minimization (problem P4), it is relevant to minimize multiple-
output functions having only one symbolic output (the state information), all
the others being binary. In this case, the symbolic minimization algorithm de-
scribed above with m = 1 can be used with a slight modification: the offset of
the binary-valued-output functions are appended to OFF, at each iteration / of
the loop.

The symbolic minimization algorithm has been implemented in an APL
computer program, called CAPPUCCINO because it is built on top of minimizer
ESPRESSO-I1.

4. ENCODING PROBLEMS

Symbolic minimization is used as a first step in solving problems P1-P4. If
the objective is a multiple-valued circuit implementation, then the (minimal)
symbolic representation can be mapped into a multiple-valued representation
with the same cardinality by interchanging the symbols s with r(s), where r( » )
is the appropriate enumeration. If s € §°, then #( « ) is an enumeration con-
sistent with R.

However, usually, the objective of problems P1-P4 is to determine a
binary-valued circuit implementation. The minimal symbolic representation
defines the constraints of two encoding problems, whose solutions are binary-
valued encodings that allow to implement the switching function with as many
binary-valued product-terms as the minimal symbolic cover.

Encoding problem E1. Given the set of literal patterns corresponding to
each input variable in the (minimal) symbolic representation, find an en-
coding of the words which that variable can take, such that each literal
pattern can be identified by a Boolean subspace containing all and only
the encoding of the words in the pattern [DEMI85a).

Encoding problem E2. Given the partial order on the set of words that
cach output variable can take, find an encoding of the words, such that
¥s, s':(s, &') € R the encoding of s covers bit-wise the encoding of 5.

The solution of problem P1 requires the solution of encoding problem E1
after symbolic minimization. In this case only the inputs of the function f are
represented hy symbols, while the outputs are represented by Boolean variables
in the original representation. Since the order in §© is given, symbolic minimi-
zation is equivalent to multiple-valued-input binary-valued-output logic min-
imization [RUDER5a]. The author proved in [DEMI85a] that problem El
admits always a soltion; an interesting sub-problem is to find minimal-length
encodings. A heuristic algorithm was presented in [DEMI84c] and [DEMI85a].

Problem P2 is the complementary problem. The solution of problem P2
requires the solution of encoding problem E2 after symbolic minimization. In
this case only the outputs of the function f are represented by symbols, while
the inputs are represented by Boolean variables in the original representation.
Problem E2 admits always a solution; also in this case an interesting sub-
problem is to find minimal-length encodings. A heuristic algorithm has been
developed to determine minimal-length solutions [DEMIB5b].

Problem P3 consists of solving both the encoding problems El and E2 in-
dependently, after symbolic minimization.

Example: Consider the minimal symbolic cover of the previous example.
The following cncodings satisfy both encoding problems:

AND =00 CNTA =00

Zﬁ’,ﬁ” fg? OR =01 CNTB =0t
IND 11 APD =10 CNTC =10
= JMP =11 CNTD =11
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The corresponding Boolean cover is:

00 ** 00
*1 0+ 01
*1 1+ 10
11 *1 11

where a don’t care in a binary input variable is represented by *. Note that
the first implicant can be deleted, because 00 is the default output.

Problem P4 is similar to problem P3 but has the additional equality con-
straint of some encodings. Unfortunately, an encoding that satisfies simul-
taneously the constraints set by problems E1 and E2 may not exist. Therefore
it is important to set the conditions of compatibility of the constraints related
to problems E1 and E2. Let § be a set of words. Let P be the set of patterns
defining problem E1. Let R be the partial order on S representing problem E2.

Theorem: A necessary and sufficient condition for the existence of a solution
to both problems E1 and E2 is that Vs, s’, " € § s.t. {(s, £),(+", ")} R , there
exists no pattern g € Ps.t.s, s ¢ oand s’ ¢o. M

The proof is reported in [DEMI85b]. A solution to problem P4 requires
then the detection of the mutually incompatible constraints. An encoding al-
gorithm for solving problems E1 and E2 by a minimal length encoding is re-
ported in [DEMI8Sb].

5. CONCLUDING REMARKS

Symbolic minimization and constrained encoding allow to achieve optimal
logic design of combinational circuits and sequential circuits. Optimality is
measured in terms of the number of product-terms of two-level sum of product
of literals representations. This technique allows to compute minimal repre-
sentation first, and then to determine a compatible encoding of the input and
output variables.

An approximation to symbolic minimization was used in the past to deter-
mine optimal state assignments for finite-state machines [DEMI84c]. Though
good results were achieved, it was not possible to relate the optimality of the
state assignment to the encoding of the output variables of the combinational
component of the finite state machine. Symbolic minimization bridges this gap
and the results obtained by CAPPUCCINO have shown that minimal symbolic
cover cardinalities are smaller by about 25% compared to those obtained by the
previous approach.

Symbolic minimization is related to two encoding problems. Algorithims for
obtaining compatible solutions have been developed and will be disclosed in the
near future.
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